Journal of Geographical Sciences ›› 2020, Vol. 30 ›› Issue (1): 18-36.doi: 10.1007/s11442-020-1712-0
• Special Issue: Global and Regional Land Surface Characteristics and Socio-economic Scenarios • Previous Articles Next Articles
FU Shiwen1,2, NIE Suping3, LUO Yong1,*(), CHEN Xin1
Received:
2018-12-20
Accepted:
2019-03-26
Online:
2020-01-25
Published:
2020-03-25
Contact:
LUO Yong
E-mail:yongluo@tsinghua.edu.cn
About author:
Fu Shiwen (1994–), Master, specialized in land surface data assimilation. E-mail: fswflora@gmail.com
Supported by:
FU Shiwen, NIE Suping, LUO Yong, CHEN Xin. Implications of diurnal variations in land surface temperature to data assimilation using MODIS LST data[J].Journal of Geographical Sciences, 2020, 30(1): 18-36.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
LST assimilation experimental design"
No. | EXP name | EXP time | Assimilation | Time step | Time interval for the observation data |
---|---|---|---|---|---|
1 | CTL | 2014.01-2015.12 | No | 30 minutes | - |
2 | ASSI1 | 2014.01-2015.12 | Yes | 30 minutes | 3 hours |
3 | ASSI2 | 2014.01-2015.12 | Yes | 30 minutes | 6 hours |
4 | ASSI3 | 2014.01-2015.12 | Yes | 30 minutes | 12 hours |
5 | ASSI4 | 2014.01-2015.12 | Yes | 30 minutes | 24 hours |
Table 2
The comparison between the LST simulation results and the GLDAS LSTs using global mean absolute bias, RMSE and correlation coefficient"
Experiment name | CTL | ASSI1 | ASSI2 | ASSI3 | ASSI4 |
---|---|---|---|---|---|
Absolute bias | 2.570 K | 2.252 K | 2.172 K | 2.245 K | 2.262 K |
RMSE | 4.239 K | 3.681 K | 3.648 K | 3.992 K | 4.423 K |
Correlation coefficient | 0.525 | 0.619 | 0.615 | 0.571 | 0.525 |
Table 3
Comparison of monthly average absolute bias values on representative months"
CTL | ASSI1 | ASSI2 | ASSI3 | ASSI4 | |
---|---|---|---|---|---|
January, 2014 | 2.88 | 2.44 | 2.36 | 2.35 | 2.41 |
April, 2014 | 2.4 | 2.12 | 2.01 | 1.93 | 1.93 |
July, 2014 | 2.24 | 2.08 | 1.97 | 2 | 1.94 |
October, 2014 | 2.46 | 2.08 | 2.02 | 2.28 | 2.37 |
January, 2015 | 2.85 | 2.35 | 2.3 | 2.37 | 2.41 |
April, 2015 | 2.49 | 2.22 | 2.09 | 2.04 | 1.99 |
July, 2015 | 2.2 | 2.21 | 2.11 | 2.18 | 2.11 |
October, 2015 | 2.58 | 2.15 | 2.1 | 2.26 | 2.42 |
Table 4
Comparison of monthly average RMSE values on representative months"
CTL | ASSI1 | ASSI2 | ASSI3 | ASSI4 | |
---|---|---|---|---|---|
January, 2014 | 5.02 | 4.43 | 4.41 | 4.67 | 5.00 |
April, 2014 | 4.05 | 3.54 | 3.49 | 3.77 | 4.31 |
July, 2014 | 3.69 | 3.17 | 3.13 | 3.44 | 3.91 |
October, 2014 | 4.03 | 3.44 | 3.44 | 3.94 | 4.40 |
January, 2015 | 5.02 | 4.39 | 4.38 | 4.67 | 4.97 |
April, 2015 | 4.04 | 3.55 | 3.47 | 3.76 | 4.22 |
July, 2015 | 3.61 | 3.25 | 3.21 | 3.54 | 3.99 |
October, 2015 | 4.15 | 3.52 | 3.52 | 3.99 | 4.48 |
Table 5
Comparison of monthly average correlation coefficients values on representative months"
CTL | ASSI1 | ASSI2 | ASSI3 | ASSI4 | |
---|---|---|---|---|---|
January, 2014 | 0.55 | 0.6 | 0.59 | 0.55 | 0.52 |
April, 2014 | 0.56 | 0.64 | 0.64 | 0.59 | 0.53 |
July, 2014 | 0.42 | 0.51 | 0.5 | 0.46 | 0.4 |
October, 2014 | 0.57 | 0.68 | 0.68 | 0.62 | 0.58 |
January, 2015 | 0.55 | 0.6 | 0.61 | 0.57 | 0.54 |
April, 2015 | 0.59 | 0.65 | 0.66 | 0.62 | 0.57 |
July, 2015 | 0.47 | 0.55 | 0.54 | 0.49 | 0.43 |
October, 2015 | 0.55 | 0.67 | 0.66 | 0.62 | 0.57 |
1 | Balsamo G, Mahfouf J F, Bélair S et al., 2007. A land data assimilation system for soil moisture and temperature: An information content study. Journal of Hydrometeorology, 8(6):1225-1242. |
2 | Burgers G, Leeuwen P J V, Evensen G , 1998. Analysis scheme in the Ensemble Kalman Filter. Monthly Weather Review, 126(6):1719-1724. |
3 | Deng Xiaohua, Sui Panmao, Yuan Chunhong , 2010. Comparison and analysis of several sets of reanalysis data abroad. Meteorological Science and Technology, 38(1):1-8. (in Chinese) |
4 | Evensen G , 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research Oceans, 99(C5):10143-10162. |
5 | Evensen G , 1997. Advanced data assimilation for strongly nonlinear dynamics. Monthly Weather Review, 125(6):1342-1354. |
