Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (6): 878-898.doi: 10.1007/s11442-021-1876-2
• Research Articles • Previous Articles Next Articles
WANG Zhenbo1,2(), LIANG Longwu1,2, WANG Xujing3
Received:
2021-01-02
Accepted:
2021-03-20
Published:
2021-08-25
About author:
Wang Zhenbo, PhD and Associate Professor, specialized in urbanization. E-mail: wangzb@igsnrr.ac.cn
Supported by:
WANG Zhenbo, LIANG Longwu, WANG Xujing. Spatiotemporal evolution of PM2.5 concentrations in urban agglomerations of China[J].Journal of Geographical Sciences, 2021, 31(6): 878-898.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The collinearity test results of indexes"
Index | Index | |||||||
---|---|---|---|---|---|---|---|---|
Per capita GDP | Population density | Urbanization rate | Industrialization rate | High degree of industrial structure | Dependence on foreign trade | Technical support | Energy consumption | |
Per capita GDP | 1 | |||||||
Population density | 0.017 | 1 | ||||||
Urbanization rate | 0.002 | 0.061** | 1 | |||||
Industrialization rate | 0.009 | 0.045** | 0.000 | 1 | ||||
High degree of industrial structure | 0.036* | 0.166** | 0.054** | 0.049** | 1 | |||
Dependence on foreign trade | 0.019 | 0.226** | 0.049** | 0.036* | 0.183** | 1 | ||
Technical support | 0.161** | 0.096** | -0.018 | 0.006 | 0.070** | 0.109** | 1 | |
Energy consumption | 0.010 | 0.014 | -0.007 | 0.002 | 0.031 | 0.003 | 0.019 | 1 |
Table 2
Standard values of PM2.5 concentrations set by the WHO and China "
WHO Guidelines for Air Quality (2005) | China’s Ambient Air Quality Standard (GB3095-2012) (2016) | ||||
---|---|---|---|---|---|
Type | Annual average (μg/m3) | Daily average (μg/m3) | Type | Annual average (μg/m3) | Daily average (μg/m3) |
Guideline level | 10 | 25 | Standard level | 35 | 75 |
Interim target 1 | 35 | 75 | — | — | — |
Interim target 2 | 25 | 50 | — | — | — |
Interim target 3 | 15 | 37.5 | — | — | — |
Table 3
Spatial autocorrelation indexes of annual average PM2.5 concentrations in China’s urban agglomerations from 2000 to 2015 "
Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | 0.82*** | 0.79*** | 0.77*** | 0.84*** | 0.74*** | 0.75*** | 0.80*** | 0.82*** | 0.76*** | 0.76*** | 0.78*** | 0.79*** | 0.79*** | 0.83*** | 0.81*** | 0.80*** |
BTH | 0.33** | 0.41** | 0.41** | 0.39** | 0.36** | 0.37** | 0.36** | 0.36** | 0.33** | 0.33** | 0.33** | 0.33** | 0.34** | 0.35** | 0.35** | 0.34** |
YRD | 0.68*** | 0.66*** | 0.68*** | 0.67*** | 0.68*** | 0.65*** | 0.66*** | 0.64*** | 0.69*** | 0.66*** | 0.66*** | 0.68*** | 0.67*** | 0.67*** | 0.67*** | 0.68*** |
