Journal of Geographical Sciences ›› 2020, Vol. 30 ›› Issue (12): 2002-2014.doi: 10.1007/s11442-020-1824-6
• Research Articles • Previous Articles Next Articles
LI Tuoyu1(), ZHANG Jifeng2,*(
), WU Yongqiu3, DU Shisong3, MO Duowen4, LIAO Yinan4, CHEN Zhitong2, LIU Jianbao2, LI Qing5
Received:
2020-03-20
Accepted:
2020-10-15
Online:
2020-12-25
Published:
2021-01-05
Contact:
ZHANG Jifeng
E-mail:lituoyu@cnu.edu.cn;zhangjifeng@itpcas.ac.cn
About author:
Li Tuoyu (1985-), Associate Professor, specialized in environmental archaeology and aeolian research. E-mail: Supported by:
LI Tuoyu, ZHANG Jifeng, WU Yongqiu, DU Shisong, MO Duowen, LIAO Yinan, CHEN Zhitong, LIU Jianbao, LI Qing. Holocene aeolian activities linked to Indian summer monsoon in the middle reaches of the Yarlung Zangbo River[J].Journal of Geographical Sciences, 2020, 30(12): 2002-2014.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
OSL dating results of aeolian sediments in the YZR basin"
Sample | Depth (cm) | U (ppm) | Th (ppm) | K (%) | Dose rate (Gy?ka?1) | De/Gy | OSL age (ka) |
---|---|---|---|---|---|---|---|
DRX-OSL | 68-72 | 1.56±0.3 | 13.95±0.7 | 2.41±0.04 | 3.73±0.27 | 2.93±0.30 | 0.79±0.10 |
RM-OSL-1 | 28-32 | 2.64±0.039 | 17.8±0.025 | 2.46±0.026 | 4.36±0.32 | 7.99±0.40 | 1.83±0.29 |
RM-OSL-3 | 208-212 | 3.09±0.038 | 19.2±0.024 | 2.06±0.030 | 4.17±0.31 | 19.35±0.98 | 4.64±0.36 |
DPZ-OSL-3 | 436-440 | 4.16±0.034 | 18.2±0.025 | 2.36±0.028 | 4.76±0.35 | 8.37±0.42 | 1.76±0.18 |
Table 3
A dataset of synthesized ages of Holocene aeolian sediments in the middle reaches of the YZR"
Section | Depth (cm) | Dating method | Dating material | Age (ka/cal ka BP) | Latitude (°N) | Longitude (°E) | Altitude (m asl) | Source |
---|---|---|---|---|---|---|---|---|
TB1 | 350 | OSL | Aeolian loess | 2.70±0.20 | 29.3167 | 89.5500 | 3800 | |
TB7 | 380 | OSL | Aeolian loess | 11.00±1.20 | 29.3167 | 88.9167 | 3920 | |
DAR1 | 300-325 | 14C | Charcoal | 3.15±0.08 | — | — | — | |
STA1 | 50 | OSL | Aeolian sand | 2.90±0.20 | 29.6331 | 91.0978 | 3660 | |
STA1 | 180 | OSL | Aeolian sand | 4.10±0.40 | 29.6331 | 91.0978 | 3667 | |
STA1 | 280 | OSL | Aeolian sand | 6.70±0.50 | 29.6331 | 91.0978 | 3667 | |
QUX 1 | 280 | OSL | Aeolian sand | 8.50±0.70 | 29.3553 | 90.7234 | 3603 | |
QUX 2 | 325-330 | 14C | Charcoal | 7.78±0.07 | 29.3659 | 90.7556 | 3536 | |
Section 48 | 67-73 | OSL | Aeolian loess | 8.80±3.90 | 29.7333 | 89.8167 | 4571 | |
Section 49 | 47-53 | OSL | Aeolian loess | 7.80±1.20 | 29.7667 | 89.8500 | 4835 | |
LXD | 170 | OSL | Aeolian loess | 7.90±0.90 | 29.3275 | 89.5386 | 3797 | |
LXD | 98 | OSL | Aeolian loess | 3.20±0.30 | 29.3275 | 89.5386 | 3797 | |
Xigaze | — | 14C | Organic matter | 0.92±0.02 | 29.3057 | 88.8688 | 3811 | |
TDD | 87 | OSL | Aeolian loess | 2.60±0.30 | 29.3372 | 90.3236 | 3687 | |
