Journal of Geographical Sciences ›› 2020, Vol. 30 ›› Issue (6): 921-934.doi: 10.1007/s11442-020-1762-3
Previous Articles Next Articles
YU Xia1,2,3, ZHOU Weijian1,2,4,5,*(), WANG Yunqiang1,4,5,7, CHENG Peng1,2,6,7, HOU Yaoyao1,2, XIONG Xiaohu1,2, DU Hua1,2, YANG Ling1,2,3, WANG Ya1,2,3
Received:
2019-09-20
Accepted:
2020-03-05
Online:
2020-06-25
Published:
2020-08-25
Contact:
ZHOU Weijian
E-mail:weijian@loess.llqg.ac.cn
About author:
Yu Xia (1988–), PhD Candidate, specialized in environmental science. E-mail: yuxia@ieecas.cn
Supported by:
YU Xia, ZHOU Weijian, WANG Yunqiang, CHENG Peng, HOU Yaoyao, XIONG Xiaohu, DU Hua, YANG Ling, WANG Ya. Effects of land use and cultivation time on soil organic and inorganic carbon storage in deep soils[J].Journal of Geographical Sciences, 2020, 30(6): 921-934.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Soil properties under five land-use types in the Gutun watershed on the Chinese Loess Plateau"
Land-use type | Texture (%) | BD*(g cm-3) | SWC(g kg-1) | SOC(g kg-1) | SIC(g kg-1) | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||
Grassland | 19.2±3.8ab | 78.2±3.6a | 2.6±0.3bc | 1.3±0.1b | 126.0±20.3b | 2.96±2.22a | 16.77±3.00a |
Shrubland | 19.7±3.0ab | 77.6±2.8a | 2.7±0.4bc | 1.3±0.1b | 92.8±47.5c | 2.76±1.75ab | 13.79±2.40bc |
Forestland | 22.3±4.5a | 75.4±4.3a | 2.3±0.4c | 1.3±0.1b | 71.7±19.4c | 2.58±1.22ab | 14.82±1.81ab |
Cropland | 22.1±5.4a | 75.1±5.0a | 2.8±0.7b | 1.5±0.2ab | 177.2±51.6a | 2.04±1.10ab | 12.38±3.18c |
Gully land | 18.6±4.2b | 78.2±3.8a | 3.2±0.6a | 1.4±0.1a | 197.7±31.0a | 1.84±1.29b | 14.22±2.65bc |
Figure 2
Vertical distribution of SOC and SIC along 500-cm deep soil profiles. (a) SOC content (open blue circles), means (closed red circles), and the coefficient of variations (green squares); (b) SIC content (open light grey circles), means (closed black circles), and the coefficient of variations (dark red squares)"
Table 2
Two-way ANOVA* F and p-values for land-use type, cultivation time, and soil depth effects on soil BD (g cm-3), SWC (g kg-1), SOC content (g kg-1), SIC content (g kg-1), SOC stocks (kg m-2), and SIC stocks (kg m-2) in Gutun watershed"
Factor of variation | BD | SWC | SOC | SIC | SOCS | SICS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
Land-use types | 24.32 | 0.000 | 79.060 | 0.000 | 11.852 | 0.000 | 25.320 | 0.000 | 3.452 | 0.009 | 6.222 | 0.000 |
Soil depth | 2.310 | 0.033 | 6.080 | 0.000 | 4.434 | 0.000 | 2.121 | 0.000 | 4.651 | 0.000 | 17.781 | 0.000 |
Time | 112.59 | 0.000 | 36.283 | 0.000 | 18.082 | 0.000 | 31.666 | 0.000 | 21.867 | 0.000 | 13.365 | 0.000 |
Table 3
Vertical distribution of SOC and SIC contents (g kg-1) under five land-use types"
Depth (cm) | 0-20 | 20-60 | 60-100 | 100-200 | 200-300 | 300-400 | 400-500 | |
---|---|---|---|---|---|---|---|---|
SOC | Grassland | 7.26±4.56aA | 3.93±3.05aAB | 2.38±0.93aB | 2.51±1.12aB | 3.09±1.68aB | 2.27±0.61aB | 1.88±1.35bB |
