Journal of Geographical Sciences ›› 2020, Vol. 30 ›› Issue (2): 251-266.doi: 10.1007/s11442-020-1726-7
• Research Articles • Previous Articles Next Articles
PEI Tao1,2, SONG Ci1,2, GUO Sihui1,2, SHU Hua1,2, LIU Yaxi1,2, DU Yunyan1,2, MA Ting1,2, ZHOU Chenghu1,2
Received:
2019-08-28
Accepted:
2019-09-29
Online:
2020-02-25
Published:
2020-04-21
About author:
Pei Tao (1972-), Professor, specialized in big geodata mining. E-mail: peit@lreis.ac.cn
Supported by:
PEI Tao, SONG Ci, GUO Sihui, SHU Hua, LIU Yaxi, DU Yunyan, MA Ting, ZHOU Chenghu. Big geodata mining: Objective, connotations and research issues[J].Journal of Geographical Sciences, 2020, 30(2): 251-266.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Andrieu C, De Freitas N, Doucet A et al., 2003. An introduction to MCMC for machine learning. Machine learning, 50(1/2):5-43. |
[2] | Atkinson P M, Tatnall A R L , 1997. Neural networks in remote sensing: Introduction. International Journal of Remote Sensing, 18(4):699-709. |
[3] | Batty M , 2013. The New Science of Cities. Cambridge, MA: MIT Press. |
[4] | Beale C M, Lennon J J, Yearsley J M et al., 2010. Regression analysis of spatial data. Ecology Letters, 13(2):246-264. |
[5] | Benz U C, Hofmann P, Willhauck G et al., 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3/4):239-258. |
[6] | Brereton R G, Lloyd G R , 2010. Support vector machines for classification and regression. Analyst, 135(2):230-267. |
[7] | Brunsdon C, Fotheringham A S, Charlton M E , 1996. Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28(4):281-298. |
[8] | Brunsdon C, Fotheringham S, Charlton M , 1998. Geographically weighted regression. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3):431-443. |
[9] | Byrne G F, Crapper P F, Mayo K K , 1980. Monitoring land-cover change by principal component analysis of multitemporal Landsat data. Remote Sensing of Environment, 10(3):175-184. |
[10] | Castells M , 1999. Grassrooting the space of flows. Urban Geography, 20(4):294-302. |
[11] | Castro P S, Zhang D, Li S , 2012. Urban traffic modelling and prediction using large scale taxi GPS traces. Proceeding of Pervasive’12 Proceedings of the 10th International Conference on Pervasive Computing, Newcastle, UK, June 18-22, 2012: 57-72. |
[12] | Chen J, Ban Y, Li S , 2015. China: Open access to Earth land-cover map. Nature, 514(7523):434. |
[13] | Chen Long, Stuart Neil, Mackaness A , 2015. Williams. Cluster and hot spot analysis in Lincoln, Nebraska, USA. Geomatics and Spatial Information Technology, 38(3):189-192. (in Chinese) |
[14] | Chen M S, Han J, Yu P S , 1996. Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6):866-883. |
[15] | Cheng Changxiu, Shi Peijun, Song Changqing et al., 2018. Geographic big-data: A new opportunity for geography complexity study. Acta Geographica Sinica, 73(8):1397-1406. (in Chinese) |
[16] | Cheng R, Emrich T, Kriegel H P et al., 2014. Managing uncertainty in spatial and spatio-temporal data. Proceedings of the IEEE 30th International Conference on Data Engineering (ICDE), Chicago, IL, USA, Mar 31-Apr 04, 2014: 1302-1305. |
[17] | Congalton R G , 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1):35-46. |
[18] | Dai J, Yang B, Guo C et al., 2015. Personalized route recommendation using big trajectory data. Proceedings of the 2015 IEEE 31st International Conference on Data Engineering (ICDE), Seoul, South Korea, April 13-17, 2015: 543-554. |
[19] | Data Center of Sina Micro-blog, 2017. 2017 User Development Report of Sina Micro-blog. .(in Chinese) |
[20] | Du Zhenyu, Xing Shangjun, Song Yumin et al., 2007. Lead pollution along expressways and its attenuation by green belts in Shandong province. Journal of Soil and Water Conservation, 21(5):175-179. (in Chinese) |
[21] | Džeroski S , 2009. Relational Data Mining. Boston, MA: Springer, 887-911. |
[22] | Ester M, Kriegel H P, Sander J et al., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceeding KDD’96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, Aug 02-04, 1996: 226-231. |
[23] | Fayyad U, Piatetsky-Shapiro G, Smyth P , 1996. The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11):27-34. |
[24] | Friedl M A, Brodley C E , 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3):399-409. |
