[1] |
Buckee C O, Balsari S, Chan J et al., 2020. Aggregated mobility data could help fight COVID-19. Science, 368(6487):145-146.
doi: 10.1126/science.abb8021
pmid: 32205458
|
[2] |
Cao Zhidong, Wang Jingfeng, Gao Yige et al., 2008. Risk factors and autocorrelation characteristics on severe acute respiratory syndrome in Guangzhou. Acta Geographica Sinica, 63(9):981-993. (in Chinese)
doi: 10.11821/xb200809008
|
[3] |
Cao Zhidong, Zeng Dajun, Wang Quanyi et al., 2010a. Epidemiological features and spatio-temporal evolution in the early phase of the Beijing H1N1 epidemic. Acta Geographica Sinica, 65(3):361-368. (in Chinese)
doi: 10.11821/xb201003011
|
[4] |
Cao Zhidong, Zeng Dajun, Zheng Xiaolong et al., 2010b. Spatio-temporal evolution of Beijing 2003 SARS epidemic. Scientia Sinica (Terrae), 40(6):776-788. (in Chinese)
|
[5] |
Chan J F-W, Yuan S, Kok K-H et al., 2020. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395(10223):514-523.
doi: 10.1016/S0140-6736(20)30154-9
pmid: 31986261
|
[6] |
Chen N, Zhou M, Dong X et al., 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 395(10223):507-513.
doi: 10.1016/S0140-6736(20)30211-7
pmid: 32007143
|
[7] |
Chinazzi M, Davis J T, Ajelli M et al., 2020. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489):395-400.
doi: 10.1126/science.aba9757
pmid: 32144116
|
[8] |
Dalziel B D, Kissler S, Gog J R et al., 2018. Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science, 362(6410):75-79.
doi: 10.1126/science.aat6030
pmid: 30287659
|
[9] |
Ding Sibao, Zhao Wei, Xiang Wei, 2004. Analyzing SARS: Geographical diffusion and hindrance in China. Human Geography, 19(2):74-78. (in Chinese)
|
[10] |
Duan H, Wang S, Yang C, 2020. Coronavirus: Limit short-term economic damage. Nature, 578(7796):515.
pmid: 32099119
|
[11] |
Geng Mengjie, Kamran KHAN, Ren Xiang et al., 2016. Assessing the risk of MERS importation from South Korea into cities of China: A retrospective study. Chinese Science Bulletin, 61(9):1016-1024. (in Chinese)
|
[12] |
Guan W-J, Ni Z-Y, Hu Y et al., 2020. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382(18):1708-1720.
doi: 10.1056/NEJMoa2002032
|
[13] |
Han Weiguo, Wang Jingfeng, Liu Xuhua, 2004. Back analyzing parameters and parameters and predicting trend of SARS transmission. Advances in Earth Science, 19(6):925-930. (in Chinese)
|
[14] |
Huang C, Wang Y, Li X et al., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223):497-506.
doi: 10.1016/S0140-6736(20)30183-5
pmid: 31986264
|
[15] |
Li Q, Guan X, Wu P et al., 2020a. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine, 382(13):1199-1207.
doi: 10.1056/NEJMoa2001316
|
[16] |
Li R, Pei S, Chen B et al., 2020b. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 368(6490):489-493.
doi: 10.1126/science.abb3221
pmid: 32179701
|
[17] |
Meng B, Wang J, Liu J et al., 2005. Understanding the spatial diffusion process of severe acute respiratory syndrome in Beijing. Public Health, 119(12):1080-1087.
pmid: 16214187
|
[18] |
Peng P W H, Wong D T, Bevan D et al., 2003. Infection control and anesthesia: Lessons learned from the Toronto SARS outbreak. Canadian Journal of Anesthesia, 50(10):989-997.
pmid: 14656775
|
[19] |
Twu S J, Chen T J, Chen C J et al., 2003. Control measures for severe acute respiratory syndrome (SARS) in Taiwan. Emerging Infectious Diseases, 9(6):718-720.
doi: 10.3201/eid0906.030283
pmid: 12781013
|
[20] |
Wang Zheng, Cai Di, Li Shan et al., 2003. On season risk of the prevalence of SARS in China. Geographical Reasearch, 22(5):541-550. (in Chinese)
|
[21] |
Wu F, Zhao S, Yu B et al., 2020. A new coronavirus associated with human respiratory disease in China. Nature, 579(7798):265-269.
doi: 10.1038/s41586-020-2008-3
pmid: 32015508
|
[22] |
Yan Yue, Chen Yu, Liu Keji et al., 2020. Modeling and prediction for the trend of outbreak of NCP based on a time-delay dynamic system. Sci. Sin. Math., 50(3):385-392. (in Chinese)
doi: 10.1360/SSM-2020-0026
|
[23] |
Yang Z, Zeng Z, Wang K et al., 2020. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thorac. Dis., 12(3):165-174.
doi: 10.21037/jtd.2020.02.64
pmid: 32274081
|
[24] |
Zhou C, Su F, Pei T et al., 2020a. COVID-19: Challenges to GIS with big data. Geography and Sustainability, 1(1):77-87.
doi: 10.1016/j.geosus.2020.03.005
|
[25] |
Zhou P, Yang X-L, Wang X-G et al., 2020b. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798):270-273.
doi: 10.1038/s41586-020-2012-7
pmid: 32015507
|
[26] |
Zhou Chenghu, Pei Tao, Du Yuyan et al., 2020c. Big data analysis on COVID-19 epidemic and suggestions on regional prevention and control policy. Bulletin of Chinese Academy of Sciences, 35(2):200-203. (in Chinese)
|