Shrubland | 3.79±1.52abA | 1.55±0.8aB | 1.07±0.2aB | 2.89±2.71aA | 2.71±1.25abA | 1.77±0.58aB | 4.40±1.33aA | |
Forestland | 3.29±0.94abA | 2.90±1.57aA | 2.38±1.49aA | 2.08±0.89aA | 2.39±0.84abA | 3.19±1.61aA | 2.03±0.51bA | |
Cropland | 2.52±1.25bA | 1.81±1.25aAB | 1.46±0.63aB | 1.99±1.05aAB | 1.89±0.86bAB | 2.34±1.07aAB | 2.22±1.30bAB | |
Gully land | 1.68±1.27bA | 1.61±1.14aA | 2.03±1.57aA | 2.26±1.77aA | 1.42±0.39bA | |||
SIC | Grassland | 14.97±1.39abB | 17.2±2.0abAB | 17.4±2.2abAB | 16.25±0.92aB | 14.18±1.86aB | 17.45±3.7aAB | 20.18±2.58aA |
Shrubland | 16.91±0.01aA | 16.55±0.21aA | 16.45±0.07aA | 14.3±2.9abAB | 13.31±1.13aB | 13.21±1.01bB | 10.96±1.44bB | |
Forestland | 14.27±1.37abA | 13.97±1.96abA | 14.42±1.61abA | 14.75±1.12abA | 14.57±1.20aA | 14.76±2.63aA | 17.01±0.53abA | |
Cropland | 13.40±1.61bA | 13.39±1.44bA | 13.05±2.77bA | 12.68±1.69bA | 11.99±3.47aA | 11.52±4.16bA | 11.34±5.04bA | |
Gully land | 15.10±1.40abA | 15.66±1.72abA | 14.91±1.07abA | 14.17±2.86abA | 11.88±3.68aA |
Table 4
Vertical distribution of SOC and SIC contents (g kg-1) from RC5 to RC70 croplands in Gutun watershed"
Depth (cm) | 0-20 | 20-60 | 60-100 | 100-200 | 200-300 | 300-400 | 400-500 | |
---|---|---|---|---|---|---|---|---|
SOC | RC5 | 2.02±1aAB | 1.41±0.94bB | 1.63±0.78aAB | 2.35±0.96abAB | 1.87±0.35bcAB | 2.96±0.48abA | 2.6±0.77aAB |
RC15 | 1.82±0.5bA | 1.51±1.82bA | 1.13±0.66aA | 1.45±0.88bA | 1.3±0.89cA | 1±0.76cA | 0.72±0.53bA | |
RC35 | 3.3±0.83aA | 2.4±1.07aAB | 1.69±0.26aB | 2.12±0.43abAB | 2.34±0.53abAB | 2.49±0.43abAB | 2.9±1.5aAB | |
RC60 | 2.61±1.96aA | 1.61±1.14bA | 1.4±0.75aA | 1.69±0.45bA | 1.79±0.6cA | 2.35±1.28bA | 2.03±1.31abA | |
RC70 | 3.04±1.18aAB | 2.26±1.25aAB | 1.50±0.57aB | 2.66±1.90aAB | 3.03±1.02aAB | 3.45±0.77aA | ||
SIC | RC5 | 11.95±1.41bA | 12.47±2.5aA | 12.66±2.9abA | 12.29±1.67bA | 13.56±1.45aA | 12.9±1.64aA | 12.75±2.99aA |
RC15 | 14.07±2.21abA | 14.29±1.2aA | 14.31±1.11aA | 12.83±1bAB | 10.46±5.41aAB | 6.16±5.2bBC | 0.94±0.63bC | |
RC35 | 13.64±0.37abA | 13.44±0.73aA | 14.39±1.09aA | 13.5±0.51bA | 13.12±1aA | 12.99±1.82aA | 14.13±3.16aA | |
RC60 | 14.65±1.39aA | 13.52±0.93aAB | 13.32±0.83abAB | 13.17±0.94bAB | 12.33±0.9aB | 13.26±1.93aAB | 12.9±1.26aAB | |
RC70 | 12.35±0.25abA | 13.13±0.82aA | 9.65±5.08bA | 16.43±3.24aA | 10.53±3.87aA | 13.09±1.48aA |
Figure 5
Soil carbon stocks. (a) SOC stock; (c) SIC stock. (b) and (d) showed the percentage within the bars are proportions of stocks in a 100-cm thick layer compared to the upper 100 cm. Blue circles represent the ratio of the carbon stocks in a given 100-cm layer to the 0-500 cm complete profile. Different lowercase letters indicate significant differences among land uses (p < 0.05), while uppercase letters indicate significant differences among different soil layers within the same land-use type (p < 0.05)."
