Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (6): 765-784.doi: 10.1007/s11442-021-1870-8
• Research Articles • Next Articles
LI Yu(), HAN Qin, HAO Lu, ZHANG Xinzhong, CHEN Dawei, ZHANG Yuxin, XU Lingmei, YE Wangting, PENG Simin, LI Yichan, FENG Zhuowen, LIU Hebin
Received:
2020-06-17
Accepted:
2020-09-08
Published:
2021-08-25
About author:
Li Yu (1981-), Professor, specialized in paleoclimatic change. E-mail: liyu@lzu.edu.cn
Supported by:
LI Yu, HAN Qin, HAO Lu, ZHANG Xinzhong, CHEN Dawei, ZHANG Yuxin, XU Lingmei, YE Wangting, PENG Simin, LI Yichan, FENG Zhuowen, LIU Hebin. Paleoclimatic proxies from global closed basins and the possible beginning of Anthropocene[J].Journal of Geographical Sciences, 2021, 31(6): 765-784.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Supplementary Table 1
Basic physical and chemical date, radiocarbon result, and corrected age of the groundwater samples in the Shiyang, Fengle, Shiyou and Buha river basins "
Lab. | Altitude (m) | Apparent (yr BP) | PMC | +/- | TDS | PH | Water depth (m) | δ13CV-PDB‰ | Vogel (yr BP) | Pearson (yr BP) | F-G (yr BP) | Improved isotope correction (yr BP) | Corrected age (yr BP) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shiyang River | |||||||||||||
SY01 | 2622 | 3320 | 66.15 | 0.18 | 504 | 7.99 | Spring | -6.01 | 1572 | -7673 | 3416 | -620 | 1456 |
SY02 | 2504 | 3705 | 63.04 | 0.18 | 703 | 7.75 | Spring | -10.97 | 1970 | -2307 | 3814 | 4745 | 3510 |
SY03 | 2386 | 1265 | 85.45 | 0.21 | 604 | 7.64 | 8 | -10.07 | -545 | -5530 | 1300 | 1522 | 759 |
SY04 | 2268 | 2825 | 70.33 | 0.20 | 635 | 7.5 | 11 | -7.15 | 1065 | -6744 | 2910 | 308 | 1428 |
SY05 | 2160 | 2780 | 70.74 | 0.18 | 663 | 7.95 | / | -7.42 | 1017 | -6492 | 2862 | 561 | 1480 |
SY06 | 2094 | 2115 | 76.84 | 0.19 | 1375 | 7.34 | 10 | -8.61 | 333 | -5946 | 2178 | 1107 | 1206 |
SY07 | 1931 | 1505 | 82.90 | 0.25 | 721 | 7.6 | 13 | -9.78 | -294 | -5518 | 1550 | 1535 | 930 |
SY08 | 1840 | 275 | 96.62 | 0.22 | 949 | 7.47 | 5 | -10.57 | -1560 | -6142 | 284 | 911 | Modern |
SY09 | 1498 | 300 | 96.34 | 0.23 | 868 | 7.6 | / | -10.04 | -1536 | -6542 | 308 | 511 | Modern |
SY10 | 1475 | 115 | 98.61 | 0.23 | 1110 | 7.89 | / | -9.16 | -1729 | -7493 | 116 | -440 | Modern |
SY11 | 1455 | 1335 | 84.67 | 0.32 | 694 | 7.86 | 13 | -8.46 | -469 | -6889 | 1376 | 163 | 357 |
SY12 | 1444 | 1495 | 83.04 | 0.24 | 817 | 7.92 | / | -8.07 | -308 | -7125 | 1536 | -72 | 385 |
SY13 | 1433 | 1705 | 80.86 | 0.26 | 1353 | 7.96 | / | -10.34 | -88 | -4852 | 1756 | 2201 | 1290 |
SY14 | 1417 | 1085 | 87.34 | 0.25 | 1973 | 7.57 | / | -8.84 | -726 | -6787 | 1119 | 266 | 220 |
SY15 | 1416 | 2515 | 73.14 | 0.21 | / | / | 17 | -10.90 | 741 | -3588 | 2586 | 3465 | 2264 |
SY16 | 1389 | 795 | 90.59 | 0.24 | / | / | 11 | -8.92 | -1028 | -7010 | 817 | 43 | Modern |
SY17 | 1385 | 585 | 92.98 | 0.25 | / | / | 9 | -10.78 | -1243 | -5666 | 602 | 1386 | 248 |
SY18 | 1368 | 1445 | 83.52 | 0.22 | / | / | 12 | -8.71 | -356 | -6536 | 1489 | 516 | 550 |
SY19 | 1356 | 1905 | 78.88 | 0.22 | 1252 | 7.54 | 15 | -9.16 | 117 | -5651 | 1961 | 1402 | 1160 |
SY20 | 1356 | 935 | 89.03 | 0.24 | 1925 | 7.43 | / | -9.40 | -884 | -6436 | 961 | 617 | 231 |
