Journal of Geographical Sciences ›› 2020, Vol. 30 ›› Issue (6): 969-987.doi: 10.1007/s11442-020-1765-0
• Regular Research Articles • Previous Articles Next Articles
ZHANG Yili1,2,3, WU Xue1,3, ZHENG Du1
Received:
2020-02-22
Accepted:
2020-04-06
Online:
2020-06-25
Published:
2020-08-25
About author:
Zhang Yili and Wu Xue are co-first authors. E-mail: wuxuexxl@163.com; zhangyl@igsnrr.ac.cn
Supported by:
ZHANG Yili, WU Xue, ZHENG Du. Vertical differentiation of land cover in the central Himalayas[J].Journal of Geographical Sciences, 2020, 30(6): 969-987.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Areas and proportions of different land cover types on the northern and southern slopes"
Land cover type | Division method | Southern slope | Northern slope | Area ratio | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Percentage | Area (km2) | Percentage | Southern slope: northern slope | ||||||||
Cropland | Sector method | 374.20 | 44.94 | 5.66 | 1.05 | 66.11︰1 | ||||||
MM transect | 304.75 | 27.24 | 23.35 | 2.08 | 13.05︰1 | |||||||
MQ transect | 240.29 | 19.52 | 8.21 | 0.87 | 29.27︰1 | |||||||
MC transect | 406.96 | 31.88 | 9.04 | 1.02 | 45.02︰1 | |||||||
Ridgeline method* | 7917.95 | 26.91 | 243.64 | 0.99 | 32.50︰1 | |||||||
Forest | Sector method | 342.38 | 41.12 | - | - | - | ||||||
MM transect | 516.34 | 46.16 | - | - | - | |||||||
MQ transect | 559.99 | 45.50 | - | - | - | |||||||
MC transect | 406.80 | 31.87 | - | - | - | |||||||
Ridgeline method | 11177 | 37.99 | 262.54 | 1.08 | 42.60︰1 | |||||||
Shrubland | Sector method | 13.62 | 1.64 | - | - | - | ||||||
MM transect | 38.65 | 3.45 | 10.41 | 0.93 | 3.71︰1 | |||||||
MQ transect | 34.85 | 2.83 | - | - | - | |||||||
MC transect | 36.13 | 2.83 | - | - | - | |||||||
Ridgeline method | 1433.42 | 4.87 | 660.56 | 2.69 | 2.17︰1 | |||||||
Grassland | Sector method | 22.17 | 2.66 | 340.08 | 62.99 | 0.07︰1 | ||||||
MM transect | 41.97 | 3.75 | 553.23 | 49.38 | 0.08︰1 | |||||||
MQ transect | 43.26 | 3.51 | 522.06 | 55.10 | 0.08︰1 | |||||||
MC transect | 106.15 | 8.31 | 450.42 | 50.94 | 0.24︰1 | |||||||
Ridgeline method | 2041.39 | 6.94 | 11886.72 | 48.40 | 0.17︰1 | |||||||
Sparse vegetation | Sector method | 10.16 | 1.22 | 69.57 | 12.89 | 0.15︰1 | ||||||
MM transect | 28.04 | 2.51 | 96.74 | 8.63 | 0.29︰1 | |||||||
MQ transect | 28.56 | 2.32 | 72.77 | 7.68 | 0.39︰1 | |||||||
MC transect | 66.06 | 5.17 | 35.49 | 4.01 | 1.86︰1 | |||||||
Land cover type | Division method | Southern slope | Northern slope | Area ratio | ||||||||
Area (km2) | Percentage | Area (km2) | Percentage | Southern slope: northern slope | ||||||||
Ridgeline method | 1016.77 | 3.46 | 1073.82 | 4.37 | 0.95︰1 | |||||||
Waterbody | Sector method | 9.50 | 1.14 | 0.01 | 0.00 | 950︰1 | ||||||
MM transect | 9.67 | 0.86 | 6.90 | 0.62 | 1.40︰1 | |||||||
MQ transect | 7.90 | 0.64 | 1.43 | 0.15 | 5.52︰1 | |||||||
MC transect | 13.69 | 1.07 | 2.40 | 0.27 | 5.70︰1 | |||||||
Ridgeline method | 182.87 | 0.62 | 152.43 | 0.62 | 1.20︰1 | |||||||
Construction land | Sector method | 0.32 | 0.04 | 1.17 | 0.22 | 0.27︰1 | ||||||
MM transect | 0.19 | 0.02 | 0.48 | 0.04 | 0.40︰1 | |||||||
MQ transect | - | - | - | - | - | |||||||
MC transect | - | - | - | - | - | |||||||
Ridgeline method | 13.68 | 0.05 | 0.79 | 0.00 | 17.30︰1 | |||||||
Bare land | Sector method | 34.37 | 4.13 | 88.18 | 16.33 | 0.39︰1 | ||||||
MM transect | 87.34 | 7.81 | 277.88 | 24.80 | 0.31︰1 | |||||||