[1] |
Adams J M, Faure H, Fauredenard L et al., 1990. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 348:711-714.
doi: 10.1038/348711a0 |
[2] |
Albaladejo J, Ortiz R, Garcia-Franco N et al., 2013. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. Journal of Soils and Sediments, 13:265-277.
doi: 10.1007/s11368-012-0617-7 |
[3] | Ali S, Begum F, Hayat R et al., 2017. Variation in soil organic carbon stock in different land uses and altitudes in Bagrot valley, northern Karakoram. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 67(6):551-561. |
[4] | Batjes N H, 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2):151-163. |
[5] | Batjes N H, 2016. Harmonized soil property values for broad-scale modelling (wise30sec) with estimates of global soil carbon stocks. Geoderma, 269:61-68. |
[6] | Bi X, Li B, Nan B et al., 2018. Characteristics of soil organic carbon and total nitrogen under various grassland types along a transect in a mountain-basin system in Xinjiang, China. Journal of Arid Land, 10(4):612-627. |
[7] | Cardinael R, Chevallier T, Cambou A et al., 2017. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agriculture Ecosystems & Environment, 236:243-255. |
[8] | Civeira G, 2013. Distribution of soil organic and inorganic carbon by soil taxa in the central eastern Pampas of Buenos Aires. Soil Science, 178(3):120-127. |
[9] | Civeira G, 2016. Soil inorganic carbon in pampean agroecosystems: Distribution and relationships with soil properties in Buenos Aires Province. Soil Research, 54(7):777-786. |
[10] | Deng L, Liu G B, Shangguan Z P, 2014. Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' Program: A synthesis. Global Change Biology, 20(11):3544. |
[11] |
Díaz-Hernández J L, 2010. Is soil carbon storage underestimated? Chemosphere, 80(3):346-349.
doi: 10.1016/j.chemosphere.2010.04.038 |
[12] |
Esteban G, Jobbágy E G, Jackson R B, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2):423-436.
doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 |
[13] | Eswaran H, 1993. Organic carbon in soils of the world. Soil Scisocamj, 57(1):269-273. |
[14] | Fu D L, Liu M Y, Liu L et al., 2014. Organic carbon density and storage in different soils on the Loess Plateau. Arid Zone Research, 31(1):44-50. (in Chinese) |
[15] | Grimm R, Behrens T, Märker M et al., 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island: Digital soil mapping using random forests analysis. Geoderma, 146(1/2):102-113. |
[16] | Han X Y, Gao G Y, Chang R Y et al., 2018. Changes in soil organic and inorganic carbon stocks in deep profiles following cropland abandonment along a precipitation gradient across the Loess Plateau of China. Agriculture Ecosystems & Environment, 258:1-13. |
[17] | Harper R J, Tibbett M, 2013. The hidden organic carbon in deep mineral soils. Plant and Soil, 368(1/2):641-648. |
[18] | Jaiarree S, Chidthaisong A, Tangtham N et al., 2011. Soil organic carbon loss and turnover resulting from forest conversion to maize fields in eastern Thailand. Pedosphere, 21(5):581-590. |
[19] | Li C L, Li Q, Zhao L et al., 2016. Land-use effects on organic and inorganic carbon patterns in the topsoil around Qinghai Lake Basin, Qinghai-Tibetan Plateau. Catena, 147:345-355. |
[20] | Lin Z B, Zhang R D, 2012. Dynamics of soil organic carbon under uncertain climate change and elevated atmospheric CO2. Pedosphere, 22(4):489-496. |
[21] | Liu S L, Tang Y H, Zhang F W et al., 2017. Changes of soil organic and inorganic carbon in relation to grassland degradation in northern Tibet. Ecological Research, 32(3):1-10. |
[22] | Liu W G, Wei J, Cheng J M et al., 2014. Profile distribution of soil inorganic carbon along a chronosequence of grassland restoration on a 22-year scale in the Chinese Loess Plateau. Catena, 121:321-329. |
[23] | Liu Y, Dang Z Q, Tian F P et al., 2017. Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid regions (China). Land Degradation & Development, 28(1):189-198. |