SY21 | 1344 | 2360 | 74.57 | 0.22 | 1489 | 7.54 | 35 | -10.84 | 581 | -3793 | 2426 | 3260 | 2089 |
SY22 | 1334 | 4995 | 53.68 | 0.18 | 1808 | 7.51 | 130 | -9.36 | 3298 | -2291 | 5143 | 4762 | 4401 |
SY23 | 1330 | 4070 | 60.27 | 0.20 | 1576 | 7.34 | 180 | -8.51 | 2341 | -4034 | 4186 | 3019 | 3182 |
SY24 | 1311 | 1415 | 83.83 | 0.24 | 1882 | 7.58 | / | -10.62 | -387 | -4930 | 1458 | 2123 | 1065 |
SY25 | 1362 | 3090 | 68.05 | 0.20 | 1728 | 7.63 | 80 | -9.71 | 1337 | -3947 | 3182 | 3105 | 2542 |
Fengle River | |||||||||||||
FL01 | 2316 | 3760 | 62.61 | 0.20 | 800 | 7.4 | / | -1.99 | 2026 | -16377 | 3871 | -9325 | Modern |
FL03 | 1424 | 7590 | 38.85 | 0.26 | 1056 | 7.51 | 22 | -4.25 | 5971 | -6142 | 7816 | 910 | 4899 |
FL05 | 1386 | 6270 | 45.83 | 0.16 | 1678 | 7.38 | 20 | -3.62 | 4605 | -8828 | 6450 | -1775 | 3093 |
Shiyou River | |||||||||||||
SL01 | 2391 | 680 | 91.89 | 0.42 | 537 | 8.4 | / | -4.46 | -1146 | -12866 | 699 | -5813 | Modern |
SL04 | 1639 | 2240 | 75.65 | 0.20 | 1395 | 7.62 | / | -7.45 | 462 | -7010 | 2307 | 43 | 937 |
SL05 | 1465 | 3155 | 67.53 | 0.23 | 1895 | 7.9 | / | -5.89 | 1401 | -8012 | 3246 | -960 | 1229 |
SL06 | 1277 | 520 | 93.73 | 0.23 | 1288 | 7.4 | / | -10.37 | -1309 | -6049 | 535 | 1004 | Modern |
Buha River | |||||||||||||
BH01 | 3657 | 1415 | 83.86 | 0.25 | / | / | / | -8.98 | -390 | -6272 | 1455 | 781 | 615 |
BH02 | 3722 | 2165 | 76.40 | 0.27 | / | / | 8 | -10.18 | 381 | -4771 | 2225 | 2282 | 1629 |
BH03 | 3484 | 620 | 92.59 | 0.23 | / | / | 10 | -9.15 | -1208 | -6035 | 636 | 1018 | 149 |
BH04 | 3460 | 1050 | 87.75 | 0.27 | / | / | 7 | -9.11 | -764 | -6719 | 1080 | 334 | 217 |
BH05 | 3443 | 1090 | 87.31 | 0.23 | / | / | 11 | -10.54 | -723 | -7289 | 1122 | -236 | Modern |
BH06 | 3400 | 1550 | 82.43 | 0.33 | / | / | / | -10.09 | -247 | -5217 | 1597 | 1836 | 1062 |
BH07 | 3349 | 2650 | 71.88 | 0.24 | / | / | 13 | -8.32 | 885 | -3721 | 2730 | 3331 | 2315 |
BH08 | 3332 | 1575 | 82.21 | 0.21 | / | / | 9 | -8.95 | -225 | -6034 | 1619 | 1018 | 804 |
BH09 | 3301 | 1725 | 80.70 | 0.22 | / | / | / | -10.26 | -72 | -5847 | 1773 | 1206 | 969 |
BH10 | 3264 | 630 | 92.46 | 0.23 | / | / | / | -9.03 | -1197 | -6087 | 648 | 966 | 139 |
BH11 | 3213 | 765 | 90.89 | 0.28 | / | / | 14 | -9.87 | -1055 | -6986 | 790 | 66 | Modern |
Figure 7
Land use map of the Shiyang River basin, the Fengle River basin, the Shiyou River basin, and the Buha River basin. WESTDC-land-cover-products 2.0. data come from the Data Center for Environmental and Ecological Sciences in Western China (http://westdc.westgis.ac.cn), of the National Natural Science Foundation of China "
Figure 8
Comparison of PCA results for the closed basins of the Qilian Mountains and for other climatic records during the Holocene. δ 18O of the stalagmite from Dongge Cave (Dykoski et al. 2005); trends of precipitation/moisture evolution indicated by the χ ARM/SIRM ratio of the LJW10 Holocene paleosol section (Chen et al. 2016); summer insolation and winter insolation (Berger et al. 1978) "
[1] |
Allen E D, Spence D H N, 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh water. New Phytologist, 87(2):269-283.
