Journal of Geographical Sciences ›› 2020, Vol. 30 ›› Issue (9): 1387-1400.doi: 10.1007/s11442-020-1788-6
• Research Articles • Next Articles
MA Bin1(), ZHANG Bo1,*(
), JIA Lige1,2
Received:
2019-12-17
Accepted:
2020-06-02
Online:
2020-09-25
Published:
2020-11-25
Contact:
ZHANG Bo
E-mail:ma-bin0937@163.com;zhangbo@nwnu.edu.cn
About author:
Ma Bin (1990–), PhD, specialized in environmental change and resource assessment. E-mail: Supported by:
MA Bin, ZHANG Bo, JIA Lige. Spatio-temporal variation in China’s climatic seasons from 1951 to 2017[J].Journal of Geographical Sciences, 2020, 30(9): 1387-1400.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Definition of normal climatic seasonal regions"
Climatic seasons regions | Abbreviation | Threshold for the temperature of tenderness |
---|---|---|
Perennial-winter region | PWR | $T{{\overline{M}}_{j}}<10$℃ |
Perennial-summer region | PSuR | $T{{\overline{M}}_{j}}\ge 22$℃ |
Perennial-spring region | PSpR | $10\le T{{\overline{M}}_{j}}<22$℃ |
No-winter region | NWR | $T{{\overline{M}}_{j}}\ge 10$℃ |
No-summer region | NSR | $T{{\overline{M}}_{j}}<22$℃ |
Discernible region | DR | Except the above five cases |
Table 3
Multiple regression models for climatic seasonal length simulation in China for different Climate Normals"
Climate Normal | Threshold | Multiple regression model | R2 | Significance level |
---|---|---|---|---|
1951-1980 | 10 ℃ | $\begin{align} & Y=4014.82\text{+}41.71\times \theta \text{+}0.003\times {{\theta }^{3}}-4.32\times \text{sin}\theta -1280.2\times \\ & \ \ \ \ \ \ \text{ln}\theta -119.38\times \text{ln}\varphi -0.02\times h \\ \end{align}$ | 0.97 | 0.001 |
22 ℃ | $\begin{align} & Y=3461.58+93.51\times \theta -0.65\times {{\theta }^{2}}\text{+}2.42\times \text{sin}\theta -1759.02\times \\ & \ \ \ \ \ \ \text{ln}\theta -121.4\times \text{ln}\varphi -0.09\times h \\ \end{align}$ | 0.958 | 0.001 | |
1961-1990 | 10 ℃ | $\begin{align} & Y=4025.87\text{+}41.94\times \theta -0.003\times {{\theta }^{3}}-4.28\times \text{sin}\theta -1285.43\times \\ & \ \ \ \ \ \ \text{ln}\theta -119.33\times \text{ln}\varphi -0.02\times h \\ \end{align}$ | 0.97 | 0.001 |
22 ℃ | $\begin{align} & Y=3461.57\text{+}93.51\times \theta -0.65\times {{\theta }^{2}}\text{+}2.42\times \text{sin}\theta -1759.02\times \\ & \ \ \ \ \ \ \text{ln}\theta -121.4\times \text{ln}\varphi -0.09\times h \\ \end{align}$ | 0.958 | 0.001 | |
1971-2000 | 10 ℃ | $\begin{align} & Y=4009.6\text{+}41.7\times \theta -0.003\times {{\theta }^{3}}-5.39\times \text{sin}\theta -1280.05\times \\ & \ \ \ \ \ \ \text{ln}\theta -118.44\times \text{ln}\varphi -0.02\times h \\ \end{align}$ | 0.97 | 0.001 |
22 ℃ | $\begin{align} & Y=3682.63\text{+}105.4\times \theta -0.74\times {{\theta }^{2}}\text{+}1.75\times \text{sin}\theta -1964.13\times \\ & \ \ \ \ \ \ \text{ln}\theta -165.82\times \text{ln}\varphi -0.1\times h \\ \end{align}$ | 0.958 | 0.001 | |