TDD | 195 | OSL | Aeolian loess | 2.90±0.30 | 29.3372 | 90.3236 | 3687 | |
TDD | 285 | OSL | Aeolian loess | 5.00±0.50 | 29.3372 | 90.3236 | 3687 | |
JB | 260 | TL | Aeolian sand | 8.56±0.65 | 29.3969 | 89.3500 | 3890 | |
QS | 430 | TL | Aeolian loess | 8.85±0.53 | 29.3900 | 90.7578 | 4000 | |
GM | 340 | 14C | Organic matter | 6.20±0.31 | — | — | — | |
GM | 531 | TL | Aeolian sand | 8.30±0.30 | — | — | — | |
Cha'er | 65 | 14C | Organic mattera | 2.23±0.10 | 29.3895 | 89.2823 | 3856 | |
Cha'er | 235 | TL | Aeolian sand | 8.56±0.65 | 29.3895 | 89.2823 | 3856 | |
ZD | 158 | OSL | Aeolian loess | 5.90±0.20 | 29.2466 | 91.7120 | 3561 | |
ZD | 628 | OSL | Aeolian sand | 8.50±0.60 | 29.2466 | 91.7120 | 3561 | |
CGG | 168 | OSL | Aeolian sand | 1.82±0.16 | 29.3653 | 91.1491 | 3652 | |
CGG | 287 | OSL | Aeolian sand | 8.43±0.66 | 29.3653 | 91.1491 | 3652 | |
YJP1 | 0.4 | OSL | Sandy loess | 1.90±0.10 | 29.4556 | 94.4693 | 2943 | |
YJP1 | 0.9 | OSL | Sandy loess | 3.90±0.30 | 29.4556 | 94.4693 | 2943 | |
YJP1 | 1.4 | OSL | Sandy loess | 4.40±0.30 | 29.4556 | 94.4693 | 2943 | |
YJP1 | 1.9 | OSL | Sandy loess | 4.30±0.30 | 29.4556 | 94.4693 | 2943 | |
YJP1 | 2.5 | OSL | Sandy loess | 5.10±0.40 | 29.4556 | 94.4693 | 2943 | |
YJP1 | 3 | OSL | Sandy loess | 3.20±0.20 | 29.4556 | 94.4693 | 2943 | |
YJP1 | 3.6 | OSL | Sandy loess | 8.30±0.60 | 29.4556 | 94.4693 | 2943 | |
YJP2 | 1.7 | OSL | Sandy loess | 110±0.90 | 29.4556 | 94.4693 | 2943 | |
MLP | 6.5 | OSL | Aeolian sand | 4.50±0.30 | 29.1189 | 93.7781 | 3004 | |
MLP | 10 | OSL | Aeolian sand | 6.20±0.50 | 29.1189 | 93.7781 | 3004 | |
LXP | 1.3 | OSL | Sandy loess | 4.90±0.40 | 29.0668 | 92.7993 | 3172 | |
LXP | 2 | OSL | Sandy loess | 6.50±0.50 | 29.0668 | 92.7993 | 3172 | |
SRP | 0.7 | OSL | Aeolian sand | 0.40±0.10 | 29.2617 | 91.9873 | 3553 | |
Section | Depth (cm) | Dating method | Dating material | Age (ka/cal ka BP) | Latitude (°N) | Longitude (°E) | Altitude (m asl) | Source |
SRP | 1.4 | OSL | Aeolian sand | 0.80±0.10 | 29.2617 | 91.9873 | 3553 | |
SRP | 2.1 | OSL | Aeolian sand | 1.00±0.10 | 29.2617 | 91.9873 | 3553 | |
SRP | 2.8 | OSL | Aeolian sand | 1.10±0.10 | 29.2617 | 91.9873 | 3553 | |
SRP | 3.5 | OSL | Aeolian sand | 1.00±0.10 | 29.2617 | 91.9873 | 3553 | |
SRP | 4.2 | OSL | Aeolian sand | 1.20±0.10 | 29.2617 | 91.9873 | 3553 | |
SRP | 4.9 | OSL | Aeolian sand | 4.10±0.40 | 29.2617 | 91.9873 | 3553 | |
LCP | 2.9 | OSL | Sandy loess | 9.20±0.80 | 29.3872 | 89.3254 | 3815 | |
DRX | 70 | OSL | Aeolian sand | 0.79±0.10 | 29.3664 | 91.1494 | 3656 | This study |
RM | 30 | OSL | Aeolian loess | 1.83±0.29 | 29.3528 | 88.4615 | 3876 | This study |
RM | 210 | OSL | Aeolian loess | 4.64±0.36 | 29.3528 | 88.4615 | 3876 | This study |
WL | 52 | 14C | Organic matter | 0.67±0.01 | 29.1445 | 93.6766 | 3092 | This study |