doi: 10.1111/nph.1981.87.issue-2 |
[2] |
ArchaeoGLOBE Project, 2019. Archaeological assessment reveals Earth’s early transformation through land use. Science, 365(6456):897-902.
doi: 10.1126/science.aax1192 |
[3] |
Balascio N L, D'Andrea W J, Bradley R S et al., 2013. Biogeochemical evidence for hydrologic changes during the Holocene in a lake sediment record from southeast Greenland. The Holocene, 23(10):1428-1439.
doi: 10.1177/0959683613493938 |
[4] |
Berger A L, 1978. Long-term variations of gaily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences, 35(12):2362-2367.
doi: 10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2 |
[5] | Clark I D, Fritz P, 1997. Environmental Isotopes in Hydrogeology. USA: Lewis Publishers. |
[6] | Chen D W, Li Y, Zhang X Z et al., 2020. Study on grains size indicator of surface soil and terminal lake sediments in closed basins over Qilian Mountains. Quaternary Sciences, 40(5):1216-1230. (in Chinese) |
[7] |
Chen F H, Jia J, Chen J H et al., 2016. A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quaternary Science Reviews, 146:134-146.
doi: 10.1016/j.quascirev.2016.06.002 |
[8] |
Chen F H, Xu Q H, Chen J H et al., 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports, 5:11186.
doi: 10.1038/srep11186 |
[9] |
Chen F H, Yu Z C, Yang M L et al., 2008. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 27(3/4):351-364.
doi: 10.1016/j.quascirev.2007.10.017 |
[10] |
Chen Z Y, Nie Z L, Zhang G H et al., 2006. Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeology Journal, 14:1635-1651.
doi: 10.1007/s10040-006-0075-7 |
[11] | Crutzen P J, Stoermer E F, 2000. The ‘Anthropocene’. Global Change Newsletters, 41:17-18. |
[12] |
Dykoski C A, Edwards R L, Cheng H et al., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record form Dongge Cave, China. Earth and Planetary Science Letters, 233(1/2):71-86.
doi: 10.1016/j.epsl.2005.01.036 |
[13] |
Fontes J C, Garnier J M, 1979. Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach. Water Resources Research, 15(2):399-413.
doi: 10.1029/WR015i002p00399 |
[14] |
Gates J B, Edmunds W M, Ma J Z et al., 2008. Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeology Journal, 16(5):893-910.
doi: 10.1007/s10040-007-0264-z |
[15] | Hu H Y, Xu B S, 2019. Evaluation on irrigated water use efficiency in the Shule River Irrigation District. China Water Resources, 11:53-55. (in Chinese) |
[16] | Hu J F, Sha Z J, Ma Y J et al., 2017. Characteristics of grain size and their environmental significance of sediments at the Buha Estuary of the Qinghai Lake. Arid Zone Research, 34(2):445-451. (in Chinese) |
[17] | Huang X Z, Liu S S, Dong G H et al., 2017. Early human impacts on vegetation on the northeastern Qinghai-Tibetan Plateau during the middle to late Holocene. Progress in Physical Geography, 41(3):286-301. |
[18] |
Jin L Y, Chen F H, Morrill C et al., 2012. Causes of early Holocene desertification in arid Central Asia. Climate Dynamics, 38(7/8):1577-1591.