[24] | Ma X X, Xu M X, Yang K, 2012. Soil organic carbon mineralization of black locust forest in the deep soil layer of the hilly region of the Loess Plateau, China. Environmental Sciences, 33(11):3893-3900. (in Chinese) |
[25] | Miltner A, Bombach P, Schmidt-Brücken B et al., 2012. Som genesis: Microbial biomass as a significant source. Biogeochemistry, 111(1-3):41-55. |
[26] | Rumpel C, Amiraslani F, Koutika L S et al., 2018. Put more carbon in soils to meet paris climate pledges. Nature, 564:32-34. |
[27] | Rumpel C, Kögel-Knabner I. 2011. Deep soil organic matte: A key but poorly understood component of terrestrial C cycle. Plant and Soil, 338(1/2):143-158. |
[28] | Schlesinger W H, 1982. Carbon storage in the caliche of arid soils: A case study from Arizona. Soil Science, 133(4):247-255. |
[29] | Sommer R, Denich M, Vlek P L G, 2000. Carbon storage and root penetration in deep soils under small-farmer land-use systems in the eastern Amazon region, Brazil. Plant and Soil, 219(1/2):231-241. |
[30] | Trumbore S, 2009. Radiocarbon and soil carbon dynamics. Annual Review of Earth & Planetary Sciences, 37:47-66. |
[31] | Trumbore S E, 1997. Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences of the United States of America, 94(16):8284-8291. |
[32] | Wang K B, Ren Z P, Deng L et al., 2016. Profile distributions and controls of soil inorganic carbon along a 150-year natural vegetation restoration chronosequence. Soilence Society of America Journal, 80(1):193-202. |
[33] | Wang L, Shao M A, Zhang Q F, 2004. Distribution and characters of soil dry layer in north Shaanxi Loess Plateau. Chinese Journal of Applied Ecology, 15(3):436-442. |
[34] | Wang T, Kang F F, Cheng X Q et al., 2016. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil & Tillage Research, 163:176-184. |
[35] |
Wang Y G, Li Y, Ye X H et al., 2010. Profile storage of organic/inorganic carbon in soil: From forest to desert. Science of The Total Environment, 408(8):1925-1931.
doi: 10.1016/j.scitotenv.2010.01.015 |
[36] | Wang Y Q, Han X W, Jin Z et al., 2016. Soil organic carbon stocks in deep soils at a watershed scale on the Chinese Loess Plateau. Soil Science Society of American Journal, 80:157-167. |
[37] | Wang Y Q, Shao M A, Zhang C C et al., 2015. Soil organic carbon in deep profiles under Chinese continental monsoon climate and its relations with land uses. Ecological Engineering, 82:361-367. |
[38] | Wiesmeier M, Sporlein P, Geuss U et al., 2012. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology, 18(7):2233-2245. |
[39] | Wu H B, Guo Z T, Gao Q et al., 2009. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China. Agriculture Ecosystems & Environment, 129(4):413-421. |
[40] | Xu L, Yu G, He N, 2019. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. Journal of Geographical Sciences, 29(1):49-66. |
[41] | Yang F, Huang L M, Yang R M et al., 2018. Vertical distribution and storage of soil organic and inorganic carbon in a typical inland river basin, Northwest China. Journal of Arid Land, 10(2):183-201. |
[42] | Zeng J, Yue F-J, Wang Z-J et al., 2019. Quantifying depression trapping effect on rainwater chemical composition during the rainy season in karst agricultural area, southwestern China. Atmospheric Environment, 218:116998. |
[43] | Zhang F, Wang X, Guo T et al., 2015. Soil organic and inorganic carbon in the loess profiles of Lanzhou area: Implications of deep soils. Catena, 126:68-74. |
[44] | Zhang S, Xu M X, Zhang Y F et al., 2014. Effects of land use change on storage of soil organic carbon in deep soil layers in the hilly Loess Plateau region, China. Acta Scientiae Circumstantiae, 34:3094-3101. |
[45] | Zhang S R, Sun B, Zhao Q G et al., 2004. Temporal-spatial variability of soil organic carbon stocks in a rehabilitating ecosystem. Pedosphere, 14(4):501-508. |
[46] |
Zhao Y L, Wang Y Q, Wang L et al., 2019. Exploring the role of land restoration in the spatial patterns of deep soil water at watershed scales. Catena, 172:387-396.
