Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (12): 2015-2030.doi: 10.1007/s11442-019-1702-2
• Research Articles • Previous Articles Next Articles
ZHOU Kan1, LIU Hanchu2(), WANG Qiang3
Received:
2019-05-08
Accepted:
2019-07-09
Online:
2019-12-25
Published:
2019-12-06
Contact:
LIU Hanchu
E-mail:liuhanc521@sina.com
About author:
Zhou Kan (1986─), PhD and Associate Professor, specialized in resources and environmental carrying capacity and regional sustainable development. E-mail: zhoukan2008@126.com
Supported by:
ZHOU Kan, LIU Hanchu, WANG Qiang. The impact of economic agglomeration on water pollutant emissions from the perspective of spatial spillover effects[J].Journal of Geographical Sciences, 2019, 29(12): 2015-2030.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The statistical description of variables with logarithmic form"
Variables | Unit | Mean | Std. dev. | Median | Min | Max |
---|---|---|---|---|---|---|
COD | Ton | 10.240 | 0.850 | 10.32 | 6.220 | 12.54 |
NH3-N | Ton | 8.190 | 0.910 | 8.320 | 4.170 | 10.690 |
EA | 10000 yuan / km2 | 10.56 | 0.560 | 10.60 | 8.510 | 12.23 |
WIC | Ton / 100 million yuan | 3.480 | 0.740 | 3.520 | 1.450 | 5.330 |
WIN | Ton / 100 million yuan | 2.330 | 0.610 | 2.410 | 0.147 | 4.730 |
PGDP | Yuan | 10.450 | 0.600 | 10.420 | 8.860 | 12.120 |
POP | 10000 person | 4.860 | 1.000 | 4.950 | 0.780 | 7.630 |
IS | Percentage | 3.880 | 0.250 | 3.930 | 2.840 | 4.410 |
URB | Percentage | 3.790 | 0.370 | 3.790 | 2.540 | 4.610 |
Table 2
Estimation results for whole sample and regional samples"
Whole sample | Coastal sample | Inland sample | ||||
---|---|---|---|---|---|---|
lnCOD | lnNH3-N | lnCOD | lnNH3-N | lnCOD | lnNH3-N | |
LnEA | -0.117** | -0.102*** | 0.190 | -0.019 | -0.128** | -0.123*** |
(-1.28) | (-2.31) | (1.73) | (-0.25) | (-1.72) | (-2.22) | |
LnWIC | 0.019*** | 0.038*** | 0.018*** | |||
(23.45) | (12.93) | (23.16) | ||||
LnWIN | 0.146*** | 0.239*** | 0.145*** | |||
(24.05) | (8.47) | (26.48) | ||||
LnPGDP | 0.369*** | -0.028 | -0.461*** | -0.347*** | 0.545*** | -0.155 |
(7.28) | (-0.27) | (-4.17) | (-4.39) | (9.03) | (-0.74) | |
LnPOP | 0.924*** | 0.958*** | 0.908*** | 0.944*** | 0.963*** | 0.982*** |
(42.88) | (62.16) | (21.99) | (25.85) | (41.69) | (63.26) | |
LnIS | 0.339*** | 0.178*** | 0.109 | 0.0955 | 0.213** | 0.073 |
(5.54) | (4.03) | (0.93) | (0.89) | (2.95) | (1.50) | |
LnURB | -0.190 | 0.337*** | 0.0556 | 0.194** | -0.063 | 0.156* |
(-1.64) | (6.68) | (0.29) | (3.39) | (-2.47) | (3.42) | |
Constant | 2.406*** | 0.185 | -0.287 | -0.929 | 1.860*** | -0.633 |
(5.47) | (0.57) | (-0.32) | (-0.93) | (3.72) | (-1.83) | |
F value | 247.91 | 609.36 | 52.24 | 119.26 | 172.11 | 391.67 |
P value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Adj R2 | 0.787 | 0.901 | 0.719 | 0.855 | 0.785 | 0.894 |
Table 3
Estimation results for samples of different city sizes"
Large and megacities | Medium-sized cities | Small-sized cities | ||||
---|---|---|---|---|---|---|
lnCOD | lnNH3-N | lnCOD | lnNH3-N | lnCOD | lnNH3-N | |
LnEA | -0.089* | 0.0286 | -0.142** | -0.107 | -0.119** | -0.085 |
(-2.04) | (0.81) | (-3.06) | (-1.02) | (-2.68) | (-0.64) | |
LnWIC | 0.031*** | 0.018*** | 0.015*** | |||
(19.38) | (14.52) | (14.56) | ||||
LnWIN | 0.205*** | 0.157*** | 0.123*** | |||
(17.22) | (15.95) | (15.61) | ||||