1981-2010 | 10 ℃ | $\begin{align} & Y=3801.72\text{+}38.03\times \theta -0.003\times {{\theta }^{3}}-5.44\times \text{sin}\theta -1193.74\times \\ & \ \ \ \ \ \ \text{ln}\theta -114.2\times \text{ln}\varphi -0.02\times h \\ \end{align}$ | 0.97 | 0.001 |
22 ℃ | $\begin{align} & Y=3395.83\text{+}67.93\times \theta -0.006\times {{\theta }^{3}}\text{+}2.1\times \text{sin}\theta -1671.14\times \\ & \ \ \ \ \ \ \text{ln}\theta -147\times \text{ln}\varphi -0.1\times h \\ \end{align}$ | 0.959 | 0.001 |
Table 4
The R, S and RMSE between measured and simulated values of the validation site"
Station | R | S | RSME | Station | R | S | RSME |
---|---|---|---|---|---|---|---|
Hailar | 0.99 | 61.21 | 5.05 | Dardo | 0.99 | 79.33 | 22.77 |
Karamay | 0.98 | 47.87 | 23.47 | Yanyuan | 0.99 | 109.76 | 17.15 |
Korla | 0.99 | 56.08 | 19.86 | Zhanyi | 0.99 | 124.65 | 24.16 |
Yarkant | 0.99 | 62.22 | 5.61 | Gaoping | 0.99 | 77.55 | 4.40 |
Naomaohu | 0.98 | 44.79 | 17.10 | Shuangfeng | 0.99 | 63.33 | 4.76 |
Jiuquan | 0.99 | 72.03 | 15.55 | Xuzhou | 0.99 | 57.50 | 3.45 |
Gonghe | 0.99 | 61.20 | 10.06 | Anqing | 0.99 | 62.44 | 3.26 |
Urad Zhongqi | 0.99 | 68.65 | 6.08 | Wenzhou | 0.99 | 77.66 | 6.83 |
Houma | 0.99 | 58.18 | 3.94 | Du’an | 0.99 | 88.15 | 3.00 |
Changchun | 0.99 | 56.58 | 4.68 | Meixian | 0.99 | 87.59 | 6.98 |
Qinglong | 0.99 | 60.40 | 4.03 | Tainan | 0.99 | 76.59 | 48.13 |
Sog | 0.98 | 35.70 | 8.39 | Qionghai | 0.99 | 60.24 | 16.26 |
[1] |
Allen M J, Sheridan S C, 2016. Evaluating changes in season length, onset, and end dates across the United States (1948-2012). International Journal of Climatology, 36(3):1268-1277.
doi: 10.1002/joc.4422 |
[2] |
Asseng S, Ewert F, Martre P et al., 2015. Rising temperatures reduce global wheat production. Nature Climate Change, 5(2):143-147.
doi: 10.1038/nclimate2470 |
[3] |
Blunden J, Arndt D S, 2016. State of the climate in 2015. Bulletin of the American Meteorological Society, 97(8): Si-S275.
doi: 10.1175/BAMS-D-14-00164.1 pmid: 29568125 |
[4] |
Blunden J, Arndt D S, 2017. State of the climate in 2016. Bulletin of the American Meteorological Society, 98(8): Si-S280.
pmid: 29568125 |
[5] |
Chang P K, 1934. The duration of four seasons in China. Acta Geographica Sinica, 1(1):29-74. (in Chinese)
doi: 10.11821/xb193401002 |
[6] |
Chen X, Li N, Zhang Z T et al., 2018. Change features and regional distribution of temperature trend and variability joint mode in mainland China. Theoretical and Applied Climatology, 132(3/4):1049-1055.
doi: 10.1007/s00704-017-2148-z |
[7] |
Choi Y S, Gim H J, Ho C H et al., 2016. Climatic influence on corn sowing date in the Midwestern United States. International Journal of Climatology, 37(3):1595-1602.