SK | 437 | 14C | Charcoal | 3.01±0.04 | 29.2995 | 91.4115 | 3557 | This study |
DPZ | 438 | OSL | Aeolian sand | 1.76±0.18 | 29.2835 | 91.6485 | 3584 | This study |
Figure 3
Comparison of the probability density curve for Holocene aeolian sediment ages in the middle reaches of the YZR (a) with other palaeoclimatic records: (b) summer insolation at 30°N (Berger and Loutre, 1991); (c) a lake-level record reconstructed by the PC1 grain size of the Lake Paru Co (Bird et al., 2014); (d) isotopic divergence between C23 and C31 n-alkanes (ΔδD) in Hongyuan peat (Seki et al., 2011); (e) a stalagmite δ18O record from southern Oman (Fleitmann et al., 2003)."
[1] |
An Z, Colman S M, Zhou W et al., 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Scientific Reports, 2:619.
doi: 10.1038/srep00619 pmid: 22943005 |
[2] | An Z, Kutzbach J E, Prell W L et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411(6833):62-66. |
[3] | Berger A, Loutre M F, 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4):297-317. |
[4] | Bird B W, Polisar P J, Lei Y et al., 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth and Planetary Science Letters, 399:92-102. |
[5] | Böhner J, 2006. General climatic controls and topoclimatic variations in Central and High Asia. Boreas, 35(2):279-295. |
[6] |
Chen F, Welker F, Shen C et al., 2019. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569(7756):409-412.
pmid: 31043746 |
[7] | Chen F, Wu D, Chen J et al., 2016. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies. Quaternary Science Reviews, 154:111-129. |
[8] |
Chen F H, Dong G H, Zhang D J et al., 2015. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science, 347(6219):248-250.
doi: 10.1126/science.1259172 pmid: 25593179 |
[9] | Chu G, Sun Q, Yang K et al., 2011. Evidence for decreasing South Asian summer monsoon in the past 160 years from varved sediment in Lake Xinluhai, Tibetan Plateau. Journal of Geophysical Research, 116(D02116):1-11. |
[10] |
Chen F, Chen J, Holmes J A et al., 2010. Moisture changes over the last millennium in arid Central Asia: A review, synthesis and comparison with monsoon region. Quaternary Science Reviews, 29(7):1055-1068.
doi: 10.1016/j.quascirev.2010.01.005 |
[11] |
Conroy J L, Hudson A M, Overpeck J T et al., 2017. The primacy of multidecadal to centennial variability over late-Holocene forced change of the Asian monsoon on the southern Tibetan Plateau. Earth and Planetary Science Letters, 458:337-348.
doi: 10.1016/j.epsl.2016.10.044 |
[12] |
Doberschütz S, Frenzel P, Haberzettl T et al., 2014. Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co (Xizang, China). Journal of Paleolimnology, 51(2):253-266.
doi: 10.1007/s10933-013-9702-1 |
[13] |
Dong Z, Hu G, Qian G et al., 2017. High-altitude aeolian research on the Tibetan Plateau. Reviews of Geophysics, 55(4):864-901.