PRD | 0.13* | 0.16* | -0.10 | 0.20* | 0.18* | -0.16* | 0.11 | -0.14* | 0.13* | 0.15* | 0.17* | 0.12* | 0.14* | 0.17* | 0.25* | 0.23* |
MYR | 0.84*** | 0.77*** | 0.55*** | 0.73*** | 0.19*** | 0.49*** | 0.57*** | 0.40*** | 0.38*** | 0.43*** | 0.59*** | 0.68*** | 0.41*** | 0.66*** | 0.64*** | 0.61*** |
CC | 0.38** | 0.54*** | 0.32** | 0.30* | 0.31** | 0.27* | 0.19 | 0.23 | 0.15 | 0.12 | 0.19 | 0.20 | 0.20 | 0.19 | 0.12 | 0.19 |
CSL | 0.11* | 0.11* | 0.12* | 0.28*** | 0.15* | 0.15* | 0.14* | 0.21** | 0.15* | 0.21** | 0.10 | 0.15* | 0.20** | 0.18** | 0.12* | 0.13* |
SP | 0.44*** | 0.49*** | 0.46*** | 0.51*** | 0.48*** | 0.54*** | 0.53*** | 0.50*** | 0.49*** | 0.51*** | 0.58*** | 0.53*** | 0.53*** | 0.52*** | 0.53*** | 0.47*** |
WTS | 0.25* | -0.16* | -0.29 | 0.10* | -0.14 | 0.11* | 0.24 | 0.12* | 0.10 | 0.24* | 0.11* | 0.10* | 0.17 | 0.11* | 0.13* | 0.21 |
HC | 0.55** | 0.67*** | 0.57*** | 0.62*** | 0.74*** | 0.74*** | 0.71*** | 0.75*** | 0.81*** | 0.72*** | 0.68*** | 0.77*** | 0.75*** | 0.61*** | 0.61*** | 0.52*** |
CCP | 0.55*** | 0.52*** | 0.28* | 0.41** | 0.42** | 0.38** | 0.41** | 0.47** | 0.47** | 0.49*** | 0.48*** | 0.42** | 0.41** | 0.45*** | 0.53*** | 0.49*** |
GZ | -0.41* | -0.31* | -0.09* | -0.13 | -0.23* | 0.09* | 0.11* | 0.19** | 0.12* | 0.10 | 0.09* | 0.08 | 0.10* | 0.11 | 0.10* | 0.11* |
BG | 0.79*** | 0.76*** | 0.85*** | 0.92*** | 0.93*** | 0.93*** | 0.93*** | 0.87*** | 0.97*** | 0.95*** | 0.96*** | 0.96*** | 0.97*** | 0.92*** | 0.93*** | 0.90*** |
CS | 0.23* | -0.10* | -0.44 | -0.59* | -0.52* | -0.10 | -0.34* | -0.25* | 0.20 | 0.12* | 0.31* | 0.11* | 0.13* | 0.10* | 0.12 | 0.15* |
HBEY | -0.18* | 0.15 | -0.43 | -0.77* | -0.78* | -0.56* | -0.47* | -0.36 | 0.58* | 0.79* | 0.67* | 0.50* | 0.91* | 0.87* | 0.88* | 0.93* |
CY | 0.42* | 0.46* | 0.57* | 0.85* | 0.87* | 0.65* | 0.13* | 0.80* | 0.61* | 0.73* | 0.81* | 0.45* | 0.82* | 0.78* | 0.67* | 0.73* |
CG | -0.45* | 0.10 | -0.42* | -0.17* | -0.16* | -0.16* | -0.17* | -0.10 | 0.11 | 0.25* | 0.26* | 0.24 | 0.23* | 0.38* | 0.19* | 0.29* |
LX | 0.81** | 0.81** | 0.83** | 0.79** | 0.76** | 0.90** | 0.87** | 0.84** | 0.77** | 0.67* | 0.59* | 0.74** | 0.66* | 0.68* | 0.75** | 0.76** |
NX | 0.33* | 0.19* | 0.13 | 0.18* | 0.23* | 0.23* | 0.15* | 0.25* | 0.30* | 0.22 | 0.28* | 0.21* | 0.25* | 0.12 | 0.21* | 0.32* |
[1] |
Cao C, Jiang W, Wang B et al., 2014. Inhalable microorganisms in Beijing’s PM2.5 and PM 10 pollutants during a severe smog event . Environmental Science & Technology, 48(3):1499-1507.
doi: 10.1021/es4048472 |
[2] |
Cheng Y, Wang Z, Ye X et al., 2014. Spatiotemporal dynamics of carbon intensity from energy consumption in China. Journal of Geographical Sciences, 24(4):631-650.