MQ transect | 176.45 | 14.34 | 192.32 | 20.30 | 0.92︰1 | |||||||
MC transect | 145.79 | 11.42 | 203.95 | 23.06 | 0.71︰1 | |||||||
Ridgeline method | 4010.33 | 13.63 | 7750.94 | 31.56 | 0.52︰1 | |||||||
Wetland | Sector method | 3.18 | 0.38 | 14.93 | 2.77 | 0.21︰1 | ||||||
MM transect | 8.35 | 0.75 | 12.86 | 1.15 | 0.65︰1 | |||||||
MQ transect | 9.07 | 0.74 | 22.95 | 2.42 | 0.40︰1 | |||||||
MC transect | 11.91 | 0.93 | 81.77 | 9.25 | 0.15︰1 | |||||||
Ridgeline method | 279.49 | 0.95 | 787.95 | 3.21 | 0.36︰1 | |||||||
Glacier/snow cover** | Sector method | 22.83 | 2.74 | 20.26 | 3.75 | 1.13︰1 | ||||||
MM transect | 83.27 | 7.44 | 138.51 | 12.36 | 0.60︰1 | |||||||
MQ transect | 130.48 | 10.60 | 127.74 | 13.48 | 1.02︰1 | |||||||
MC transect | 83.11 | 6.51 | 101.19 | 11.44 | 0.82︰1 | |||||||
Ridgeline method | 1355.58 | 4.61 | 1740.59 | 7.09 | 0.78︰1 | |||||||
Total | Sector method | 832.73 | 100.00 | 539.87 | 100.00 | 1.54︰1 | ||||||
MM transect | 1118.57 | 100.00 | 1120.36 | 100.00 | 1.00︰1 | |||||||
MQ transect | 1230.85 | 100.00 | 947.48 | 100.00 | 1.30︰1 | |||||||
MC transect | 1276.59 | 100.00 | 884.27 | 100.00 | 1.44︰1 | |||||||
Ridgeline method | 29428.43 | 100.00 | 24559.97 | 100.00 | 1.20︰1 |
Table 2
Altitudinal distributions of different land cover types on the northern and southern slopes based on different slope division methods"
Land cover type | Division method | Southern slope | Northern slope | ||||
---|---|---|---|---|---|---|---|
Class I | - | Elevation range (m) | Core distribution zone (m) | Advantage zone (m) | Elevation range (m) | Core distribution zone (m) | Advantage zone (m) |
Cropland | Sector method | 100-4000 | 600-1700 | 100-1800 | 4000-4500 | 4100-4500 | - |
MM transect | 100-4000 | 1100-2200 | 1000-1700 | 4200-4600 | 4200-4500 | - | |
MQ transect | 100-4000 | 700-1500 | - | 3900-4500 | 4300-4500 | - | |
MC transect | 200-4000 | 500-1400 | 200-1400 | 4200-4500 | 4400-4500 | - | |
Ridgeline method | 96-4300 | 700-1700 | 100-1500 | 2300-4500 | 4100-4500 | - | |
Forest | Sector method | 100-4000 | 500-2000 | 1800-3600 | - | - | - |
MM transect | 100-4000 | 1700-3100 | 100-1000 1700-3900 | - | - | - | |
MQ transect | 100-4000 | 600-1900 | 100-3700 | - | - | - | |
MC transect | 200-4000 | 700-2200 | 1400-3800 | - | - | - | |
Ridgeline method | 100-4000 | 1100-2600 | 1500-3800 | 2100-4000 | 3200-4000 | 2300-3900 | |
Shrubland | Sector method | 1700-5100 | 3300-4200 | 3600-4000 | - | - | - |
MM transect | 1700-5000 | 3200-4200 | 3900-4100 | - | - | - | |
MQ transect | 1600-5000 | 3700-4200 | 3700-4200 | 4300-5300 | 4500-5000 | - | |
MC transect | 1600-5100 | 3500-4300 | 3800-4000 | - | - | - | |
Ridgeline method | 300-4800 | 3400-4600 | 3800-4200 | 2400-4800 | 4200-4800 | 3900-4100 | |
Grassland | Sector method | 1600-5900 | 4100-5100 | 4000-5000 | 4000-5100 | 4500-5000 | 4000-5100 |
MM transect | 3000-5100 | 4600-5100 | 4200-5100 | 4400-4900 | 4200-5100 | ||
MQ transect | 1500-5100 | 4100-5000 | 3900-5100 | 4400-5000 | 4000-5100 | ||
MC transect | 2500-5100 | 4300-5000 | 4000-5000 | 4200-5100 | 4300-4700 | 4400-5000 | |
Ridgeline method | 1400-5100 | 4400-5000 | 4400-5000 | 2500-5100 | 4400-5000 | 4100-5100 | |
Sparse vegetation | Sector method | 3000-5300 | 4400-5300 | - | 4600-5400 | 5000-5400 | 5100-5400 |
MM transect | 3000-5300 | 4500-5300 | - | 4700-5300 | 5000-5300 | 5100-5300 | |
