Journal of Geographical Sciences ›› 2021, Vol. 31 ›› Issue (2): 231-244.doi: 10.1007/s11442-021-1844-x
Previous Articles Next Articles
XU Jun1(), LIU Ju1,2, XU Yang1,2, PEI Tao1,2
Received:
2020-03-17
Accepted:
2020-09-30
Online:
2021-02-25
Published:
2021-04-25
About author:
Xu Jun, Associate Professor, specialized in GIS, spatial data mining. E-mail:Supported by:
XU Jun, LIU Ju, XU Yang, PEI Tao. Visualization and analysis of local and distant population flows on the Qinghai-Tibet Plateau using crowd-sourced data[J].Journal of Geographical Sciences, 2021, 31(2): 231-244.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Vertexes degrees within the 2017 population flow network"
Rank | Out-degree | In-degree | ||
---|---|---|---|---|
1 | Beijing | 256 | Beijing | 244 |
2 | Shanghai | 249 | Chongqing | 240 |
3 | Guangzhou | 225 | Shanghai | 226 |
4 | Chongqing | 219 | Guangzhou | 192 |
5 | Shenzhen | 215 | Shenzhen | 189 |
6 | Chengdu | 187 | Chengdu | 165 |
7 | Wuhan | 157 | Wuhan | 126 |
8 | Hangzhou | 153 | Xi’an | 126 |
9 | Tianjin | 136 | Dongguan | 116 |
10 | Dongguan | 131 | Suzhou | 108 |
…… | …… | …… | ||
356 | Sansha | 16 | Jieyang | 17 |
357 | Akxoki | 16 | Hezhou | 17 |
358 | Baoshan | 14 | Yangjiang | 15 |
[1] | Andrienko G, Andrienko N, Dykes J et al., 2008. Geovisualization of dynamics, movement and change: Key issues and developing approaches in visualization research. Information Visualization, 7(3):173-180. |
[2] | Aral M M, 2020. Knowledge based analysis of continental population and migration dynamics. Technological Forecasting and Social Change, 151:119848. |
[3] | Aunan K, Wang S, 2014. Internal migration and urbanization in China: Impacts on population exposure to household air pollution (2000-2010). Science of the Total Environment, 481(May 15):186-195. |
[4] |
Belyi A, Bojic I, Sobolevsky S, Sitko I et al., Global multi-layer network of human mobility. International Journal of Geographical Information Science, 31(7):1381-1402.
doi: 10.1080/13658816.2017.1301455 pmid: 28553155 |
[5] | Cha J, Kim S, Lee Y, 2009. Application of multidimensional scaling for marketing-mix modification: A case study on mobile phone category. Expert Systems with Applications, 36(3, Part 1):4884-4890. |
[6] | Chen C, 2003. Mapping Scientific Frontiers: The Quest for Knowledge Visualization. London and New York: Springer-Verlag. |
[7] | Dhillon I S, Modha D S, 2001. Concept decompositions for large sparse text data using clustering. Machine Learning, 42(1/2):143-175. |
[8] | Dzwinel W, Wcisło R, 2015. Very fast interactive visualization of large sets of high-dimensional data. Procedia Computer Science, 51:572-581. |
[9] | Fang C L, Ren Y F, 2017. Analysis of emergy-based metabolic efficiency and environmental pressure on the local coupling and telecoupling between urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration. Science China Earth Sciences, 47(7):833-846. (in Chinese) |
[10] | Fischer M M, Reismann M, Scherngell T, 2010. Spatial interaction and spatial autocorrelation. In: Anselin L, Rey J S Rey (eds). Perspectives on Spatial Data Analysis. Berlin, Heidelberg:Springer, 61-79. |
[11] | Getis A, 1991. Spatial interaction and spatial autocorrelation: A cross-product approach. Environment and Planning A, 23(9):1269-1277. |
[12] |
Guo D S, 2009. Flow mapping and multivariate visualization of large spatial interaction data. IEEE Transactions on Visualization and Computer Graphics, 15(6):1041-1048.