doi: 10.1002/rog.v55.4 |
[14] |
Feng J L, Hu H P, Chen F, 2016. An eolian deposit-buried soil sequence in an alpine soil on the northern Tibetan Plateau: Implications for climate change and carbon sequestration. Geoderma, 266:14-24.
doi: 10.1016/j.geoderma.2015.12.005 |
[15] |
Fleitmann D, Burns S J, Mudelsee M et al., 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300(5626):1737-1739.
doi: 10.1126/science.1083130 pmid: 12805545 |
[16] |
Gasse F, Fontes J C, Van Campo E et al., 1996. Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: Discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 120(1/2):79-92.
doi: 10.1016/0031-0182(95)00035-6 |
[17] |
Gupta A K, Anderson D M, Overpeck J T, 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421(6921):354-357.
doi: 10.1038/nature01340 pmid: 12540924 |
[18] |
Hoffmann T, Lang A, Dikau R, 2008. Holocene river activity: Analysing 14C-dated fluvial and colluvial sediments from Germany . Quaternary Science Reviews, 27(21):2031-2040.
doi: 10.1016/j.quascirev.2008.06.014 |
[19] |
Hong Y, Hong B, Lin Q H et al., 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters, 211(3/4):371-380.
doi: 10.1016/S0012-821X(03)00207-3 |
[20] |
Hou J, D'Andrea W J, Wang M et al., 2017. Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the late Pleistocene. Quaternary Science Reviews, 163:84-94.
doi: 10.1016/j.quascirev.2017.03.013 |
[21] |
Hu H, Feng J, Chen F, 2018. Sedimentary records of a palaeo-lake in the middle Yarlung Tsangpo: Implications for terrace genesis and outburst flooding. Quaternary Science Reviews, 192:135-148.
doi: 10.1016/j.quascirev.2018.05.037 |
[22] |
Hudson A M, Olsen J W, Quade J, 2014. Radiocarbon dating of interdune paleo-wetland deposits to constrain the age of Mid-to-Late Holocene microlithic artifacts from the Zhongba site, southwestern Qinghai-Tibet Plateau. Geoarchaeology, 29(1):33-46.
doi: 10.1002/gea.2014.29.issue-1 |
[23] |
Kaiser K, Lai Z, Schneider B et al., 2009. Stratigraphy and palaeoenvironmental implications of Pleistocene and Holocene aeolian sediments in the Lhasa area, southern Tibet (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3/4):329-342.
doi: 10.1016/j.palaeo.2008.11.004 |
[24] |
Kramer A, Herzschuh U, Mischke S et al., 2010. Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations. Palaeogeography, Palaeoclimatology, Palaeoecology, 286(1):23-41.
doi: 10.1016/j.palaeo.2009.12.001 |
[25] |
Lai Z, Kaiser K, Brückner H, 2009. Luminescence-dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history. Quaternary Research, 72(3):421-430.
doi: 10.1016/j.yqres.2009.07.005 |
[26] |
Lehmkuhl F, Klinge M, Rees-Jones J et al., 2000. Late Quaternary aeolian sedimentation in central and south-eastern Tibet. Quaternary International, 68-71:117-132.
doi: 10.1016/S1040-6182(00)00038-0 |
[27] |
Lehmkuhl F, Schulte P, Zhao H et al., 2014. Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau. Catena, 117:23-33.
doi: 10.1016/j.catena.2013.06.008 |
[28] |
Li S, Dong G, Shen J et al., 1999. Formation mechanism and development pattern of aeolian sand landform in Yarlung Zangbo River valley. Science in China Series D: Earth Sciences, 42(3):272-284.
doi: 10.1007/BF02878964 |
[29] | Li S, Yang P, Dong Y et al., 2010. Desertification and Its Control in Tibet. Beijing: Science Press. (in Chinese) |
[30] | Li T, Ren X, Liao Y et al., 2020. Paleoenvironment analysis of the middle reaches of Yarlung Zangbo River and Changguogou site. Quaternary Sciences, 40(2):547-555. (in Chinese) |
[31] |
Li T, Wu Y, Du S et al., 2016. Geochemical characterization of a Holocene aeolian profile in the Zhongba area (southern Tibet, China) and its paleoclimatic implications. Aeolian Research, 20:169-175.