MQ transect | 3300-5300 | 4100-4800 | - | 4700-5300 | 5200-5300 | 5100-5300 | |
MC transect | 3100-5300 | 4500-5200 | - | 4700-5300 | 5200-5300 | 5200-5300 | |
Ridgeline method | 2100-5300 | 4600-5300 | - | 4000-5400 | 5000-5400 | 5100-5400 | |
Waterbody | Sector method | 100-2500 4200-5300 | 100-500 | - | 4200-4500 5000-5800 | 4200-4400 | - |
MM transect | 100-800 1400-2200 4600-5400 | 4900-5400 | - | 4200-4400 5700-6100 | 4200-4300 | - | |
MQ transect | 100-900 3700-5300 | 100-500 | - | 4200-5300 | 4200-4300 4800-5000 | - | |
MC transect | 200-1800 4200-5300 | 200-700 | - | 4200-4400 5500-5800 | 4300-4400 | - | |
Ridgeline method | 96-2900 3700-5300 | 200-700 4900-5300 | - | 2200-5300 | 4100-4600 | - | |
Construction land | Sector method | 1000-1700 | 1100-1300 1500-1600 | - | 4200-4400 | 4300-4400 | - |
MM transect | - | - | - | - | - | - | |
MQ transect | 1500-1700 | 1500-1600 | - | 4200-4400 | 4300-4400 | - | |
Land cover type | Division method | Southern slope | Northern slope | ||||
Class I | Elevation range (m) | Core distribution zone (m) | Advantage zone (m) | Elevation range (m) | Core distribution zone (m) | Advantage Zone (m) | |
MC transect | - | - | - | - | - | - | |
Ridgeline method | 400-2400 | 1000-1600 | - | 4200-4400 | 4200-4400 | - | |
Bare land | Sector method | >3000 | 4800-5900 | 5000-5700 | > 4200 | 5100-5600 | 5400-6000 |
MM transect | >3000 | 5000-5900 | 4100-5500 | > 4200 | 5000-5900 | 5300-6100 | |
MQ transect | >3400 | 4300-5200 | 4200-5100 | > 4300 | 5100-5700 | 5300-5900 | |
MC transect | >3100 | 5000-5500 | 5000-5900 | > 4300 | 5000-5800 | 5000-5200 5300-6100 | |
Ridgeline method | >1100 | 4700-5700 | 4200-4400 5000-5700 | >3000 | 5000-5700 | 5400-6000 | |
Wetland | Sector method | < 2800 | 100-500 | - | 4000-5000 | 4200-4500 | - |
MM transect | < 4900 | 100-1000 | - | 4200-5200 | 4200-4500 | - | |
MQ transect | 100-4500 | 400-1100 | - | 3900-5300 | 4000-4400 | 3900-4000 | |
MC transect | < 5200 | 200-1400 | - | < 5500 | 4300-4400 | - | |
Ridgeline method | < 5100 | 200-1400 | - | 3500-5300 | 4100-4400 | - | |
Glacier/snow cover | Sector method | > 4400 | 5200-5900 | > 5700 | > 5100 | 6000-6600 | >6000 |
MM transect | > 4800 | 5100-5800 | > 5500 | > 5400 | 6000-6700 | >6100 | |
MQ transect | > 4100 | 5000-6000 | > 5100 | > 4300 | 5200-6300 | > 5900 | |
MC transect | > 4600 | 4700-5700 | > 5900 | > 5400 | 6000-6600 | >6100 | |
Ridgeline method | > 4000 | 5100-5900 | > 5700 | >3800 | 5400-6300 | >6000 |
Figure 5
Distributions and compositions of different land cover types in different vertical zones on the northern and southern slopes based on different slope division methods: (a) southern slope, sector method; (b) northern slope, sector method; (c) southern slope, MM sample transect method; (d) northern slope, MM sample transect method; (e) southern slope, MC sample transect method; (f) northern slope, MC sample transect method; (g) southern slope, MQ sample transect method; (h) northern slope, MQ sample transect method; (i) southern slope, ridgeline method; and (j) northern slope, ridgeline method"
Figure 6