doi: 10.1016/j.catena.2018.09.004 |
[47] |
Zhu G F, Pan H X, Zhang Y et al., 2019. Relative soil moisture in China's farmland. Journal of Geographical Sciences, 29(3):334-350.
doi: 10.1007/s11442-019-1601-6 |
[48] |
Zhu Q, Castellano M J, Yang G S, 2018. Coupling soil water processes and the nitrogen cycle across spatial scales: Potentials, bottlenecks and solutions. Earth-Science Reviews, 187:248-258.
doi: 10.1016/j.earscirev.2018.10.005 |
[1] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[2] | ZHU Wenbo, ZHANG Jingjing, CUI Yaoping, ZHU Lianqi. Ecosystem carbon storage under different scenarios of land use change in Qihe catchment, China [J]. Journal of Geographical Sciences, 2020, 30(9): 1507-1522. |
[3] | ZHAO Zhilong, FANG Xiuqi, YE Yu, ZHANG Chengpeng, ZHANG Diyang. Reconstruction of cropland area in the European part of Tsarist Russia from 1696 to 1914 based on historical documents [J]. Journal of Geographical Sciences, 2020, 30(8): 1307-1324. |
[4] | GE Dazhuan, ZHOU Guipeng, QIAO Weifeng, YANG Mengqi. Land use transition and rural spatial governance: Mechanism, framework and perspectives [J]. Journal of Geographical Sciences, 2020, 30(8): 1325-1340. |
[5] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[6] | LONG Hualou, QU Yi, TU Shuangshuang, ZHANG Yingnan, JIANG Yanfeng. Development of land use transitions research in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1195-1214. |
[7] | LUO Xiang, AO Xinhe, ZHANG Zuo, WAN Qing, LIU Xingjian. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints [J]. Journal of Geographical Sciences, 2020, 30(4): 535-552. |
[8] | ZHANG Xueru, ZHOU Jie, LI Guoning, CHEN Chun, LI Mengmei, LUO Jianmei. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010 [J]. Journal of Geographical Sciences, 2020, 30(4): 601-620. |
[9] | SONG Xiaoqing, WEN Mengmeng, SHEN Yajing, FENG Qi, XIANG Jingwei, ZHANG Weina, ZHAO Guosong, WU Zhifeng. Urban vacant land in growing urbanization: An international review [J]. Journal of Geographical Sciences, 2020, 30(4): 669-687. |
[10] | DAI Erfu, MA Liang, YANG Weishi, WANG Yahui, YIN Le, TONG Miao. Agent-based model of land system: Theory, application and modelling framework [J]. Journal of Geographical Sciences, 2020, 30(10): 1555-1570. |
[11] | TONG Jinhui, HU Jinhua, LU Zheng, SUN Haoran, YANG Xiaofan. The impact of land use and cover change on soil organic carbon and total nitrogen storage in the Heihe River Basin: A meta-analysis [J]. Journal of Geographical Sciences, 2019, 29(9): 1578-1594. |
[12] | XIONG Ying, CHEN Yun, PENG Fen, LI Jingzhi, YAN Xiaojing. Analog simulation of urban construction land supply and demand in Chang-Zhu-Tan Urban Agglomeration based on land intensive use [J]. Journal of Geographical Sciences, 2019, 29(8): 1346-1362. |
[13] | Li ZENG, Jing LI. A Bayesian belief network approach for mapping water conservation ecosystem service optimization region [J]. Journal of Geographical Sciences, 2019, 29(6): 1021-1038. |
[14] | Lingling ZHAO, Changming LIU, Leszek SOBKOWIAK, Xiaoxiao WU, Jiafu LIU. A review of underlying surface parameterization methods in hydrologic models [J]. Journal of Geographical Sciences, 2019, 29(6): 1039-1060. |
[15] | Yucui ZHANG, Yongqing QI, Yanjun SHEN, Hongying WANG, Xuepeng PAN. Mapping the agricultural land use of the North China Plain in 2002 and 2012 [J]. Journal of Geographical Sciences, 2019, 29(6): 909-921. |
|