doi: 10.1007/s11442-014-1110-6 |
[3] | Cheng Zhonghua, Liu Jun, Li Lianshui, 2019. Research on the effects of industrial structure adjustment and technical progress on haze reduction. China Soft Science, (1):146-154. (in Chinese) |
[4] | Chowdhury Z, Zheng M, Schauer J J et al., 2007. Speciation of ambient fine organic carbon particles and source apportionment of PM 2.5 in Indian cities . Journal of Geophysical Research: Atmospheres, 112(D15) |
[5] |
Eeftens M, Beelen R, de Hoogh K et al., 2012. Development of land use regression models for PM 2.5, PM 2.5absorbancePM 10 and PM coarse in 20 European study areas: Results of the ESCAPE project. Environmental Science & Technology, 46(20):11195-11205.
doi: 10.1021/es301948k |
[6] |
Elhorst, Paul J , 2010. Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1):9-28.
doi: 10.1080/17421770903541772 |
[7] |
Fang Chuanglin, 2015. Important progress and future direction of studies on China’s urban agglomerations. Journal of Geographical Sciences, 25(8):1003-1024.
doi: 10.1007/s11442-015-1216-5 |
[8] |
Fang Chuanglin, 2018. Important progress and prospects of China’s urbanization and urban agglomeration in the past 40 years of reform and opening-up. Economic Geography, 38(9):1-9. (in Chinese)
doi: 10.2307/142321 |
[9] |
Fang Chuanglin, Liu Haimeng, Li Guangdong, 2016a. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. Journal of Geographical Sciences, 26(8):1081-1116.
doi: 10.1007/s11442-016-1317-9 |
[10] | Fang Chuanglin, Mao Qizhi, Ni Pengfei, 2015. The controversy and exploration of scientific selection and grading development of Chinese urban agglomeration. Acta Geographica Sinica, 70(4):515-527. (in Chinese) |
[11] |
Fang Chuanglin, Wang Zhenbo, Xu Guang et al., 2016b. Spatial-temporal characteristics of PM 2.5 in China: A city-level perspective analysis. Journal of Geographical Sciences, 26(11):1519-1532.
doi: 10.1007/s11442-016-1341-9 |
[12] |
Franklin M, Zeka A, Schwartz J, 2007. Association between PM 2.5 and all-cause and specific-cause mortality in 27 US communities. Journal of Exposure Science and Environmental Epidemiology, 17(3):279.
doi: 10.1038/sj.jes.7500530 |
[13] |
Guan Wei, Xu Shuting , 2015. Spatial energy efficiency patterns and the coupling relationship with industrial structure: A study on Liaoning Province, China. Journal of Geographical Sciences, 25(3):355-368.
doi: 10.1007/s11442-015-1173-z |
[14] | He Xiang, Lin Zhenshan, 2017. Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model . Environmental Science, (1):22-32. (in Chinese) |
[15] | He Xiang, Lin Zhenshan, Liu Huiyu et al., 2016. Analysis of the driving factors of PM 2.5 in Jiangsu province based on grey correlation model. Acta Geographica Sinica, 71(7):1119-1129. (in Chinese) |
[16] | Hu M, Lin J, Wang J et al., 2013. Spatial and temporal characteristics of particulate matter in Beijing, China using the empirical mode decomposition method. Science of the Total Environment, 458(3):70-80. |
[17] |
Huang Xiaogang, Zhao Jingbo, Cao Junji et al., 2018. Spatial-temporal variation of ozone concentration and its driving factors in China. Environmental Science, 40(3):1120-1131. (in Chinese)
doi: 10.1021/es051636z |
[18] |
Jiang Lei, Zhou Haifeng, Bo Ling , 2018. Spatial heterogeneity analysis of impacts of foreign direct investment on air pollution: Empirical evidence from 150 cities in China based on AQI. Scientia Geographica Sinica, 38(3):351-360. (in Chinese)
doi: 10.13249/j.cnki.sgs.2018.03.004 |
[19] |
Kloog I, Nordio F, Coull B A et al., 2012. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatio-temporal PM 2.5 exposures in the Mid-Atlantic states. Environmental Science & Technology, 46(21):11913-11921.