Dominant altitudinal band structures of land cover types on the southern and northern slopes of the KRB based on different slope division methods: (a) sector method; (b) sample transect method with MQ, MC, and MM transects; and (c) ridgeline method. For the ridgeline method, both the southern and northern slopes contain unique distribution types in the two directions, which increase the uncertainty in the results. Therefore, the vertical zonation of land cover based on the ridgeline method is not discussed in this paper. Note: code representation in legend: 1-cropland, 2-forest, 3-shrubland, 4-grassland, 5-sparse vegetation, 6-bare land, 7-waterbody, 8-glacier/snow cover, 9-none"
Table 3
Comparison of the altitudinal distributions of land cover, climate, and soil on the southern and northern slopes of Mt. Qomolangma"
Vertical climatic zone of MQ (Zheng et al., 1975) | Vertical soil zone of MQ (Gao et al., 1975) | Sector method of MQ Dominant belt of land cover (this paper) | ||||
---|---|---|---|---|---|---|
Elevation (m) | Vertical climatic zone | Elevation (m) | Vertical soil zone | Advantage zone (m) | Land cover type | |
Southern slope | 1600-2500 | Mountain subtropical zone | 1600-2500 | Mountain yellow-brown soil | 100-1800 | Cropland |
2500-3100 | Mountain warm temperate zone | 2400-3100 | Mountain acid brown soil | 1800-3600 | Forest | |
3100-3900 | Mountain cold temperate zone | 3100-4100 | Mountain bleached podolic soil | 3600-4000 | Shrubland | |
3900-4700 | Subalpine cold zone | 4100-4500 | Subalpine shrub meadow soil | |||
4100-4500 | Subalpine meadow soil | 4000-5000 | Grassland | |||
4500-4800 | Alpine meadow soil | |||||
4700-5500 | Alpine cold zone | 4800-5600 | Alpine frozen soil | 5000-5700 | Bare land | |
> 5500 | Alpine ice-snow belt | > 5600 | Ice and snow | > 5700 | Glacier/snow cover | |
Northern slope | 4000-5000 | Plateau cold zone | 4400-4700 | Subalpine steppe soil | 4000-5100 | Grassland |
5000-6000 | Alpine cold zone | 4700-5200 | Alpine meadow-steppe soil | 5100-5400 | Sparse vegetation | |
5200-5500 | Alpine frozen soil | 5400-6000 | Bare land | |||
> 6000 | Alpine ice-snow belt | > 5500 | Ice and snow | > 6000 | Glacier/snow cover |
Table 4
Comparison of the vertical distributions between land cover types and vegetation on the slopes of Mt. Qomolangma"
Vertical distributions of land cover types (this paper) | Vertical distributions of vegetation | (Zhang et al., 1973) | |||
---|---|---|---|---|---|
Advantage zone (m) | Land cover types | Distribution range (m) | Vegetation types | ||
100-1800 | Cropland | < 1000 (1200) | Monsoon forest zone | ||
Southern slope | 1000-2500 2500-3000 (3100) | Evergreen broadleaved forest belt Mountain coniferous broadleaved (evergreen, deciduous) mixed-forest zone | |||
1800-3600 | Forest | ||||
3000-3800 (4100) | Subalpine coniferous zone | ||||
3600-4000 | Shrubland | 3800-(4100)-4500 | Alpine brush | ||
4000-5000 | Grassland | 4500-5200 | Alpine meadow. | ||
Sparse vegetation | |||||
5000-5700 | Bare land | 5200-5500 (5600) | Lichen gravel zone | ||
> 5700 | Glacier/snow cover | > 5500 (5600) | Permanent snow-ice zone | ||
4000-5100 | Grassland | 3900-4400 | Steppe zone | ||
Northern slope | Grassland | 4400-5000 | Alpine steppe zone | ||
5100-5400 | Sparse vegetation | 5000-5700 | Alpine meadows with sparse cushion vegetation zones | ||
5400-6000 | Bare land | ||||
5700-5800-(6200) | Lichen, gravel zone | ||||
> 6000 | Glacier/Snow cover | > 5800-6200 | Frigid zone |
[1] | Allan N J R, 1986. Accessibility and altitudinal zonation models of mountains. Mountain Research & Development, 6(3):185-194. |
[2] |
Beniston M, 2003. Climatic change in mountain regions: A review of possible impacts. Climatic Change, 59(1/2):5-31.