LnPGDP | 0.575*** | 0.152 | 0.844*** | 0.381 | 0.850*** | 0.065 |
(8.43) | (0.80) | (8.00) | (1.39) | (7.58) | (0.29) | |
LnPOP | 0.880*** | 0.905*** | 1.098*** | 0.961*** | 1.032*** | 1.048*** |
(27.82) | (35.67) | (8.44) | (10.69) | (19.07) | (26.86) | |
LnIS | 0.204* | 0.146* | 0.018 | -0.101 | -0.0579 | -0.032 |
(2.42) | (2.14) | (0.13) | (-0.98) | (-0.55) | (-0.39) | |
LnURB | -0.682*** | 0.542*** | 0.620 | 0.267 | 0.749* | 0.771* |
(-7.98) | (7.41) | (2.58) | (1.43) | (2.21) | (2.64) | |
Constant | -0.182 | -1.143* | 0.895 | -1.568 | -0.216 | -1.110 |
(-0.30) | (-2.24) | (0.82) | (-1.96) | (-0.23) | (-1.60) | |
F value | 687.06 | 458.74 | 214.75 | 44.01 | 499.32 | 142.06 |
P value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Adj R2 | 0.851 | 0.827 | 0.846 | 0.779 | 0.885 | 0.852 |
Table 4
Moran’s I of univariate and bivariate spatial correlations for water pollutant emissions"
Pollutant emissions | Univariate analysis | Bivariate analysis | ||
---|---|---|---|---|
With economic agglomeration | With economic level | |||
COD | Moran’s I | 0.2575 | 0.2025 | 0.1469 |
P value | 0.0010 | 0.0100 | 0.0010 | |
NH3-N | Moran’s I | 0.2542 | 0.2737 | 0.1188 |
P value | 0.0010 | 0.0100 | 0.0030 |
1 |
Chen D, Chen S, Jin H , 2018a. Industrial agglomeration and CO2 emissions: Evidence from 187 Chinese prefecture-level cities over 2005-2013. Journal of Cleaner Production, 172:993-1003.
doi: 10.1016/j.jclepro.2017.10.068 |
2 |
Chen M, Liu W, Lu D et al., 2018b. Progress of China’s new-type urbanization construction since 2014: A preliminary assessment. Cities, 78:180-193.
doi: 10.1016/j.cities.2018.02.012 |
3 |
Cheng Z , 2016. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecological Indicators, 61:1024-1032.
doi: 10.1016/j.ecolind.2015.10.060 |
4 |
Churchill S, Inekwe J, Ivanovski K et al., 2018. The Environmental Kuznets Curve in the OECD: 1870-2014. Energy Economics, 75:389-399.
doi: 10.1016/j.eneco.2018.09.004 |
5 |
Ciccone A, Hall R E , 1996. Productivity and the density of economic activity. The American Economic Review, 86(1):54-70.
doi: 10.1021/acsami.9b14316 pmid: 31633911 |
6 |
Ellison G, Glaeser E L , 1999. The geographic concentration of industry: Does natural advantage explain agglomeration? American Economic Review, 89(2):311-316.
doi: 10.1257/aer.89.2.311 |
7 |
Fang C, Zhou C, Gu C et al., 2017. A proposal for the theoretical analysis of the interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations. Journal of Geographical Sciences, 27(12):1431-1449.
doi: 10.1007/s11442-017-1445-x |
8 |
Ferard J F, Blaise C , 2013. Encyclopedia of Aquatic Ecotoxicology. Dordrecht: Springer Science.
doi: 10.1126/science.aaw4085 pmid: 31395767 |
9 |
Frank A, Moussiopoulosb N, Bartonovac A et al., 2001. Urban air quality in larger conurbations in the European Union. Environmental Modelling & Software, 16(4):399-414.
doi: 10.1371/journal.pone.0225936 pmid: 31805122 |
10 |
Grossman G, Kuerger A , 1995. Economic, growth and the environment. Quarterly Journal of Economics, 110(2):353-377.
doi: 10.1371/journal.pone.0225753 pmid: 31805168 |
11 |
Guo J, Xu Y, Pu Z , 2016. Urbanization and its effects on industrial pollutant emissions: An empirical study of a Chinese case with the spatial panel model. Sustainability, 8(8):812.