doi: 10.1002/joc.4799 |
[8] | Cubasch U, Wuebbles D, Chen D, et al., 2013. Introduction. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Computational Geometry, 18(2):95-123. |
[9] | Dai S P, Li H L, Luo H X et al., 2015. Changes of annual accumulated temperature over southern China during 1960-2011. Journal of Geographical Sciences, 25(10):1155-1172. |
[10] | Dong W J, Jiang Y D, Yang S, 2010. Response of the starting dates and the lengths of seasons in Mainland China to global warming. Climatic Change, 99(1/2):81-91. |
[11] | Erlat E, Turkes M, 2016. Dates of frost onset, frost end and the frost-free season in Turkey: Trends, variability and links to the North Atlantic and Arctic Oscillation indices, 1950-2013. Climatic Change, 69(2):155-176. |
[12] |
Fischer E M, Knutti R, 2015. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, 5(6):560-564.
doi: 10.1038/nclimate2617 |
[13] | Flocas A A, Giles B D, Angouridakis V E, 1983. On the estimation of annual and monthly mean values of air temperature over Greece using stepwise multiple regression analysis. Archives for Meteorology Geophysics and Bioclimatology Series B-Theoretical and Applied Climatology, 32(2/3):287-295. |
[14] | Gensini V A, Mote T L, 2015. Downscaled estimates of late 21st century severe weather from CCSM3. Climatic Change. 129(1/2):307-321. |
[15] | Jaagus J, Ahas R, 2000. Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Climatic Change, 15(3):207-219. |
[16] | Jaagus J, Truu J, Ahas R et al., 2003. Spatial and temporal variability of climatic seasons on the East European Plain in relation to large-scale atmospheric circulation. Climate Research, 23(2):111-129. |
[17] |
Jiang F Q, Hu R J, Zhang Y W et al., 2011. Variations and trends of onset, cessation and length of climatic growing season over Xinjiang, NW China. Theoretical and Applied Climatology, 106(3/4):449-458.
doi: 10.1007/s00704-011-0445-5 |
[18] | Liang L, Zhang X Y, 2016. Coupled spatiotemporal variability of temperature and spring phenology in the Eastern United States. International Journal of Climatology, 36(4):1744-1754. |
[19] | Liu B H, Henderson M, Zhang Y D et al., 2010. Spatiotemporal change in China’s climatic growing season: 1955-2000. Climatic Change, 99(1/2):93-118. |
[20] |
Liu Y J, Qin Y, Ge Q S et al., 2017. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China. Journal of Geographical Sciences, 27(9):1072-1084.
doi: 10.1007/s11442-017-1422-4 |
[21] |
Lobell D B, Tebaldi C, 2014. Getting caught with our plants down: The risks of a global crop yield slowdown from climate trends in the next two decades. Environmental Research Letters, 9(7):074003.
doi: 10.1088/1748-9326/9/7/074003 |
[22] | Mazdiyasni O, AghaKouchak A, 2015. Substantial increase in concurrent droughts and heatwaves in the United States. Proceedings of the National Academy of Sciences of the United States of America. 112(37):11484-11489. |
[23] | Miao Q L, Wang Y, 2007. Analysis of the division of four seasons in China and its changing characteristics. In: Proceedings of the Climate Change Subcommittee of the 2007 Annual Meeting of the Chinese Meteorological Society Guangzhou: Chinese Meteological Society, 693-701. (in Chinese) |
[24] | PCNARCC, 2015. China’s National Assessment Report on Climate Change. Beijing: Science Press. |
[25] | Peng X Q, Frauenfeld O W, Cao B et al., 2016. Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China. Journal of Geophysical Research Earth Surface. 121(11):1984-2000. |
[26] | Sen P K, 1968. Estimates of the regression coefficient based on Kendall’s Tau. Publications of the American Statistical Association, 63(324):1379-1389. |
[27] |
Shen M G, Piao S L, Chen X Q et al., 2016. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Global Change Biology, 22(9):3057-3066.
pmid: 27103613 |
[28] |
Shi C G, Sun G, Zhang H X et al., 2014. Effects of warming on Chlorophyll degradation and carbohydrate accumulation of alpine herbaceous species during plant senescence on the Tibetan Plateau. Plos One, 9(9):e107874.