doi: 10.1109/TVCG.2009.143 pmid: 19834170 |
[13] | He J, Li C, Yu Y et al., 2017. Measuring urban spatial interaction in Wuhan urban agglomeration, central China: A spatially explicit approach. Sustainable Cities and Society, 32:569-583. |
[14] | He J, Shang P, 2018. Multidimensional scaling analysis of financial stocks based on Kronecker-delta dissimilarity. Communications in Nonlinear Science and Numerical Simulation, 63(Oct.):186-201. |
[15] | Huo J, Wang X-M, Zhao N et al., 2016. Statistical characteristics of dynamics for population migration driven by the economic interests. Physica A: Statistical Mechanics and its Applications, 451:123-134. |
[16] | Kerkman K, Martens K, Meurs H, 2017. A multilevel spatial interaction model of transit flows incorporating spatial and network autocorrelation. Journal of Transport Geography, 60:155-166. |
[17] | Liu S B, Yang S, Wang Z, 2019. Characteristics and formation mechanism of China's provincial urbanization spatial correlation based on population flow. Acta Geographica Sinica, 74(4):648-663. (in Chinese) |
[18] | Liu W, Shi E, 2016. Spatial pattern of population daily flow among cities based on ICT: A case study of “Baidu Migration”. Acta Geographica Sinica, 71(10):1667-1679. (in Chinese) |
[19] | Liu X, Kang C, Gong L et al., 2016. Incorporating spatial interaction patterns in classifying and understanding urban land use. International Journal of Geographical Information Science, 30(2):334-350. |
[20] | Ma E, Cai J, Lin J et al., 2019. Explanation of land use/cover change from the perspective of tele-coupling. Acta Geographica Sinica, 74(3):421-431. (in Chinese) |
[21] |
Ma T, Lu R, Zhao N et al., 2018. An estimate of rural exodus in China using location-aware data. PLoS ONE, 13(7):e0201458.
doi: 10.1371/journal.pone.0201458 pmid: 30063720 |
[22] | MacEachren A M, Kraak M J, 1997. Exploratory cartographic visualization: Advancing the agenda. Computers & Geosciences, 23(4):335-343. |
[23] | Machado J T, Mehdipour S H, 2019. Multidimensional scaling analysis of the solar system objects. Communications in Nonlinear Science and Numerical Simulation, 79:104923. |
[24] | Mahfouz M M A, 2020. A protection scheme for multi-distributed smart microgrid based on auto-cosine similarity of feeders current patterns. Electric Power Systems Research, 186:106405. |
[25] | Mead A, 1992. Review of the development of multidimensional scaling methods. Journal of the Royal Statistical Society, Series D (The Statistician), 41(1):27-39. |
[26] | Pan J, Lai J, 2019. Spatial pattern of population mobility among cities in China: Case study of the National Day plus Mid-Autumn Festival based on Tencent migration data. Cities, 94:55-69. |
[27] | Seto K C, Reenberg A, Boone C G et al., 2012. Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences, 109(20):7687-7692. |
[28] | Shiri A, 2004. Introduction to modern information retrieval. 2nd ed. Library Review, 53(9):462-463. |
[29] | Silveira P, Dentinho T P, 2018. A spatial interaction model with land use and land value. Cities, 78:60-66. |
[30] | Tan X, Chen X, 2020. The change of intensity and influence factors of interprovincial population migration in Heilongjiang Province. Journal of Heibei Normal University (Natural Science Edition), 44(5):1-11. (in Chinese) |
[31] | Tang J, Ma Z, 2007. Migration selectivity in China: An analysis based on the 2000 census data. Population Research, 31(5):42-51. |
[32] | Ullman E L, 1954. Geography as spatial interaction. Annals of Association of the American Geographers, 44(3):283-284. |
[33] | Wang N, Wang H, Du Y et al., 2020. Spatiotemporal patterns of in- and out-bound population flows of the Qinghai-Tibet QTP. Acta Geographica Sinica, 75(7):1418-1431. (in Chinese) |
[34] | Wei Y, Song W, Xiu C et al., 2018. The rich-club phenomenon of China’s population flow network during the country's spring festival. Applied Geography, 96:77-85. |
[35] |
Wu X, Zhang Z, 2015. Population migration and children’s school enrollments in China, 1990-2005. Social Science Research, 53:177-190.