doi: 10.3390/su8080812 |
12 |
Han F, Xie R, Fang J et al., 2018. The effects of urban agglomeration economies on carbon emissions: Evidence from Chinese cities. Journal of Cleaner Production, 172:1096-1110.
doi: 10.1016/j.jclepro.2017.09.273 |
13 |
Hao Y, Wu Y, Wang L et al., 2018. Re-examine Environmental Kuznets Curve in China: Spatial estimations using environmental quality index. Sustainable Cities and Society, 42:498-511.
doi: 10.1016/j.scs.2018.08.014 |
14 |
Hosoe M, Naito T , 2006. Trans-boundary pollution transmission and regional agglomeration effects. Papers in Regional Science, 85(1):99-120.
doi: 10.1111/pirs.2006.85.issue-1 |
15 |
Hossein H M, Kaneko S , 2013. Can environment quality spread through institutions? Energy Policy, 56(2):312-321.
doi: 10.1210/jcem-56-2-312 pmid: 6401750 |
16 |
Hu Y, Cheng H , 2013. Water pollution during China’s industrial transition. Environmental Development, 8:57-73.
doi: 10.1016/j.envdev.2013.06.001 |
17 |
Ji X, Zhang W, Jiang M et al., 2017. Black-odor water analysis and heavy metal distribution of Yitong River in Northeast China. Water Science and Technology, 76(8):2051-2064.
doi: 10.2166/wst.2017.372 pmid: 29068335 |
18 |
Li J, Chen Y, Li Z et al., 2018. Quantitative analysis of the impact factors of conventional energy carbon emissions in Kazakhstan based on LMDI decomposition and STIRPAT model. Journal of Geographical Sciences, 28(7):1001-1019.
doi: 10.1007/s11442-018-1518-5 |
19 |
Li Y, Luo E, Zhang H et al., 2018. Measuring interregional spillover and feedback effects of economy and CO2 emissions: A case study of the capital city agglomeration in China. Resources, Conservation and Recycling, 139:104-113.
doi: 10.1016/j.resconrec.2018.07.021 |
20 |
Liang W, Yang M , 2019. Urbanization, economic growth and environmental pollution: Evidence from China. Sustainable Computing: Informatics and Systems, 21:1-9.
doi: 10.3390/ijerph16152707 pmid: 31362448 |
21 |
Liu D, Xiao B , 2018. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecological Indicators, 93:647-657.
doi: 10.1046/j.1365-2672.2002.01725.x pmid: 12234348 |
22 |
Liu G Y, Yang Z F, Tang Y C et al., 2017a. Spatial correlation model of economy-energy-pollution interactions: The role of river water as a link between production sites and urban areas. Renewable & Sustainable Energy Reviews, 69:1018-1028.
doi: 10.1016/j.cmpb.2019.105197 pmid: 31805484 |
23 |
Liu S, Zhu Y, Du K , 2017b. The impact of industrial agglomeration on industrial pollutant emission: Evidence from China under New Normal. Clean Technologies and Environmental Policy, 19(9):2327-2334.
doi: 10.1007/s10098-017-1407-0 |
24 |
Liu Y, Zhou Y, Wu W ., 2015. Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Applied Energy, 155:904-917.
doi: 10.1016/j.apenergy.2015.06.051 |
25 | Lu Dadao , 2015. Moderate-speed growth: Sustainable development of China’s economy. Scientia Geographica Sinica, 35(10):1207-1219. (in Chinese) |
26 |
Qi Wei, Liu Shenghe, Jin Haoran , 2016. Applicability of the new standard of city-size classification in China. Progress in Geography, 35(1):47-56. (in Chinese)
doi: 10.18306/dlkxjz.2016.01.006 |
27 |
Scholten M C T, Foekema E M, Dokkum H P V et al., 2005. Eutrophication Management and Ecotoxicology. Berlin: Springer Berlin Heidelberg.
doi: 10.1016/j.aquatox.2013.04.007 pmid: 23685387 |
28 |
Su W, Liu Y, Wang S et al., 2018. Regional inequality, spatial spillover effects, and the factors influencing city-level energy-related carbon emissions in China. Journal of Geographical Sciences, 28(4):495-513.
doi: 10.1007/s11442-018-1486-9 |
29 |
Thisse J F , 2018. Human capital and agglomeration economies in urban development. The Developing Economies, 56(2):117-139.
doi: 10.1371/journal.pone.0135871 pmid: 26308858 |
30 |
Ushifusa Y , 2013. Productivity and labor density: Agglomeration effects over time. Atlantic Economic Journal, 41(2):123-132.