doi: 10.1021/es302673e |
[20] |
Kourtchev I, Warnke J, Maenhaut W et al., 2008. Polar organic marker compounds in PM 2.5 aerosol from a mixed forest site in western Germany. Chemosphere, 73(8):1308-1314.
doi: 10.1016/j.chemosphere.2008.07.011 pmid: 18710779 |
[21] |
Lee H J, Liu Y, Coull B A et al., 2011. A novel calibration approach of MODIS AOD data to predict PM 2.5 concentrations. Atmospheric Chemistry and Physics, 11(15):7991.
doi: 10.5194/acp-11-7991-2011 |
[22] |
Lee P K H, Brook J R, Dabek-Zlotorzynska E et al., 2003. Identification of the major sources contributing to PM 2.5 observed in Toronto. Environmental Science & Technology, 37(21):4831-4840.
doi: 10.1021/es026473i |
[23] |
Li R, Hardy R, Zhang W et al., 2018. Chemical characterization and source apportionment of PM 2.5 in a Nonattainment Rocky Mountain Valley. Journal of Environmental Quality, 47(2):238.
doi: 10.2134/jeq2017.07.0262 |
[24] | Liu Haimeng, Fang Chuanglin, Huang Jiejun et al., 2018. The spatial-temporal characteristics and influencing factors of air pollution in Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 73(1):177-191. (in Chinese) |
[25] |
Liu H M, Fang C L, Zhang X et al., 2017. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. Journal of Cleaner Production, 165:323-333.
doi: 10.1016/j.jclepro.2017.07.127 |
[26] | Liu Huajun, Lei Mingyu, 2018. The dilemma of the regional collaborative governance of haze pollution and its solution ideas in China. China Population, Resources and Environment, 28(10):88-95. (in Chinese) |
[27] |
Massimiliano B, Silvia G, Alice C et al., 2018. Is there a link between air pollution and mental disorders. Environment International, 118:154-168.
doi: 10.1016/j.envint.2018.05.044 |
[28] | Ministry of Environmental Protection MEP of the People’s Republic of China. Ambient Air Quality Standards (on trial), 2012. National Environmental Protection Standards of the People’s Republic of China (GB3095-2012), 2012-02-29. (in Chinese) |
[29] |
Mu Mu, Zhang Renhe , 2014. Addressing the issue of fog and haze: A promising perspective from meteorological science and technology. Science China Earth Sciences, 57(1):1-2.
doi: 10.1007/s11430-013-4791-2 |
[30] | Pinto J P, Lefohn A S, Shadwick D S, 2004. Spatial variability of PM 2.5 in urban areas in the United States. Journal of the Air & Waste Management Association, 54(4):440-449. |
[31] |
Santibañez D A, Ibarra S, Matus P, 2013. A five-year study of particulate matter (PM 2.5) and cerebrovascular diseases. Environmental Pollution, 181:1-6.
doi: 10.1016/j.envpol.2013.05.057 |
[32] |
Song Y, Xie S, Zhang Y et al., 2006. Source apportionment of PM 2.5 in Beijing using principal component analysis absolute principal component scores and UNMIX. Science of the Total Environment, 372(1):278-286.
pmid: 17097135 |
[33] |
Sun Y, Zhuang G, Tang A et al., 2006. Chemical characteristics of PM 2.5 and PM 10 in haze fog episodes in Beijing. Environmental Science & Technology, 40(10):3148-3155.