pmid: 26188446 |
[36] | Xu J, Li A, Li D et al., 2017. Difference of urban development in China from the perspective of passenger transport around Spring Festival. Applied Geography, 87:85-96. |
[37] | Yi J, Du Y, Tu W, 2019. Spatiotemporal pattern of population distribution in the Qinghai-Tibet QTP during the National Day holidays: Based on geospatial big data mining. Journal of Geo-information Science, 21(9):1367-1381. (in Chinese) |
[38] | Zhang W, Chong Z, Li X et al., 2020. Spatial patterns and determinant factors of population flow networks in China: Analysis on Tencent Location Big Data. Cities, 99:102640. |
[39] | Zhu X, Guo D, 2014. Mapping large spatial flow data with hierarchical clustering. Transactions in GIS, 18(3):421-435. |
[1] | WANG Nan, WANG Huimeng, DU Yunyan, YI Jiawei, LIU Zhang, TU Wenna. Population migration across the Qinghai-Tibet Plateau: Spatiotemporal patterns and driving factors [J]. Journal of Geographical Sciences, 2021, 31(2): 195-214. |
[2] | CHE Lei, ZHOU Liang, XU Jiangang. Integrating the ecosystem service in sustainable plateau spatial planning: A case study of the Yarlung Zangbo River Basin [J]. Journal of Geographical Sciences, 2021, 31(2): 281-297. |
[3] | QI Wei, YI Jiawei. Spatial pattern and driving factors of migrants on the Qinghai-Tibet Plateau: Insights from short-distance and long-distance population migrants [J]. Journal of Geographical Sciences, 2021, 31(2): 215-230. |
[4] | WANG Shaojian, GAO Shuang, HUANG Yongyuan, SHI Chenyi. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends [J]. Journal of Geographical Sciences, 2020, 30(5): 757-774. |
[5] | PEI Tao, SONG Ci, GUO Sihui, SHU Hua, LIU Yaxi, DU Yunyan, MA Ting, ZHOU Chenghu. Big geodata mining: Objective, connotations and research issues [J]. Journal of Geographical Sciences, 2020, 30(2): 251-266. |
[6] | TAO Zexing, DAI Junhu, WANG Huanjiong, HUANG Wenjie, GE Quansheng. Spatiotemporal changes in the bud-burst date of herbaceous plants in Inner Mongolia grassland [J]. Journal of Geographical Sciences, 2019, 29(12): 2122-2138. |
[7] | TIAN Yuan, YU Chengqun, ZHA Xinjie, GAO Xing, DAI Erfu. Hydrochemical characteristics and controlling factors of natural water in the border areas of the Qinghai-Tibet Plateau [J]. Journal of Geographical Sciences, 2019, 29(11): 1876-1894. |
[8] | FAN Zemeng, BAI Ruyu, YUE Tianxiang. Spatio-temporal distribution of vascular plant species abundance on Qinghai-Tibet Plateau [J]. Journal of Geographical Sciences, 2019, 29(10): 1625-1636. |
[9] | Xi CHEN, Shanshan WANG, Zengyun HU, Qiming ZHOU, Qi HU. Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901-2013 [J]. Journal of Geographical Sciences, 2018, 28(9): 1341-1368. |
[10] | Gui JIN, Xiangzheng DENG, Xiaodong ZHAO, Baishu GUO, Jun YANG. Spatiotemporal patterns in urbanization efficiency within the Yangtze River Economic Belt between 2005 and 2014 [J]. Journal of Geographical Sciences, 2018, 28(8): 1113-1126. |
[11] | Li WANG, Haiying YU, Qiang ZHANG, Yunjia XU, Zexing TAO, Juha ALATALO, Junhu DAI. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau [J]. Journal of Geographical Sciences, 2018, 28(12): 1953-1964. |
[12] | LIU Fenggui, MAO Xufeng, ZHANG Yili, CHEN Qiong, LIU Pei, ZHAO Zhilong. Risk analysis of snow disaster in the pastoral areas of the Qinghai-Tibet Plateau [J]. , 2014, 24(3): 411-426. |
[13] | Brendon BLUE, Gary BRIERLEY, YU Guo-an. Geodiversity in the Yellow River source zone [J]. , 2013, 23(5): 775-792. |
[14] | LIU Yanhua, XU Yong, GUO Tengyun, WANG Zhiqiang. Visual simulation of regional development differentiation in Beijing-Tianjin-Hebei Metropolitan Region [J]. Journal of Geographical Sciences, 2013, 23(3): 549-566. |
[15] | ZHU Wenbin, JIA Shaofeng, Lü Aifeng, YAN Tingting. Analyzing and modeling the coverage of vegetation in the Qaidam Basin of China: The role of spatial autocorrelation [J]. Journal of Geographical Sciences, 2012, 22(2): 346-358. |
|