[25] | Ginsberg J, Mohebbi M H, Patel R S et al., 2009. Detecting influenza epidemics using search engine query data. Nature, 457(7232):1012-1015. |
[26] | Gislason P O, Benediktsson J A, Sveinsson J R , 2006. Random forests for land cover classification. Pattern Recognition Letters, 27(4):294-300. |
[27] | Goodchild M F , 2004. The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers, 94(2):300-303. |
[28] | Goodchild M F, Yuan M, Cova T J , 2007. Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science, 21(3):239-260. |
[29] | Han J, Lee J G, Kamber M , 2009. An overview of clustering methods in geographic data analysis. Geographic Data Mining and Knowledge Discovery, 2:149-170. |
[30] | Han Zhigang, Kong Yunfeng, Qin Yaochen , 2011. Research on geographic representation: A review. Progress in Geography, 30(2):141-148. (in Chinese) |
[31] | Harvey J M, Han J W , 2009. Geographic Data Mining and Knowledge Discovery. London: CRC Press. |
[32] | Huang Y, Shekhar S, Xiong H , 2004. Discovering colocation patterns from spatial data sets: A general approach. IEEE Transactions on Knowledge and Data Engineering, 16(12):1472-1485. |
[33] | Keola S, Andersson M, Hall O , 2015. Monitoring economic development from space: Using nighttime light and land cover data to measure economic growth. World Development, 66:322-334. |
[34] | Kong X, Xu Z, Shen G et al., 2016. Urban traffic congestion estimation and prediction based on floating car trajectory data. Future Generation Computer Systems: The International Journal of EScience, 61:97-107. |
[35] | Koperski K, Han J , 1995. Discovery of spatial association rules in geographic information databases. Proceedings of the 4th International Symposium on Large Spatial Databases (SSD 95), Portland, ME, USA, Aug 06-09, 1995: 47-66. |
[36] | Koperski K, Han J, Stefanovic N , 1998. An efficient two-step method for classification of spatial data. Proceedings of the 8th International Symposium on Spatial Data Handling (SDH’98), Vancouver, BC, Canada, July 11-15, 1998: 45-54. |
[37] | Lazer D, Kennedy R, King G et al., 2014. The parable of Google Flu: Traps in big data analysis. Science, 343(6176):1203-1205. |
[38] | LeCun Y, Bengio Y, Hinton G , 2015. Deep learning. Nature, 521(7553):436-444. |
[39] | Li Deren, Cheng Tao , 1995. Knowledge discovery from GIS databases. Acta Geodaetica et Cartographica Sinica, 24(1):37-44. (in Chinese) |
[40] | Li Deren, Wang Shuliang, Li Deyi et al., 2002. Theories and technologies of spatial data mining and knowledge discovery. Geomatics and Information Science of Wuhan University, 27(3):221-233. (in Chinese) |
[41] | Li Deren, Wang Shuliang, Shi Wenzhong et al., 2001. On spatial data mining and knowledge discovery. Geomatics and Information Science of Wuhan University, 26(6):491-499. (in Chinese) |
[42] | Li X, Yeh A G O , 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4):323-343. |
[43] | Liu Yang, Liu Ronggao , 2015. Retrieval of global long-term leaf area index from LTDR AVHRR and MODIS observations. Journal of Geo-Information Science, 17(11):1304-1312. (in Chinese) |
[44] | Liu Yu , 2016. Revisiting several basic geographical concepts: A social sensing perspective. Acta Geographica Sinica, 71(4):564-575. (in Chinese) |
[45] | Liu Z, Ma T, Du Y et al., 2018. Mapping hourly dynamics of urban population using trajectories reconstructed from mobile phone records. Transactions in GIS, 22(2):494-513. |
[46] | Marr B . Big Data: Using SMART Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance. Chichester, UK: John Wiley & Sons, 2015. |
[47] | Mayer-Schonberger V, Cukier K , 2013. Big Data: A Revolution That Will Transform How We Live, Work, and Think. London: John Murray. |
[48] | McMillen D P , 2004. Geographically weighted regression: The analysis of spatially varying relationships. American Journal of Agricultural Economics, 86(2):554-556. |
[49] | Miller H J, Goodchild M F , 2015. Data-driven geography. GeoJournal, 80(4):449-461. |
[50] | Moon T K , 1996. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6):47-60. |
[51] | Mutanga O, Adam E, Cho M A , 2012. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18:399-406. |
[52] | NASA, 2017. New Night Lights Maps Open Up Possible Real-Time Applications. . |