doi: 10.1023/A:1024458411589 |
[3] |
Callaway R, 1997. Positive interactions in plant communities and the individualistic-continuum concept. Oecologia, 112(2):143-149.
doi: 10.1007/s004420050293 |
[4] | Ci D L Z, 1997. Survey of Mount Qomolangma Nature Reserve. China Tibetology, 1:3-22. |
[5] |
Dullinger S, 2004. Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invisibility. Journal of Ecology, 92:241-252.
doi: 10.1111/jec.2004.92.issue-2 |
[6] |
Gian-Reto W, Eric P, Peter C et al., 2002. Ecological responses to recent climate change. Nature, 416(6879):389-395.
doi: 10.1038/416389a |
[7] | Grabherr G, Gottfried M, Paull H, 1994. Climate effects on mountain plants. Nature, 369(6480):448-448. |
[8] | Haberl H, Erb K H, Krausmann F et al., 2007. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 104(31):12942-12945. |
[9] | He F, Vavrus S, Kutzbach J et al., 2014. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophysical Research Letters, 41(2):623-631. |
[10] | Li X X, Liang E Y, Gricar J et al., 2017. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 62(11):804-812. |
[11] | Liang E Y, Wang Y F, Piao S L et al., 2016. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 113(16):4380-4385. |
[12] | Mooney H, Duraiappah A, Larigauderie A, 2013. Evolution of natural and social science interactions in global change research programs. Proceedings of the National Academy of Sciences of the United States of America, 110:3665-3672. |
[13] | Mount Qomolangma Group of Nanjing Institute of Soil Research, CAS, 1975. The characteristics of soil geographical distribution in the Mount Qomolangma area. In: “A Report on the Scientific Investigation of the Mount Qomolangma Area”, Tibet Scientific Expedition Team of the Chinese Academy of Sciences. Beijing: Science Press, 1975. (in Chinese) |
[14] | Mu C C, 2003. Succession of Larix olgensis and Betula platyphlla-marsh ecotone communities in Changbai Mountain. Chinese Journal of Applied Ecology, 14(11):1813-1819. (in Chinese) |
[15] |
Nie Y, Zhang Y L, Liu L S et al., 2010. Glacial change in the vicinity of Mt. Qomolangma (Everest), central high Himalayas since 1976. Journal of Geographical Sciences, 20(5):667-686.
doi: 10.1007/s11442-010-0803-8 |
[16] | Pitman A, Avila F, Abramowitz G et al., 2011. Importance of background climate in determining impact of land-cover change on regional climate. Nature Climate Change, 1(9):472-475. |
[17] | Walter H, 1973. Vegetation of the Earth in Relation to Climate and the Eco-physiological Conditions. London: The English Universities Press Ltd.; New York, Heidelberg, Berlin: Springer-Verlag. |
[18] |
Wu X, Gao J G, Zhang Y L et al., 2017. Land cover status in the Koshi River Basin, Central Himalayas. Journal of Resources and Ecology, 8(1):10-19.