doi: 10.1007/s00382-011-1086-1 |
[19] |
Kusakabe M, 2001. A simple method for sampling total dissolved carbonate in carbonate-rich natural waters and CO 2 preparation for δ 13C determination. Geochemical Journal, 35(6):459-464.
doi: 10.2343/geochemj.35.459 |
[20] |
Lewis S L, Maslin M A, 2015. Defining the Anthropocene. Nature, 519(7542):171-180.
doi: 10.1038/nature14258 |
[21] |
Li Y, Li P C, Zhang C Q, 2017a. Long-term fine-grained sediment records in a drainage system in arid China: A new perspective from paleoclimatological records and simulations. Annals of the American Association of Geographers, 107(5):1216-1228.
doi: 10.1080/24694452.2017.1304199 |
[22] |
Li Y, Peng S M, Liu H B et al., 2020. Westerly jet stream controlled climate change mode since the Last Glacial Maximum in the northern Qinghai-Tibet Plateau. Earth and Planetary Science Letters, 549:116529.
doi: 10.1016/j.epsl.2020.116529 |
[23] |
Li Y, Wang N A, Li Z L et al., 2012. Basin-wide Holocene environmental changes in the marginal area of the Asian monsoon, northwest China. Environmental Earth Science, 65:203-212.
doi: 10.1007/s12665-011-1083-z |
[24] |
Li Y, Zhang C Q, Li P C, 2017b. Basin-wide sediment gain-size numerical analysis and paleo-climate interpretation in the Shiyang River drainage basin. Geographical Analysis, 49(13):309-327.
doi: 10.1111/gean.2017.49.issue-3 |
[25] |
Li Y, Zhang C Q, Wang N A et al., 2017c. Substantial inorganic carbon sink in closed drainage basins globally. Nature Geoscience, 10(13):501-508.
doi: 10.1038/ngeo2972 |
[26] |
Liu J B, Chen J H, Zhang X J et al., 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ 18O records . Earth-Science Reviews, 148:194-208.
doi: 10.1016/j.earscirev.2015.06.004 |
[27] |
Metcalfe S E, Bimpson A, Courtice A J et al., 1997. Climate change at the monsoon/Westerly boundary in Northern Mexico. Journal of Paleolimnology, 17:155-171.
doi: 10.1023/A:1007905824147 |
[28] |
Meyers P A, 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114(3/4):289-302.
doi: 10.1016/0009-2541(94)90059-0 |
[29] |
O'Leary M H, 1988. Carbon isotopes in photosynthesis. Bioscience, 38(5):328-336.
doi: 10.2307/1310735 |
[30] |
Park J, Byrne R, Böhnel H et al., 2010. Holocene climate change and human impact, central Mexico: A record based on maar lake pollen and sediment chemistry. Quaternary Science Reviews, 29(5/6):618-632.
doi: 10.1016/j.quascirev.2009.10.017 |
[31] |
Pearson F J, White D E, 1967. Carbon 14 ages and flow rates of water in Carrizo sand, Atascosa County, Texas. Water Resources Research, 3(1):251-261.
doi: 10.1029/WR003i001p00251 |
[32] | Qi S Z, Luo F, 2005. Water environmental degradation of the Heihe River Basin in arid northwestern China. Environmental Monitoring & Assessment, 108:205-215. |
[33] |
Qiang M R, Song L, Jin Y X et al., 2017. A 16-ka oxygen-isotope record from Genggahai Lake on the northeastern Qinghai-Tibetan Plateau: Hydroclimatic evolution and changes in atmospheric circulation. Quaternary Science Reviews, 162:72-87.
doi: 10.1016/j.quascirev.2017.03.004 |
[34] |
Rodell M, Famiglietti J S, Wiese D N et al., 2018. Emerging trends in global freshwater availability. Nature, 557(7707):651-659.
doi: 10.1038/s41586-018-0123-1 pmid: 29769728 |
[35] | Ruan Y F, Zhao L J, Xiao H L et al., 2015. The groundwater in the Heihe River Basin: Isotope age and renewability. Journal of Glaciology and Geocryology, 37(3):767-782. (in Chinese) |
[36] |
Shen J, Liu X Q, Wang S M et al., 2015. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International, 136(1):131-140.