[53] | Newing A, Anderson B, Bahaj A B et al., 2016. The role of digital trace data in supporting the collection of population statistics: The case for smart metered electricity consumption data. Population, Space and Place, 22(8):849-863. |
[54] | Niemeijer D , 2002. Developing indicators for environmental policy: Data-driven and theory-driven approaches examined by example. Environmental Science & Policy, 5(2):91-103. |
[55] | Niu N, Liu X P, Jin H et al., 2017. Integrating multi-source big data to infer building functions. International Journal of Geographical Information Science, 31(9):1871-1890. |
[56] | NOAA/National Centers for Environmental Information, 2018. Global Historical Climate Network Daily: Description. . |
[57] | Novembre J, Johnson T, Bryc K et al., 2008. Genes mirror geography within Europe. Nature, 456(7218):98-101. |
[58] | Oliver M A, Webster R , 1990. Kriging: A method of interpolation for geographical information systems. International Journal of Geographical Information System, 4(3):313-332. |
[59] | Pal M, Mather P M , 2005. Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5):1007-1011. |
[60] | Pei T, Gao J, Ma T et al., 2012. Multi-scale decomposition of point process data. GeoInformatica, 16(4):625-652. |
[61] | Pei T, Sobolevsky S, Ratti C et al., 2014. A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science, 28(9):1988-2007. |
[62] | Pei Tao, Li Ting, Zhou Chenghu , 2013. Spatiotemporal point process: A new data model, analysis methodology and viewpoint for geoscientific problem. Journal of Geo-Information Science, 15(6):793-800. (in Chinese) |
[63] | Qian Chengcheng, Cheng Ge , 2018. Big data science for ocean: Present and future. Bulletin of Chinese Academy of Sciences, 33(8):884-891. (in Chinese) |
[64] | Silver D, Huang A, Maddison C J et al., 2016. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489. |
[65] | Silver D, Schrittwieser J, Simonyan K et al., 2017. Mastering the game of Go without human knowledge. Nature, 550(7676):354-359. |
[66] | Song C, Qu Z, Blumm N et al., 2010. Limits of predictability in human mobility. Science, 327(5968):1018-1021. |
[67] | Stein M L , 2012. Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer Science & Business Media. |
[68] | Sun Zhongwei, Lu Zi , 2005. A geographical perspective to the elementary nature of space of flows. Geography and Geo-Information Science, 21(1):109-112. (in Chinese) |
[69] | Tobler W R , 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(Suppl.1):234-240. |
[70] | Vazifeh M M, Santi P, Resta G et al., 2018. Addressing the minimum fleet problem in on-demand urban mobility. Nature, 557(7706):534-538. |
[71] | Wang Haiqi, Wang Jinfeng , 2005. Research on progress of spatial data mining. Geography and Geo-Information Science, ( 4):6-10. (in Chinese) |
[72] | Yuan J, Zheng Y, Xie X et al., 2013. T-Drive: Enhancing driving directions with taxi drivers’ intelligence. IEEE Transactions on Knowledge & Data Engineering, 25(1):220-232. |
[73] | Yuan Y, Wei G, Lu Y , 2018. Evaluating gender representativeness of location-based social media: A case study of Weibo. Annals of GIS, 24(3):163-176. |
[74] | Zandbergen P A , 2008. Positional accuracy of spatial data: Non-normal distributions and a critique of the national standard for spatial data accuracy. Transactions in GIS, 12(1):103-130. |
[75] | Zhang Wenjian , 2010. WMO integrated global observing system (WIGOS). Meteorological Monthly, 36(3):1-8. (in Chinese) |
[76] | Zhao B, Zhang S , 2018. Rethinking spatial data quality: Pokémon go as a case study of location spoofing. The Professional Geographer, doi: 10.1080/00330124.2018.1479973. |
[77] | Zhao Z L, Shaw S L, Xu Y et al., 2016. Understanding the bias of call detail records in human mobility research. International Journal of Geographical Information Science, 30(9):1738-1762. |
[78] | Zheng Y, Liu Y Yuan J , et al., 2011. Urban computing with taxicabs. Proceedings of the 13th International Conference on Ubiquitous Computing, Beijing, China, September 17-21, 2011: 89-98. |
[79] | Zhu A-X, Qi F, Moore A et al., 2010a. Prediction of soil properties using fuzzy membership values. Geoderma, 158(3/4):199-206. |
[80] | Zhu A-X, Yang L, Li B et al., 2010b. Construction of membership functions for predictive soil mapping under fuzzy logic. Geoderma, 155(3/4):164-174. |
No related articles found! |
|