6 | Fu X L, Wang B , 2014. Reliability evaluation of soil moisture and land surface temperature simulated by Global Land Data Assimilation System (GLDAS) using AMSR-E data. Oceans( Vol.9265). International Society for Optics and Photonics. |
7 | Han Shuai, Shi Chunxiang, Jiang Lipeng et al., 2017. CLSAS soil moisture simulation results and evaluation. Chinese Journal of Applied Meteorology, 28(3):369-379. (in Chinese) |
8 | Houser P R , 2004. Land data assimilation systems. Bulletin of the American Meteorological Society, 85(3): 28-30 vol.1. |
9 | Hu T, Liu Q, Du Y et al., 2015. Analysis of land surface temperature spatial heterogeneity using variogram model. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE International Symposium on Geoscience and Remote Sensing IGARSS. IEEE, 132-135. |
10 | Huang C, Xin L, Ling L , 2008. Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter. Remote Sensing of Environment, 112(4):1320-1336. |
11 | Ji J J, Mei H, Li K R , 2008. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Science in China, 51(6):885-898. |
12 | Lawrence P J, Chase T N , 2015. Representing a new MODIS consistent land surface in the community land model (CLM 3.0). Journal of Geophysical Research, 112(G1):252-257. |
13 | Ma Weiqiang, Ma Yaoming , 2006. Preliminary analysis of surface energy in arid area of Northwest China. Journal of Arid Land Research, 23(1):76-82. (in Chinese) |
14 | Mechri R, Ottlé C, Pannekoucke O et al., 2016. Downscaling meteosat land surface temperature over a heterogeneous landscape using a data assimilation approach. Remote Sensing, 8(7):586-594. |
15 | Meng Chunlei , 2012. Study on surface temperature variational assimilation in CoLM model. Atmospheric Sciences, 36(5):985-994. (in Chinese) |
16 | Mitchell K E, Lohmann D, Houser P R et al., 2004. The multi-institution North American Land American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. Journal of Geophysical Research Atmospheres, 109(D7):585-587. |
17 | Oleson K W, Dai Y, Bonan G et al., 2010. Technical Description of Version 4. 0 of the Community Land Model (CLM), 195-198. |
18 | Oleson K W, Niu G Y, Yang Z L et al., 2008. Improvements to the community land model and their impact on the hydrological cycle. Journal of Geophysical Research Biogeosciences, 113(G1):G01021. |
19 | Rodell M, Houser PR, Jambor U et al., 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3):381-394. |
20 | Sellers P J , 1988. The first ISLSCP Field Experiment (FIFE). Bulletin of the American Meteorological Society, 69(1):22-27. |
21 | Shi Chunxiang, Xie Zhenghui, Qian Hui et al., 2011. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Science China Earth Sciences, 54(9):1430-1440. |
22 | Shi C, Jiang L, Zhang T et al., 2014. Status and Plans of CMA Land Data Assimilation System (CLDAS) Project. EGU General Assembly Conference(Vol.16). EGU General Assembly Conference Abstracts. |
23 | Xia Y, Ek M, Wei H et al., 2012. Comparative analysis of relationships between Nldas-2 forcings and model outputs. Hydrological Process, 26(3):467-474. |
24 | Xu Tongren, Liu Shaomin, Xu Ziwei et al., 2015. A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Science China Earth Sciences, 58(2):211-230. |
25 | Wang Yuquan , 2016. Analysis of surface temperature series of LET-KF data assimilation in transient model. Science Bulletin, 32(8):197-202. (in Chinese) |
26 | Wan Z , 1999. MODIS Land Surface Temperature Algorithm Theoretical Basis Documentation. |
27 | Wan Z , 2014. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140(1):36-45. |
28 | Wan Z M, Li Z L , 1997. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35(4):980-996. |
29 | Wu Jinkui, Ding Yongjian, Wei Zhi et al., 2005. Reference crop evapotranspiration in natural low-humid grassland in arid area: A case study in the middle reaches of Heihe River Basin. Journal of Arid Land Research, 22(4):514-519. (in Chinese) |
30 | Wu T, Li W, Ji J et al., 2013. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. Journal of Geophysical Research: Atmospheres, 118(10):4326-4347. |