doi: 10.1016/j.quaint.2004.11.014 |
[37] | Siebert S, Burke J, Faures J M et al., 2010. Groundwater use for irrigation: A global inventory. Hydrology and Earth System Sciences, 7(3):1863-1880. |
[38] |
Stuiver M, Groots P M, Braziunas T F, 1995. The GISP2 δ18O climate record of the past 16,500 years and the roles of the sun, ocean and volcanoes. Quaternary Research, 44(3):341-354.
doi: 10.1006/qres.1995.1079 |
[39] | Stuiver M, Reimer P J Reimer R W, 2019. CALIB 7.1 [WWW program] at http://calib.org, accessed 2019-11-11. |
[40] | Steffen W, Grinevald J, Crutzen J P et al., 2011. The Anthropocene: Conceptual and historical perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938):842-867. |
[41] | Unterman M B, Crowley T J, Hodges K I et al., 2011. Paleometeorology: High resolution Northern Hemisphere wintertime mid-latitude dynamics during the Last Glacial Maximum. Geophysical Research Letters, 38(23):563-567. |
[42] | Vogel J C, 1970. Carbon 14 Dating of Groundwater, Isotope Hydrology. Vienna: IAEA,225-239. |
[43] | Wallerstein I, 2011. The Modern World-System I: Capitalist Agriculture and the Origins of the European World-Economy in the Sixteenth Century. University of California Press. |
[44] |
Wang J D, Song C Q, Reager J T et al., 2018. Recent global decline in endorheic basin water storages. Nature Geoscience, 11:926-932.
doi: 10.1038/s41561-018-0265-7 |
[45] | Wang N A, Zhao Q, Hu G et al., 2003. Climatic and humanistic background of desertification process in the recent 2000 years in Hexi Corridor, China. Journal of Desert Research, 23(1):95-100. (in Chinese) |
[46] | Wang S P, Jia G D, Zhao Y et al., 2010. Plant wax n-alkanse record of the Holocene paleoclimatic changes from a core sediment of Hurleg lake in the Qaidam Basin. Quaternary Sciences, 30(6):1097-1104. (in Chinese) |
[47] |
Wang W, Feng Z D, Ran M et al., 2013. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia. Quaternary International, 311:54-62.
doi: 10.1016/j.quaint.2013.07.034 |
[48] |
Wassenburg J A, Dietrich S, Fietzke J et al., 2016. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation. Nature Geoscience, 9(8):602-605.
doi: 10.1038/ngeo2767 |
[49] |
Xiao X Y, Haberle S G, Shen J et al., 2014. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quaternary Science Reviews, 86:35-48.
doi: 10.1016/j.quascirev.2013.12.023 |
[50] | Xiao Y, 2018. Groundwater circulation patterns and its change trend in southern Qaidam Basin, northwest China[D]. Beijing: China University of Geosciences (Beijing) (in Chinese) |
[51] | Xu J, Zhang B P, Zhu Y et al., 2006. Distribution and geographical analysis of altitudinal belts in the Altun-Qilian Mountains. Geographical Research, 25(6):977-984. (in Chinese) |
[52] |
Yan D D, Wünnemann B, 2014. Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records. Quaternary Science Reviews, 95:95-114.
doi: 10.1016/j.quascirev.2014.04.030 |
[53] | Yang Y S, Dong G H, Zhang S J et al., 2016. Copper content in anthropogenic sediments as a tracer for detecting smelting activities and its impact on environment during prehistoric period in Hexi Corridor, Northwest China. The Holocene,1-10. |
[54] | Zalasiewicz J, Williams M, Fortey R et al., 2011. Stratigraphy of the Anthropocene. Philosophical Transactions Mathematical Physical & Engineering Sciences, 369(1938):1036-1055. |
[55] |
Zhang C, Zhao C, Zhou A F et al., 2019. Late Holocene lacustrine environmental and ecological changes caused by anthropogenic activities in the Chinese Loess Plateau. Quaternary Science Reviews, 203:266-277.