doi: 10.1371/journal.pone.0107874 pmid: 25232872 |
[29] | Vitasse Y, Francois C, Delpierre N et al., 2011. Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151(7):969-980. |
[30] | Wang X H, Piao S L, Ciais P et al., 2011. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America, 108(4):1240-1245. |
[31] | Wang X L, 2007. Accounting for autocorrelation in detecting mean shifts in climate data series using the Penalized Maximal t or F Test. Journal of Applied Meteorology & Climatology, 47(9):2423-2444. |
[32] |
Wang X L, Feng Y, Vincent L A, 2014. Observed changes in one-in-20 year extremes of Canadian Surface air temperatures. Atmosphere-Ocean, 52(3):222-231.
doi: 10.1080/07055900.2013.818526 |
[33] | Wang X L, Wen Q H, Wu Y H, 2007. Penalized maximal t test for detecting undocumented mean change in climate data series. Journal of Applied Meteorology and Climatology, 46(6):916-931. |
[34] |
Wypych A, Ustrnul Z, Sulikowska A et al., 2017. Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. International Journal of Climatology, 37(8):3340-3352.
doi: 10.1002/joc.4920 |
[35] | Yan D H, Geng S M, Luo X X et al., 2011. Spatial and temporal variation characteristics of the four seasons in the northern China. Scientia Geographica Sinica, 29(9):1105-1110. (in Chinese) |
[1] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[2] | WU Li, SUN Xiaoling, SUN Wei, ZHU Cheng, ZHU Tongxin, LU Shuguang, ZHOU Hui, GUO Qingchun, GUAN Houchun, XIE Wei, KE Rui, LIN Guiping. Evolution of Neolithic site distribution (9.0-4.0 ka BP) in Anhui, East China [J]. Journal of Geographical Sciences, 2020, 30(9): 1451-1466. |
[3] | YE Chao, LI Simeng, ZHANG Zhao, ZHU Xiaodan. A comparison and case analysis between domestic and overseas industrial parks of China since the Belt and Road Initiative [J]. Journal of Geographical Sciences, 2020, 30(8): 1266-1282. |
[4] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[5] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[6] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
[7] | FANG Chuanglin, WANG Zhenbo, LIU Haimeng. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application [J]. Journal of Geographical Sciences, 2020, 30(5): 691-704. |
[8] | CHEN Mingxing, LIANG Longwu, WANG Zhenbo, ZHANG Wenzhong, YU Jianhui, LIANG Yi. Geographical thoughts on the relationship between ‘Beautiful China’ and land spatial planning [J]. Journal of Geographical Sciences, 2020, 30(5): 705-723. |
[9] | TANG Zhipeng, MEI Ziao, LIU Weidong, XIA Yan. Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm [J]. Journal of Geographical Sciences, 2020, 30(5): 743-756. |
[10] | WANG Shaojian, GAO Shuang, HUANG Yongyuan, SHI Chenyi. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends [J]. Journal of Geographical Sciences, 2020, 30(5): 757-774. |
[11] | SONG Zhouying, ZHU Qiaoling. Spatio-temporal pattern and driving forces of urbanization in China’s border areas [J]. Journal of Geographical Sciences, 2020, 30(5): 775-793. |
[12] | ZHAO Ting, BAI Hongying, YUAN Yuan, DENG Chenhui, QI Guizeng, ZHAI Danping. Spatio-temporal differentiation of climate warming (1959-2016) in the middle Qinling Mountains of China [J]. Journal of Geographical Sciences, 2020, 30(4): 657-668. |
[13] | WANG Jiayue, XIN Liangjie, WANG Yahui. How farmers’ non-agricultural employment affects rural land circulation in China? [J]. Journal of Geographical Sciences, 2020, 30(3): 378-400. |
[14] | ZHANG Chengming, WENG Shixiu, BAO Jigang. The changes in the geographical patterns of China’s tourism in 1978-2018: Characteristics and underlying factors [J]. Journal of Geographical Sciences, 2020, 30(3): 487-507. |
[15] | WANG Yafei, FAN Jie. Multi-scale analysis of the spatial structure of China’s major function zoning [J]. Journal of Geographical Sciences, 2020, 30(2): 197-211. |
|