31 | Wu Tongwen, Song Lianchun, Li Weiping et al., 2014. An overview of BCC Climate System Model development and application for climate change studies. Journal of Meteorology Research, 28(1):34-56. |
32 | Zou Lanjun, Gao Wei, Wu Tongwen et al., 2006. A 3DVAR land data assimilation scheme Part 2: Test with ECMWF ERA-40, Conference on Remote Sensing and Modeling of Ecosystems for Sustainability III. In: Proceedings of the Society of Photo-optional Instrumentation Engineers (SPIE). SPIE, M2981-M2981. |
[1] | Miaomiao QI, Xiaojun YAO, Xiaofeng LI, Hongyu DUAN, Yongpeng GAO, Juan LIU. Spatiotemporal characteristics of Qinghai Lakeice phenology between 2000 and 2016 [J]. Journal of Geographical Sciences, 2019, 29(1): 115-130. |
[2] | Huimin YAN, Fang LIU, Zhongen NIU, Fengxue GU, Yanzhao YANG. Changes of multiple cropping in Huang-Huai-Hai agricultural region, China [J]. Journal of Geographical Sciences, 2018, 28(11): 1685-1699. |
[3] | Xuemei LIU, Mingjun ZHANG, Shengjie WANG, Jie WANG, Peipei ZHAO, Panpan ZHOU. Assessment of diurnal variation of summer precipitation over the Qilian Mountains based on an hourly merged dataset from 2008 to 2014 [J]. Journal of Geographical Sciences, 2017, 27(3): 326-336. |
[4] | Jun CHEN, Changqing *KE, Xiaobing ZHOU, Zhude SHAO, Lanyu LI. Surface velocity estimations of ice shelves in the northern Antarctic Peninsula derived from MODIS data [J]. Journal of Geographical Sciences, 2016, 26(2): 243-256. |
[5] | Dehua MAO, Ling LUO, Zongming WANG, Chunhua ZHANG, Chunying REN. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau [J]. Journal of Geographical Sciences, 2015, 25(8): 967-977. |
[6] | Zhengjia LIU, Quanqin SHAO, Jian TAO, Wenfeng CHI. Intra-annual variability of satellite observed surface albedo associated with typical land cover types in China [J]. Journal of Geographical Sciences, 2015, 25(1): 35-44. |
[7] | YAO Yonghui, ZHANG Baiping. MODIS-based estimation of air temperature of the Tibetan Plateau [J]. , 2013, 23(4): 627-640. |
[8] | MA Ting, ZHOU Chenghu, PEI Tao, XIE Yichun. A comparative analysis of changes in the phasing of temperature and satellite-derived greenness at northern latitudes [J]. Journal of Geographical Sciences, 2013, 23(1): 57-66. |
[9] | AGUIRRE-SALADO Carlos Arturo, TREVIŇO-GARZA Eduardo Javier, AGUIRRE-CALDERÓN Oscar Alberto, JIMÉNEZ-PÉREZ Javier, GONZÁLEZ-TAGLE Marco Aurelio, VALDEZ-LAZALDE José|René, MIRANDA-ARAGÓN Liliana, AGUIRRE-SALADO Alejandro Iván. Construction of aboveground biomass models with remote sensing technology in the intertropical zone in Mexico [J]. Journal of Geographical Sciences, 2012, 22(4): 669-680. |
[10] | YAO Yonghui, ZHANG Baiping. MODIS-based air temperature estimation in the southeastern Tibetan Plateau and neighboring areas [J]. Journal of Geographical Sciences, 2012, 22(1): 152-166 . |
[11] | YANG Libiao, YAN Weijin, MA Pei, WANG Jianing. Seasonal and diurnal variations in N2O concentrations and fluxes from three eutrophic rivers in Southeast China [J]. Journal of Geographical Sciences, 2011, 21(5): 820-832. |
[12] | CAI Hongyan, ZHANG Shuwen, BU Kun, YANG Jiuchun, CHANG Liping. Integrating geographical data and phenological characteristics derived from MODIS data for improving land cover mapping [J]. Journal of Geographical Sciences, 2011, 21(4): 705-718. |
[13] | XING Xiaoxu, XU Xingliang, ZHANG Xianzhou, ZHOU Caiping, SONG Minghua, SHAO Bin, *OUYANG Hua. Simulating net primary production of grasslands in northeastern Asia using MODIS data from 2000 to 2005 [J]. Journal of Geographical Sciences, 2010, 20(2): 193-204. |
[14] | WANG Liwen, WEI Yaxing, NIU Zheng. Spatial and temporal variations of vegetation in Qinghai Province based on satellite data [J]. Journal of Geographical Sciences, 2008, 18(1): 73-84. |
[15] | WATANABE Masataka, WANG Qinxue, HAYASHI Seiji, MURAKAMI ShogoLIU Jiyuan, OUYANG Zhu, LI Yan, LI Yingnian, WANG Kelin. Monitoring and simulation of water, heat, and CO2 fluxes in terrestrial ecosystems based on the APEIS-FLUX system [J]. Journal of Geographical Sciences, 2005, 15(2): 131-141. |
|