Journal of Geographical Sciences ›› 2020, Vol. 30 ›› Issue (5): 724-742.doi: 10.1007/s11442-020-1752-5
• Research Articles • Previous Articles Next Articles
ZHOU Liang1,2, ZHOU Chenghu2, CHE Lei3,*(), WANG Bao4
Received:
2020-01-05
Accepted:
2020-02-17
Online:
2020-05-25
Published:
2020-07-25
Contact:
CHE Lei
E-mail:cheleigeo@126.com
About author:
Zhou Liang, PhD and Associate Professor, specialized in urban sustainable development. E-mail: zhougeo@126.com
Supported by:
ZHOU Liang, ZHOU Chenghu, CHE Lei, WANG Bao. Spatio-temporal evolution and influencing factors of urban green development efficiency in China[J].Journal of Geographical Sciences, 2020, 30(5): 724-742.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The evaluation of UGDE in China"
Type | First level indicators | Second level indicators | Third level indicators |
---|---|---|---|
Input | Capital | Fixed capital stock | Total social fixed capital investment |
Labor | Number of unit employers | Number of unit employees at the end of the year | |
Technology | Number of patent authorizations | Number of patent applications granted by region | |
Resources | Water, land, and energy consumption | Total water supply, urban built-up area, total electricity consumption | |
Artificial and natural gas supply, liquefied gas supply | |||
Output | Desirable output | Economic benefits | GDP (constant price in 2005) |
Social benefits | Average wage of urban employees, total retail sales of consumer goods | ||
Environmental benefits | Area of urban green space, percentage cover of green space, utilization rate of industrial solid waste | ||
centralized treatment rate of sewage treatment plants, treatment rate of harmless domestic garbage | |||
Undesirable output | Environmental pollution | Amount of industrial wastewater, amount of industrial SO2 emitted, amount of industrial dust emitted |
Table 2
The spatial Markov transfer matrix of UGDE from 2005 to 2015"
Type | 2005-2008 | 2008-2009 | 2009-2015 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | ||
1 | 1 | 0.847 | 0.097 | 0.028 | 0.028 | 0.762 | 0.119 | 0.071 | 0.048 | 0.844 | 0.131 | 0.010 | 0.015 |
2 | 0.292 | 0.477 | 0.200 | 0.031 | 0.190 | 0.238 | 0.476 | 0.095 | 0.202 | 0.551 | 0.191 | 0.056 | |
3 | 0.167 | 0.250 | 0.417 | 0.167 | 0.167 | 0.417 | 0.250 | 0.167 | 0.000 | 0.275 | 0.625 | 0.100 | |
4 | 0.111 | 0.111 | 0.222 | 0.556 | 0.222 | 0.000 | 0.000 | 0.778 | 0.034 | 0.052 | 0.190 | 0.724 | |
2 | 1 | 0.674 | 0.304 | 0.022 | 0.000 | 0.357 | 0.500 | 0.071 | 0.071 | 0.805 | 0.161 | 0.011 | 0.023 |
2 | 0.250 | 0.515 | 0.176 | 0.059 | 0.154 | 0.346 | 0.385 | 0.115 | 0.167 | 0.592 | 0.225 | 0.017 | |
3 | 0.118 | 0.196 | 0.549 | 0.137 | 0.045 | 0.091 | 0.500 | 0.364 | 0.016 | 0.203 | 0.626 | 0.154 | |
4 | 0.000 | 0.043 | 0.087 | 0.870 | 0.000 | 0.000 | 0.222 | 0.778 | 0.010 | 0.051 | 0.153 | 0.786 | |
3 | 1 | 0.740 | 0.260 | 0.000 | 0.000 | 0.455 | 0.364 | 0.091 | 0.091 | 0.692 | 0.282 | 0.013 | 0.013 |
2 | 0.280 | 0.480 | 0.200 | 0.040 | 0.176 | 0.294 | 0.471 | 0.059 | 0.130 | 0.652 | 0.174 | 0.043 | |
3 | 0.082 | 0.219 | 0.548 | 0.151 | 0.077 | 0.231 | 0.308 | 0.385 | 0.017 | 0.182 | 0.645 | 0.157 | |
4 | 0.019 | 0.074 | 0.148 | 0.759 | 0.000 | 0.100 | 0.200 | 0.700 | 0.009 | 0.026 | 0.183 | 0.783 | |
4 | 1 | 0.833 | 0.133 | 0.033 | 0.000 | 0.600 | 0.400 | 0.000 | 0.000 | 0.838 | 0.162 | 0.000 | 0.000 |
2 | 0.207 | 0.517 | 0.241 | 0.034 | 0.056 | 0.389 | 0.556 | 0.000 | 0.120 | 0.652 | 0.163 | 0.065 | |
3 | 0.049 | 0.246 | 0.557 | 0.148 | 0.000 | 0.111 | 0.500 | 0.389 | 0.010 | 0.286 | 0.480 | 0.224 | |