doi: 10.1016/j.quascirev.2018.11.020 |
[56] |
Zhao Y, Wu F L, Fang X M et al., 2015. Topsoil C/N ratios in the Qilian Mountains area: Implications for the use of subaqueous sediment C/N ratios in paleo-environmental reconstructions to indicate organic sources. Palaeogeography, Palaeoclimatology, Palaeoecology, 426:1-9.
doi: 10.1016/j.palaeo.2015.02.038 |
[57] |
Zhu G F, Su Y H, Feng Q, 2008. The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeology Journal, 16:167-182.
doi: 10.1007/s10040-007-0216-7 |
[1] | HUANG Chang, ZHANG Shiqiang, DONG Linyao, WANG Zucheng, LI Linyi, CUI Luming. Spatial and temporal variabilities of rainstorms over China under climate change [J]. Journal of Geographical Sciences, 2021, 31(4): 479-496. |
[2] | ZHANG Chi, WU Shaohong, LENG Guoyong. Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2 [J]. Journal of Geographical Sciences, 2020, 30(8): 1219-1232. |
[3] | LIU Haimeng, FANG Chuanglin, FANG Kai. Coupled Human and Natural Cube: A novel framework for analyzing the multiple interactions between humans and nature [J]. Journal of Geographical Sciences, 2020, 30(3): 355-377. |
[4] | LIU Juan, YAO Xiaojun, LIU Shiyin, GUO Wanqin, XU Junli. Glacial changes in the Gangdisê Mountains from 1970 to 2016 [J]. Journal of Geographical Sciences, 2020, 30(1): 131-144. |
[5] | BA Wulong, DU Pengfei, LIU Tie, BAO Anming, CHEN Xi, LIU Jiao, QIN Chengxin. Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China [J]. Journal of Geographical Sciences, 2020, 30(1): 164-176. |
[6] | FAN Zemeng, BAI Ruyu, YUE Tianxiang. Scenarios of land cover in Eurasia under climate change [J]. Journal of Geographical Sciences, 2020, 30(1): 3-17. |
[7] | CHEN Qihui, CHEN Hua, ZHANG Jun, HOU Yukun, SHEN Mingxi, CHEN Jie, XU Chongyu. Impacts of climate change and LULC change on runoff in the Jinsha River Basin [J]. Journal of Geographical Sciences, 2020, 30(1): 85-102. |
[8] | Martha Elizabeth APPLE, Macy Kara RICKETTS, Alice Caroline MARTIN. Plant functional traits and microbes vary with position on striped periglacial patterned ground at Glacier National Park, Montana [J]. Journal of Geographical Sciences, 2019, 29(7): 1127-1141. |
[9] | Yuan ZHANG, Shuying ZANG, Li SUN, Binghe YAN, Tianpeng YANG, Wenjia YAN, E Michael MEADOWS, Cuizhen WANG, Jiaguo QI. Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 658-674. |
[10] | Yujie LIU, Ya QIN, Quansheng GE. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010 [J]. Journal of Geographical Sciences, 2019, 29(3): 351-362. |
[11] | ZHONG Linsheng, YU Hu, ZENG Yuxi. Impact of climate change on Tibet tourism based on tourism climate index [J]. Journal of Geographical Sciences, 2019, 29(12): 2085-2100. |
[12] | FENG Yingying, YANG Xiaoping. Moisture sources of the Alashan Sand Seas in western Inner Mongolia, China during the Last Glacial Maximum and mid-Holocene: Interpretation from modern analogues, paleoclimatic simulations and geological records [J]. Journal of Geographical Sciences, 2019, 29(12): 2101-2121. |
[13] | GAO Jiangbo, JIAO Kewei, WU Shaohong. Investigating the spatially heterogeneous relationships between climate factors and NDVI in China during 1982 to 2013 [J]. Journal of Geographical Sciences, 2019, 29(10): 1597-1609. |
[14] | Danyang MA, Haoyu DENG, Yunhe YIN, Shaohong WU, Du ZHENG. Sensitivity of arid/humid patterns in China to future climate change under a high-emissions scenario [J]. Journal of Geographical Sciences, 2019, 29(1): 29-48. |
[15] | Man ZHANG, Yaning CHEN, Yanjun SHEN, Baofu LI. Tracking climate change in Central Asia through temperature and precipitation extremes [J]. Journal of Geographical Sciences, 2019, 29(1): 3-28. |
|