doi: 10.1016/j.aeolia.2016.01.005 |
[32] | Ling Z, Jin J, Wu D et al., 2019. Aeolian sediments and their paleoenvironmental implication in the Yarlung Zangbo catchment (southern Tibet, China) since MIS3. Acta Geographica Sinica, 74(11):2385-2400. (in Chinese) |
[33] | Ling Z, Yang S, Wang X et al., 2020. Spatial-temporal differentiation of eolian sediments in the Yarlung Tsangpo catchment, Tibetan Plateau, and response to global climate change since the Last Glaciation. Geomorphology, 357:107104. |
[34] | Liu X, Dong H, Yang X et al., 2009. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau. Earth and Planetary Science Letters, 280(1):276-284. |
[35] | Lu H, Zhao C, Mason J et al., 2011. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms. Holocene, 21(2):297-304. |
[36] | Ma Q, Zhu L, Lü X et al., 2014. Pollen-inferred Holocene vegetation and climate histories in Taro Co, southwestern Tibetan Plateau. Chinese Science Bulletin, 59(31):4101-4114. |
[37] | Ma Q, Zhu L, Lü X et al., 2019. Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau. Global and Planetary Change, 174:16-25. |
[38] |
Meyer M C, Aldenderfer M, Wang Z et al., 2017. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science, 355(6320):64-67.
doi: 10.1126/science.aag0357 pmid: 28059763 |
[39] | Molnar P, Boos W R, Battisti D S, 2010. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 38(1):77-102. |
[40] | Murray A S, Wintle A G, 2000. Application of the single-aliquot regenerative-dose protocol to the 375°C quartz TL signal. Radiation Measurements, 32(5):579-583. |
[41] | Pan M, Wu Y, Zheng Y et al., 2014. Holocene aeolian activity in the Dinggye area (southern Tibet, China). Aeolian Research, 12:19-27. |
[42] | Prescott J R, Hutton J T, 1994. Cosmic ray contribution to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements, 23(2/3):497-500. |
[43] | Pye K, 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews, 14(7/8):653-667. |
[44] | Qiang M, Jin Y, Liu X et al., 2016. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications. Quaternary Science Reviews, 132:57-73. |
[45] | Qiang M, Liu Y, Jin Y et al., 2014. Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan Plateau, China. Geophysical Research Letters, 41(2):589-595. |
[46] | Reimer P J, Bard E, Bayliss A et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon, 55(4):1869-1887. |
[47] | Seki O, Meyers P A, Yamamoto S et al., 2011. Plant-wax hydrogen isotopic evidence for postglacial variations in delivery of precipitation in the monsoon domain of China. Geology, 39(9):875-878. |
[48] | Shen W, Li H, Sun M et al., 2012. Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008. Global and Planetary Change, 86/87:37-44. |
[49] | Shi X, Kirby E, Furlong K P et al., 2017. Rapid and punctuated Late Holocene recession of Siling Co, central Tibet. Quaternary Science Reviews, 172:15-31. |
[50] | Singhvi A, Bluszcz A, Bateman M et al., 2001. Luminescence dating of loess-palaeosol sequences and coversands: Methodological aspects and palaeoclimatic implications. Earth-Science Reviews, 54(1-3):193-211. |
[51] | Stauch G, 2015. Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau. Earth-Science Reviews, 150:393-408. |
[52] | Stauch G, 2016. Multi-decadal periods of enhanced aeolian activity on the north-eastern Tibet Plateau during the last 2 ka. Quaternary Science Reviews, 149:91-101. |
[53] | Stauch G, Ijmker J, Pötsch S et al., 2012. Aeolian sediments on the north-eastern Tibetan Plateau. Quaternary Science Reviews, 57:71-84. |
[54] | Stauch G, Lai Z, Lehmkuhl F et al., 2018. Environmental changes during the late Pleistocene and the Holocene in the Gonghe Basin, north-eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 509:144-155. |
[55] | Sun J, Li S, Muhs D R et al., 2007. Loess sedimentation in Tibet: Provenance, processes, and link with Quaternary glaciations. Quaternary Science Reviews, 26(17/18):2265-2280. |
[56] |
Thompson L G, Yao T, Mosleythompson E et al, 2000. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science, 289(5486):1916-1919.