doi: 10.1021/es051533g |
[34] | Tecer L H, Alagha O, Karaca F, 2008. Particulate matter (PM 2.5, PM 10-2.5, and PM 10) and children’s hospital admissions for asthma and respiratory diseases: A bidirectional case-crossover study. Journal of Toxicology and Environmental Health (Part A), 71(8):512-520. |
[35] |
Tian S, Pan Y, Liu Z et al., 2014. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. Journal of Hazardous Materials, 279:452-460.
doi: 10.1016/j.jhazmat.2014.07.023 |
[36] | Walter I W, Ugelow J, 1979. Environmental policies in developing countries. Ambio, 8(2/3):102-109. |
[37] | Wang Jing, Fang Chuanglin, 2011. A new driving force for the development of urban agglomerations in China. Geographical Research, 30(2):335-347. (in Chinese) |
[38] |
Wang Zhenbo, Fang Chuanglin, 2016. Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere, 148:148-162.
doi: 10.1016/j.chemosphere.2015.12.118 |
[39] | Wang Zhenbo, Liang Longwu, Fang Chuanglin et al., 2018. Study of the evolution and factors influencing ecological security of the Beijing-Tianjin-Hebei Urban Agglomeration. Acta Ecologica Sinica, 38(12):4132-4144. (in Chinese) |
[40] | Wang Zhenbo, Liang Longwu, Lin Xiongbin et al., 2017. Control models and effect evaluation of air pollution in Jing-Jin-Ji urban agglomeration. Environmental Science, 38(10):4005-4014. (in Chinese) |
[41] |
Wang Zhenbo, Liang Longwu, Sun Zhan et al., 2019. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. Journal of Environmental Management, 243:227-239.
doi: S0301-4797(19)30555-9 pmid: 31096175 |
[42] | Wu Jiansheng, Wang Qian, Li Jiangcheng et al., 2017. Comparison of models on spatial variation of PM 2.5 concentration: A case of Beijing-Tianjin-Hebei region. Environmental Science, 38(6):2191-2201. (in Chinese) |
[43] | Xi Qiangmin, Li Guoping, 2015. Characteristics and spillover effects of space division of producer service in the Beijing-Tianjin-Hebei metropolitan region: Based on spatial panel model. Acta Geographica Sinica, 70(12):1926-1938. (in Chinese) |
[44] | Xiong Huanhuan, Liang Longwu, Zeng Zeng et al., 2017. Dynamic analysis of PM 2.5 spatial-temporal characteristics in China. Resources Science, 39(1):136-146. (in Chinese) |
[45] | Xu Chao, Wang Yunpeng, Li Lili, 2018. Study on spatiotemporal distribution of PM 2.5 in China and its relationship to energy consumption based the remote sensing data from 1998 to 2012. Ecological Science, 37(1):108-120. (in Chinese) |
[46] | Xu Helian, Deng Yuping, 2012. Does foreign direct investment lead to environmental pollution in China? Spatial measurement research based on Chinese provincial panel data. Management World, (2):30-43. (in Chinese) |
[47] | Yan Yaxue, Qi Shaozhou, 2017. Time-space effect test on foreign direct investment and PM 2.5 pollution at city level . China Population, Resources and Environment, 27(4):68-77. (in Chinese) |
[48] | Yang Mian, Wang Yin, 2017. Spatial-temporal characteristics of PM 2.5 and its influencing factors in the Yangtze River Economic Belt. China Population, Resources and Environment, 27(1):91-100. (in Chinese) |
[49] |
Zhou Liang, Zhou Chenghu, Yang Fan et al., 2019. Spatio-temporal evolution and the influencing factors of PM 2.5 in China between 2000 and 2015. Journal of Geographical Sciences, 29(2):253-270.