4 | 0.000 | 0.010 | 0.237 | 0.753 | 0.000 | 0.042 | 0.042 | 0.917 | 0.000 | 0.031 | 0.221 | 0.748 |
Table 3
The estimation of the factors influencing UGDE in China"
Variable | Model (1) | Z value | Model (2) | Z value | Model (3) | Z value | |
---|---|---|---|---|---|---|---|
Human and social factors | rgdp | 0.025*** | 3.68 | 0.030*** | 4.20 | ||
rgdp2 | 0.013*** | 3.68 | 0.015*** | 4.20 | |||
is | 0.087* | 1.55 | 0.089* | 1.58 | |||
fdi | 0.007** | 2.07 | 0.005* | 1.50 | |||
te | -0.439*** | -6.64 | -0.453*** | -6.84 | |||
Natural background factors | tem | 0.005** | 2.32 | 0.007*** | 3.21 | ||
pre | -0.004 | -0.67 | -0.001 | -0.40 | |||
eq | 0.0001 | 0.28 | 0.0004 | 0.38 | |||
ndvi | 0.119* | 1.67 | -0.027 | 1.01 | |||
C | 0.212*** | -3.71 | 0.723*** | -3.62 | 0.099*** | 1.01 | |
Correlation test | sigma_u | 0.181 | 0.187 | 0.178 | |||
sigma_e | 0.139 | 0.141 | 0.139 | ||||
rho | 0.628 | 0.638 | 0.621 | ||||
likelihood ratio test | 1305.72 | 1262.74 | 1312.67 |
[1] |
Bai Y, Hua C, Jiao J L et al., 2018. Green efficiency and environmental subsidy: Evidence from thermal power firms in China. Journal of Cleaner Production, 188:49-61.
doi: 10.1016/j.jclepro.2018.03.312 |
[2] |
Che L, B Y P, Zhou L et al., 2018. Spatial pattern and spillover effects of green development efficiency in China, Scientia Geographica Sinica, 38(11):1788-1798. (in Chinese)
doi: 10.13249/j.cnki.sgs.2018.11.006 |
[3] |
Choi Y, Bone C, Zhang N , 2016. Sustainable policies and strategies in Asia: Challenges for green growth. Technological Forecasting and Social Change, 112:134-137.
doi: 10.1016/j.techfore.2016.05.021 |
[4] | Copeland B R , 1994. International trade and the environment: Policy reform in a polluted small open economy. Journal of Environmental Economics & Management, 26(1):44-65. |
[5] |
Fang C L, Mao Q Z, Ni P F , 2015. Discussion on the scientific selection and development of Chinese urban agglomeration. Acta Geographica Sinica, 70(4):515-527. (in Chinese)
doi: 10.11821/dlxb201504001 |
[6] |
Feng T, Zhang H Q, Hu J et al., 2017. Dynamics of green productivity growth for major Chinese urban agglomerations. Applied Energy, 196:170-179.
doi: 10.1016/j.apenergy.2016.12.108 |
[7] |
Frick A, Tervooren, S , 2019. A framework for the long-term monitoring of urban green volume based on multi-temporal and multi-sensoral remote sensing data. Journal of Geovisualization and Spatial Analysis, 3(6):1-11.
doi: 10.1007/s41651-018-0024-8 |
[8] | Grossman G M, Krueger A B , 1992. Environmental impacts of a North American Free Trade Agreement. Social Science Electronic Publishing, 8(2):223-250. |
[9] | Gu C L , 2015. Urban and Regional Planning Research: Green Development and Urban Planning Reform. Beijing: The Commercial Press. (in Chinese) |
[10] |
Haukkala T , 2018. A struggle for change: The formation of a green-transition advocacy coalition in Finland. Environmental Innovation and Societal Transitions, 27:146-156.
doi: 10.1016/j.eist.2017.12.001 |
[11] | Huang J H, Lv H L, Wang L J . 2014. Mechanism of financial development influencing regional green development: Based on eco-efficiency and spatial econometrics. Geographical Research, 33(3):532-545. (in Chinese) |
[12] | Huang M X, Ye Q , 2017. The Marxist green development concept and green development in contemporary China: Comment on incompatibility theory between environment and development. Economic Research Journal, 52(6):17-30. (in Chinese) |
[13] |
Li B, Wu S S , 2016. Effects of local and civil environmental regulation on green total factor productivity in China: A spatial Durbin econometric analysis. Journal of Cleaner Production, 153:342-353.