doi: 10.1126/science.289.5486.1916 pmid: 10988068 |
[57] | Tian L, Yao T, MacClune K et al., 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysical Research: Atmospheres, 112(D10112):1-12. |
[58] | Tian L D, Masson-Delmotte V, Stievenard M et al., 2001. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. Journal of Geophysical Research Atmospheres, 106(D22):28081-28088. |
[59] |
Wang Y, Cheng H, Edwards R L et al., 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308(5723):854-857.
doi: 10.1126/science.1106296 pmid: 15879216 |
[60] |
Wintle A G, Murray A S, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, 41(4):369-391.
doi: 10.1016/j.radmeas.2005.11.001 |
[61] | Xie M, Zhu L, Peng P et al., 2009. Ostracod assemblages and their environmental significance from the lake core of the Nam Co on the Tibetan Plateau 8.4 kaBP. Journal of Geographical Sciences, 19(4):387-402. |
[62] |
Yao T, Masson-Delmotte V, Gao J et al., 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations . Reviews of Geophysics, 51(4):525-548.
doi: 10.1002/rog.v51.4 |
[63] | Zhang J, Feng J L, Hu G et al., 2015. Holocene proglacial loess in the Ranwu valley, southeastern Tibet, and its paleoclimatic implications. Quaternary International, 372:9-22. |
[64] | Zhang J F, Xu B, Turner F et al., 2017. Long-term glacier melt fluctuations over the past 2500 yr in monsoonal High Asia revealed by radiocarbon-dated lacustrine pollen concentrates. Geology, 45(4):359-362. |
[65] |
Zhang X, Ha B B, Wang S et al., 2018. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, 362(6418):1049-1051.
doi: 10.1126/science.aat8824 pmid: 30498126 |
[66] |
Zhao Y, Yu Z, Zhao W, 2011. Holocene vegetation and climate histories in the eastern Tibetan Plateau: Controls by insolation-driven temperature or monsoon-derived precipitation changes? Quaternary Science Reviews, 30(9):1173-1184.
doi: 10.1016/j.quascirev.2011.02.006 |
[67] | Zheng Y, 2009. The response of Holocene aeolian activities to climate change in the typical area of Qinghai-Tibet Plateau: Take the broad valley area in the middle reaches of the Yarlung Zangbo River in south Tibet and the Gonghe basin in Qinghai as examples [D]. Beijing: Beijing Capital Normal University. (in Chinese) |
[68] | Zheng Y, Wu Y, Li S et al., 2009. Grain-size characteristics of sediments formed since 8600 yr BP in middle reaches of Yarlung Zangbo River in Tibet and their paleoenvironmental significance. Chinese Geographical Science, 19(2):113-119. |
[69] | Zhu L, Li Y, Li B et al., 2002. The ostracod assemblages and their environmental significance in the Chen Co area, southern Tibet in recent 1400 years. Journal of Geographical Sciences, 12(4):451-459. |
[70] |
Zhu L, Lü X, Wang J et al., 2015. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Scientific Reports, 5:13318.
doi: 10.1038/srep13318 pmid: 26294226 |
[71] |
Zhu L, Wu Y, Wang J et al., 2008. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene, 18(5):831-839.