doi: 10.1007/s11293-012-9354-y |
31 |
Verhoef E T, Nijkamp P , 2002. Externalities in urban sustainability: Environmental versus localization-type agglomeration externalities in a general spatial equilibrium model of a single-sector monocentric industrial city. Ecological Economics, 40(2):157-179.
doi: 10.1016/S0921-8009(01)00253-1 |
32 |
Wang C, Wang F, Zhang X et al., 2017. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renewable and Sustainable Energy Reviews, 67:51-61.
doi: 10.1016/j.rser.2016.09.006 |
33 |
Wang J, Ye X, Wei Y D , 2019. Effects of agglomeration, environmental regulations, and technology on pollutant emissions in China: Integrating spatial, social, and economic network analyses. Sustainability, 11(2):363.
doi: 10.3390/su11020363 |
34 |
Wang Xiaoshuo, Yu Chaoyi , 2017. Impact of spatial agglomeration on industrial pollution emissions intensity in China. China Environmental Science, 37(4):1562-1570. (in Chinese)
pmid: 27548983 |
35 |
Wang Z, Jia H F, Xu T et al., 2018. Manufacturing industrial structure and pollutant emission: An empirical study of China. Journal of Cleaner Production, 197(1):462-471.
doi: 10.1371/journal.pone.0135727 pmid: 26332222 |
36 |
Xu B, Lin B , 2016. Regional differences of pollution emissions in China: Contributing factors and mitigation strategies. Journal of Cleaner Production, 112:1454-1463.
doi: 10.1016/j.jclepro.2015.03.067 |
37 |
York R, Rosa E A, Dietz T , 2003. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46:351-365.
doi: 10.1016/S0921-8009(03)00188-5 |
38 | Yu Shuyi, Gao Feng, Zhang Yan , 2013. Economic growth, investment structure and environmental effect: Empirical study on the three economic regions in China. East China Economic Management, 27(6):70-77. (in Chinese) |
39 |
Zhang C, Wang Y, Song X et al., 2017. An integrated specification for the nexus of water pollution and economic growth in China: Panel cointegration, long-run causality and Environmental Kuznets Curve. Science of the Total Environment, 609:319-328.
doi: 10.1016/j.scitotenv.2017.07.107 pmid: 28753507 |
40 | Zhang Cuiju, Zhang Zongyi , 2016. Effect of spatial agglomeration of industry and population on China’s regional carbon emission intensity. Technology Economics, 35(1):71-77, 125. (in Chinese) |
41 |
Zhang Xubo, Yu Wei, Zhang Yali et al., 2018. Spatial and temporal variation and influencing factors of economic growth in Beijing-Tianjin-Hebei region. Acta Geographica Sinica, 73(10):1985-2000. (in Chinese)
doi: 10.11821/dlxb201810012 |
42 |
Zhao X F, Deng C L, Huang X J et al., 2017. Driving forces and the spatial patterns of industrial sulfur dioxide discharge in China. Science of the Total Environment, 577:279-288.
doi: 10.1016/j.scitotenv.2016.10.183 pmid: 27823826 |
43 | Zhao Y M , 2017. The situation and countermeasures of soil and water pollution prevention and control in China. The People’s Congress of China, ( 9):46-51. |
44 |
Zhou L, Zhou C, Yang F et al., 2019. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2015. Journal of Geographical Sciences, 29(2):253-270.
doi: 10.1007/s11442-019-1595-0 |
[1] | Shaojian WANG, Yongyuan HUANG, Yuquan ZHOU. Spatial spillover effect and driving forces of carbon emission intensity at the city level in China [J]. Journal of Geographical Sciences, 2019, 29(2): 231-252. |
[2] | Wensong SU, Yanyan Liu, Shaojian WANG, Yabo ZHAO, Yongxian SU, Shijie LI. Regional inequality, spatial spillover effects, and the factors influencing city-level energy-related carbon emissions in China [J]. Journal of Geographical Sciences, 2018, 28(4): 495-513. |
[3] | Chao BAO, Xiaojie CHEN. Spatial econometric analysis on influencing factors of water consumption efficiency in urbanizing China [J]. Journal of Geographical Sciences, 2017, 27(12): 1450-1462. |
[4] | Kerong SHENG, Wei SUN, Jie FAN. Sequential city growth: Theory and evidence from the US [J]. Journal of Geographical Sciences, 2014, 24(6): 1161-1174. |
|