doi: 10.1007/s11442-019-1595-0 |
[50] | Zhou Zhen, Xing Yaoyao, Sun Hongxia et al., 2017. Interval game analysis of government subsidies on haze government in Beijing-Tianjin-Hebei. Systems Engineering-Theory & Practice, 37(10):2640-2648. (in Chinese) |
[1] | ZHOU Kan, YIN Yue, LI Hui, SHEN Yuming. Driving factors and spatiotemporal effects of environmental stress in urban agglomeration: Evidence from the Beijing-Tianjin-Hebei region of China [J]. Journal of Geographical Sciences, 2021, 31(1): 91-110. |
[2] | ZHANG Chengming, WENG Shixiu, BAO Jigang. The changes in the geographical patterns of China’s tourism in 1978-2018: Characteristics and underlying factors [J]. Journal of Geographical Sciences, 2020, 30(3): 487-507. |
[3] | CAI Jianming, MA Enpu, LIN Jing, LIAO Liuwen, HAN Yan. Exploring global food security pattern from the perspective of spatio-temporal evolution [J]. Journal of Geographical Sciences, 2020, 30(2): 179-196. |
[4] | REN Yufei, FANG Chuangling, LIN Xueqin, SUN Siao, LI Guangdong, FAN Beili. Evaluation of the eco-efficiency of four major urban agglomerations in coastal eastern China [J]. Journal of Geographical Sciences, 2019, 29(8): 1315-1330. |
[5] | XIONG Ying, CHEN Yun, PENG Fen, LI Jingzhi, YAN Xiaojing. Analog simulation of urban construction land supply and demand in Chang-Zhu-Tan Urban Agglomeration based on land intensive use [J]. Journal of Geographical Sciences, 2019, 29(8): 1346-1362. |
[6] | LI Zhuo, JIANG Weiguo, WANG Wenjie, LEI Xuan, DENG Yue. Exploring spatial-temporal change and gravity center movement of construction land in the Chang-Zhu-Tan urban agglomeration [J]. Journal of Geographical Sciences, 2019, 29(8): 1363-1380. |
[7] | Xuegang CUI, Chuanglin FANG, Zhenbo WANG, Chao BAO. Spatial relationship of high-speed transportation construction and land-use efficiency and its mechanism: Case study of Shandong Peninsula urban agglomeration [J]. Journal of Geographical Sciences, 2019, 29(4): 549-562. |
[8] | Liang ZHOU, Chenghu ZHOU, Fan YANG, Lei CHE, Bo WANG, Dongqi SUN. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2015 [J]. Journal of Geographical Sciences, 2019, 29(2): 253-270. |
[9] | Huan WANG, Jiangbo GAO, Wenjuan HOU. Quantitative attribution analysis of soil erosion in different geomorphological types in karst areas: Based on the geodetector method [J]. Journal of Geographical Sciences, 2019, 29(2): 271-286. |
[10] | FANG Chuanglin. The basic law of the formation and expansion in urban agglomerations [J]. Journal of Geographical Sciences, 2019, 29(10): 1699-1712. |
[11] | Shaojian WANG, Jieyu WANG, Yang WANG. Effect of land prices on the spatial differentiation of housing prices: Evidence from cross-county analyses in China [J]. Journal of Geographical Sciences, 2018, 28(6): 725-740. |
[12] | Xueyan ZHAO, Weijun WANG, Wenyu WAN. Regional differences in the health status of Chinese residents: 2003-2013 [J]. Journal of Geographical Sciences, 2018, 28(6): 741-758. |
[13] | Jiawen FANG. An analysis of the differentiation rules and influencing factors of venture capital in Beijing-Tianjin-Hebei urban agglomeration [J]. Journal of Geographical Sciences, 2018, 28(4): 514-528. |
[14] | Ying WANG, Qigen LIN, Peijun SHI. Spatial pattern and influencing factors of landslide casualty events [J]. Journal of Geographical Sciences, 2018, 28(3): 259-374. |
[15] | Shisong CAO, Deyong HU, Zhuowei HU, Wenji ZHAO, Shanshan CHEN, Chen YU. Comparison of spatial structures of urban agglomerations between the Beijing-Tianjin-Hebei and Boswash based on the subpixel-level impervious surface coverage product [J]. Journal of Geographical Sciences, 2018, 28(3): 306-322. |
|