doi: 10.1016/j.jclepro.2016.10.042 |
[14] |
Lin B Q, Nelson I B , 2017. Green development determinants in China: A non-radial quantile outlook. Journal of Cleaner Production, 162:764-775.
doi: 10.1016/j.jclepro.2017.06.062 |
[15] |
Lin B Q, Yang L S , 2014. Efficiency effect of changing investment structure on China’s power industry. Renewable & Sustainable Energy Reviews, 39:403-411.
doi: 10.1016/j.renene.2011.08.051 |
[16] | Liu X M, Zhang S L , 2015. Chinese enterprise green transition: Target pattern, obstacles and countermeasures. China Population Resources and Environment, 25(6):1-4. (in Chinese) |
[17] | Ma H L, Ding Y Q, Wang L , 2017. Measurement and convergence analysis of green water utilization efficiency. Journal of Natural Resources, 32(3):406-417. (in Chinese) |
[18] |
Marc M F , 2018. Satellite images show China going green. Nature, 553(7689):411-413.
doi: 10.1038/d41586-018-00996-5 |
[19] |
Mu X Y, Liu K, Ren J L , 2017. Spatial differentiation and change of green production efficiency in China. Progress in Geography, 36(8):1006-1014. (in Chinese)
doi: 10.18306/dlkxjz.2017.08.009 |
[20] | OECD, 2012. Energy: OECD Green growth studies. OECD Publishing. |
[21] | Brundtland G H , 1987. Our Common Future. Oxford England: Oxford University Press. |
[22] |
Pu Y X, Ma R H, Ge Y et al., 2005. Spatial-temporal dynamics of Jiangsu regional convergence with spatial Markov chains approach. Acta Geographica Sinica, 60(5):817-826. (in Chinese)
doi: 10.11821/xb200505013 |
[23] |
Ray S C, Ghose A , 2014. Production efficiency in Indian agriculture: An assessment of the post green revolution years. Omega, 44(2):58-69.
doi: 10.1016/j.omega.2013.08.005 |
[24] | Kumar R R, Stauvermann P J, Patel A , 2016. Exploring the link between research and economic growth: An empirical study of China and USA. Quality & Quantity, 50(3):1073-1091. |
[25] | Small and Medium-sized Cities Economic Development Committee of China Urban Economic Society (CUES), 2010. Report on the Development of Small and Medium-sized Cities in China: Green Development of Small and Medium-sized Cities Beijing: Social Sciences Academics Press. |
[26] |
Song M L, Du J R, Tan K , 2018. Impact of fiscal decentralization on green total factor productivity. International Journal of Production Economics, 205:359-367.
doi: 10.1007/s11356-020-07953-8 pmid: 32040739 |
[27] |
Tone K , 2001. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3):498-509.
doi: 10.1016/S0377-2217(99)00407-5 |
[28] |
Verónica, T F, Fernando A F, Blanca P G et al., 2019. Developing a green city assessment system using cognitive maps and the Choquet Integral. Journal of Cleaner Production, 218:486-497.
doi: 10.1016/j.jclepro.2019.01.060 |
[29] |
Zeng N, Ding Y H, Pan J H et al., 2008. Sustainable development: Climate change: The Chinese challenge. Science, 319(5864):730-731.
doi: 10.1126/science.1153368 pmid: 18258882 |
[30] |
Zhang G J, Huang W L, Zhou C S et al., 2018. Spatio-temporal characteristics of demographic distribution in China from the perspective of urban agglomeration. Acta Geographica Sinica, 73(8):1513-1525. (in Chinese)
doi: 10.11821/dlxb201808009 |
[31] | Zhang J, Chang Y, Wang C et al., 2017. The green efficiency of industrial sectors in China: A comparative analysis based on sectoral and supply-chain quantifications. Resources Conservation & Recycling, 132(5):269-277. |
[32] |
Zhang J X, Chang Y, Zhang L X et al., 2018. Do technological innovations promote urban green development? A spatial econometric analysis of 105 cities in China. Journal of Cleaner Production, 182:395-403.
doi: 10.1016/j.jclepro.2018.02.067 |
[33] |
Zhao X, Liu C, Yang M , 2018. The effects of environmental regulation on Chinese total factor productivity: An empirical study of carbon-intensive industries. Journal of Cleaner Production, 179:325-334.
doi: 10.1016/j.jclepro.2018.01.100 |
[34] | Zheng D F, Zang Z, Sun C Z et al., 2014. Prediction and analysis of the transition to green economy in China based on the theory of ecosystem services. Acta Ecologica Sinica, 34(23):7137-7147. (in Chinese) |
[35] | Zhou L, Dang X W, Sun Q K et al., 2020. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustainable Cities and Society, 55(4):1-10. |
|