doi: 10.1177/0959683608091801 |
[1] | GAO Xing, KANG Shichang, LIU Qingsong, CHEN Pengfei, DUAN Zongqi. Magnetic characteristics of lake sediments in Qiangyong Co Lake, southern Tibetan Plateau and their application to the evaluation of mercury deposition [J]. Journal of Geographical Sciences, 2020, 30(9): 1481-1494. |
[2] | YE Chao, LI Simeng, ZHANG Zhao, ZHU Xiaodan. A comparison and case analysis between domestic and overseas industrial parks of China since the Belt and Road Initiative [J]. Journal of Geographical Sciences, 2020, 30(8): 1266-1282. |
[3] | ZHOU Kan, LIU Baoyin, FAN Jie. Post-earthquake economic resilience and recovery efficiency in the border areas of the Tibetan Plateau: A case study of areas affected by the Wenchuan Ms 8.0 Earthquake in Sichuan, China in 2008 [J]. Journal of Geographical Sciences, 2020, 30(8): 1363-1381. |
[4] | ZHAO Chengshuangping, MO Duowen. Holocene hydro-environmental evolution and its impacts on human occupation in Jianghan-Dongting Basin, middle reaches of the Yangtze River, China [J]. Journal of Geographical Sciences, 2020, 30(3): 423-438. |
[5] | NIU Fangqu, YANG Xinyu, ZHANG Xiaoping. Application of an evaluation method of resource and environment carrying capacity in the adjustment of industrial structure in Tibet [J]. Journal of Geographical Sciences, 2020, 30(2): 319-332. |
[6] | SHI Wenjiao, LU Changhe, SHI Xiaoli, CUI Jiaying. Patterns and trends in grain self-sufficiency on the Tibetan Plateau during 1985-2016 [J]. Journal of Geographical Sciences, 2020, 30(10): 1590-1602. |
[7] | CHENG Mingyang, LI Linna, ZHOU Yang. Exploring the urban-rural development differences and influencing factors in the Huang-Huai-Hai Plain of China [J]. Journal of Geographical Sciences, 2020, 30(10): 1603-1616. |
[8] | Alexander SHCHETNIKOV, Elena V. BEZRUKOVA. Lakes of the Jom-Bolok Volcanoes Valley in the East Sayan Mts., Baikal region: Morphogenesis and potential for regional paleoenvironmental studies [J]. Journal of Geographical Sciences, 2019, 29(11): 1823-1840. |
[9] | CHEN Qiong, LIU Fenggui, CHEN Ruijie, ZHAO Zhilong, ZHANG Yili, CUI Peng, ZHENG Du. Trends and risk evolution of drought disasters in Tibet Region, China [J]. Journal of Geographical Sciences, 2019, 29(11): 1859-1875. |
[10] | WANG Yunsheng, ZHENG Mianping, YAN Lijuan, BU Lingzhong, QI Wen. Influence of the regional climate variations on lake changes of Zabuye, Dangqiong Co and Bankog Co salt lakes in Tibet [J]. Journal of Geographical Sciences, 2019, 29(11): 1895-1907. |
[11] | Tao SONG, Weidong LIU, Zhigao LIU, Yeerken WUZHATI. Chinese overseas industrial parks in Southeast Asia: An examination of policy mobility from the perspective of embeddedness [J]. Journal of Geographical Sciences, 2018, 28(9): 1288-1306. |
[12] | Xiaojun YAO, Meiping SUN, Peng GONG, Baokang LIU, Xiaofeng LI, Lina AN, Luxia YAN. Overflow probability of the Salt Lake in Hoh Xil Region [J]. Journal of Geographical Sciences, 2018, 28(5): 647-655. |
[13] | Gaocong LI, Shu Gao, Yaping WANG, Chunyan LI. Sediment flux from the Zhoushan Archipelago, eastern China [J]. Journal of Geographical Sciences, 2018, 28(4): 387-399. |
[14] | Zhi XIAO, Xianjin HUANG, Zheng ZANG, Hong YANG. Spatio-temporal variation and the driving forces of tea production in China over the last 30 years [J]. Journal of Geographical Sciences, 2018, 28(3): 275-290. |
[15] | Fengjun JIN, Linlin CHEN, Yu YANG, Hui HONG. The differentiation and evolutionary models of industrial bases in China [J]. Journal of Geographical Sciences, 2018, 28(12): 1757-1780. |
|