doi: 10.5814/j.issn.1674-764x.2017.01.003 |
[19] | Xu J, Zhang B P, Tan J et al., 2009. Spatial relationship between altitudinal vegetation belts and climatic factors in the Qinghai-Tibetan Plateau. Journal of Mountain Science, 27(6):663-670. |
[20] | Yao Y H, Xu M, Zhang B P, 2015. Implication of the heating effect of the Tibetan Plateau for mountain altitudinal belts. Acta Geographica Sinica, 70(3):407-419. (in Chinese) |
[21] | Zhang J W, Jiang S, 1973. A primary study on the vertical vegetation belt of Mt. Jolmo-Lungma (Everest) Region and its relationship with horizontal zone. Acta Botanica Sinica, 15(2):221-236. (in Chinese) |
[22] | Zhang Y L, Gao J G, Liu L S et al., 2013. NDVI-based vegetation changes and their response to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Global and Planetary Change, 108:139-148. |
[1] | FAN Zemeng, BAI Ruyu, YUE Tianxiang. Scenarios of land cover in Eurasia under climate change [J]. Journal of Geographical Sciences, 2020, 30(1): 3-17. |
[2] | LIU Qionghuan, ZHANG Yili, LIU Linshan, LI Lanhui, QI Wei. The spatial local accuracy of land cover datasets over the Qiangtang Plateau, High Asia [J]. Journal of Geographical Sciences, 2019, 29(11): 1841-1858. |
[3] | Zhiyong WANG, Lijuan LI. Determination of land salinization causes via land cover and hydrological process change detection in a typical part of Songnen Plain [J]. Journal of Geographical Sciences, 2018, 28(8): 1099-1112. |
[4] | Badabate DIWEDIGA, Sampson AGODZO, Kperkouma WALA, Quang Bao LE. Assessment of multifunctional landscapes dynamics in the mountainous basin of the Mo River (Togo, West Africa) [J]. Journal of Geographical Sciences, 2017, 27(5): 579-605. |
[5] | Jiyuan LIU, Quanqin SHAO, Xiaodong YAN, Jiangwen FAN, Jinyan ZHAN, Xiangzheng DENG, Wenhui KUANG, Lin *HUANG. The climatic impacts of land use and land cover change compared among countries [J]. Journal of Geographical Sciences, 2016, 26(7): 889-903. |
[6] | Lanqi JIANG, Lijuan ZHANG, Shuying *ZANG, Xuezhen ZHANG. Accuracy assessment of approaches to spatially explicit reconstruction of historical cropland in Songnen Plain, Northeast China [J]. Journal of Geographical Sciences, 2016, 26(2): 219-229. |
[7] | Guosong ZHAO, Jiyuan LIU, Wenhui KUANG, Zhiyun OUYANG, Zhenglei XIE. Disturbance impacts of land use change on biodiversity conservation priority areas across China: 1990-2010 [J]. Journal of Geographical Sciences, 2015, 25(5): 515-529. |
[8] | Lijuan ZHANG, Lanqi JIANG, Xuezhen ZHANG. Spatially precise reconstruction of cropland areas in Heilongjiang Province, northeast China during 1900-1910 [J]. Journal of Geographical Sciences, 2015, 25(5): 592-602. |
[9] | USMAN M, LIEDL R, A SHAHID M, ABBAS A. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data [J]. Journal of Geographical Sciences, 2015, 25(12): 1479-1506. |
[10] | Zhengjia LIU, Quanqin SHAO, Jian TAO, Wenfeng CHI. Intra-annual variability of satellite observed surface albedo associated with typical land cover types in China [J]. Journal of Geographical Sciences, 2015, 25(1): 35-44. |
[11] | Jun ZHAI, Jun ZHAI, Ronggao LIU, Guosong ZHAO, Lin HUANG. Radiative forcing over China due to albedo change caused by land cover change during 1990-2010 [J]. Journal of Geographical Sciences, 2014, 24(5): 789-801. |
[12] | Yuanyuan YANG, Shuwen ZHANG, Jiuchun YANG, Liping CHANG, Kun BU, Xiaoshi XING. A review of historical reconstruction methods of land use/land cover [J]. Journal of Geographical Sciences, 2014, 24(4): 746-766. |
[13] | QI Wei, ZHANG Yili, GAO Jungang, YANG Xuchao, LIU Linshan, Narendra R. KHANAL. Climate change on the southern slope of Mt. Qomolangma (Everest) Region in Nepal since 1971 [J]. , 2013, 23(4): 595-611. |
[14] | LIU Yue, SHINTARO Goto, ZHUANG Dafang, KUANG Wenhui. Urban surface heat fluxes infrared remote sensing inversion and their relationship with land use types [J]. Journal of Geographical Sciences, 2012, 22(4): 699-715. |
[15] | CAI Hongyan, ZHANG Shuwen, BU Kun, YANG Jiuchun, CHANG Liping. Integrating geographical data and phenological characteristics derived from MODIS data for improving land cover mapping [J]. Journal of Geographical Sciences, 2011, 21(4): 705-718. |
|