Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (9): 1527-1547.doi: 10.1007/s11442-019-1675-1
Previous Articles Next Articles
YANG Chongyao, HUANG Yongmei*(), LI Engui, LI Zeqing
Received:
2018-10-23
Accepted:
2019-03-16
Online:
2019-09-25
Published:
2019-12-11
Contact:
HUANG Yongmei
E-mail:ymhuang@bnu.edu.cn
About author:
Yang Chongyao (1994–), Master, specialized in vegetation ecology and ecohydrology. E-mail: 201621190006@mail.bnu.edu.cn
Supported by:
YANG Chongyao, HUANG Yongmei, LI Engui, LI Zeqing. Rainfall interception of typical ecosystems in the Heihe River Basin: Based on high temporal resolution soil moisture data[J].Journal of Geographical Sciences, 2019, 29(9): 1527-1547.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Stand characteristics and mean annual climate conditions of typical ecosystems"
Ecosystems | Coverage (%) | Canopy height (m) | Mean annual precipitation (mm) | Mean annual temperature (℃) |
---|---|---|---|---|
Alpine meadow | 90-100 | 0.03-0.09 | 411.7 | -1.10±1.53 |
Coniferous forest | 60-80 | 16-30 | 589.1 | 1.46±0.38 |
Mountain steppe | 70-90 | 0.15-0.4 | 506.5 | 1.11±1.03 |
Desert | 10-30 | 0.3-0.6 | 95.4 | 8.99±0.32 |
Cultivated crop | 80-90 | 1.8-2.0 | 129.0 | 6.35±0.29 |
Riparian forest | 30-50 | 10-20 | 40.2 | 9.76±0.49 |
Table 2
Selected eco-hydrological observation sites of the Heihe River Basin"
No. | Site | Ecosystems | Dominant species | Altitude (m a.s.l.) | Observation period |
---|---|---|---|---|---|
1 | Dadongshushan | Alpine meadow | Kobresia pygmaea | 4101 | 2008 |
2 | Jingyangling | Alpine meadow | Kobresia pygmaea | 3750 | 2014-2016 |
3 | Guantan | Coniferous forest | Picea crassifolia | 2835 | 2008-2011 |
4 | Maliantan | Mountain steppe | Iris lacteal var. chinensis + Stipa krylovii | 2817 | 2008-2009 |
5 | Pailugou | Mountain steppe | Stipa krylovii | 2731 | 2006-2007 |
6 | Hulugou | Mountain steppe | Stipa penicillata | 2980 | 2011 |
7 | Huazhaizi | Desert | Kalidium foliatum | 1731 | 2013-2016 |
8 | Bajitan | Desert | Reaumuria songarica | 1562 | 2015 |
9 | Daman | Cultivated crop | Zea mays | 1556 | 2013-2016 |
10 | Sidaoqiao | Riparian forest | Tamarix chinensis | 873 | 2014-2016 |
11 | Hunhelin | Riparian forest | Populus euphratica | 874 | 2014-2016 |
12 | Huangmo | Desert | Reaumuria songarica | 1054 | 2015-2016 |
Table 3
Average rainfall characteristics of typical ecosystems during observation period"
Ecosystems | Observed rainfall events | Average rainfall amount (mm) | Average rainfall intensity (mm/h) |
---|---|---|---|
Coniferous forest | 45 | 14.7 | 1.0 |
Alpine meadow | 148 | 9.8 | 1.0 |
Cultivated crop | 46 | 7.2 | 0.9 |
Mountain steppe | 38 | 13.3 | 0.9 |
Desert | 88 | 7.6 | 1.2 |
Riparian forest | 28 | 3.9 | 0.7 |
Table 4
Frequency distribution of rainfall events"
Rainfall event (mm) | Alpine meadow | Coniferous forest | Mountain steppe | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency | RP** (%) | Frequency | RP (%) | Frequency | RP (%) | ||||||||
Times | TP* (%) | Times | TP (%) | Times | TP (%) | ||||||||
0-2 | 8 | 5.52 | 0.83 | 0 | 0.00 | 0.00 | 1 | 2.63 | 0.38 | ||||
2-5 | 44 | 30.34 | 10.35 | 3 | 9.68 | 2.13 | 4 | 10.53 | 3.10 | ||||
5-10 | 44 | 30.34 | 21.27 | 10 | 32.26 | 14.87 | 15 | 39.47 | 23.61 | ||||
10-15 | 23 | 15.86 | 19.07 | 7 | 22.58 | 17.21 | 7 | 18.42 | 17.57 | ||||
15-20 | 12 | 8.28 | 14.30 | 4 | 12.90 | 14.18 | 4 | 10.53 | 13.84 | ||||
20-30 | 10 | 6.90 | 16.92 | 2 | 6.45 | 9.50 | 4 | 10.53 | 19.68 | ||||
30-40 | 2 | 1.38 | 11.22 | 4 | 12.90 | 27.90 | 2 | 5.26 | 13.90 | ||||
40-50 | 2 | 1.38 | 6.03 | 1 | 3.23 | 14.20 | 1 | 2.63 | 7.92 | ||||
Rainfall event (mm) | Desert | Riparian forest | Cultivated crop | ||||||||||
Frequency | RP (%) | Frequency | RP (%) | Frequency | RP (%) | ||||||||
Times | TP (%) | Times | TP (%) | Times | TP (%) | ||||||||
0-2 | 5 | 5.68 | 1.07 | 9 | 32.14 | 13.96 | 2 | 4.35 | 1.09 | ||||
2-5 | 28 | 31.82 | 14.01 | 12 | 42.86 | 41.31 | 14 | 30.43 | 15.95 | ||||
5-10 | 33 | 37.50 | 34.39 | 7 | 25.00 | 44.74 | 23 | 50.00 | 50.80 | ||||
10-15 | 14 | 15.91 | 25.18 | 0 | 0.00 | 0.00 | 3 | 6.52 | 9.65 | ||||
15-20 | 5 | 5.68 | 12.66 | 0 | 0.00 | 0.00 | 3 | 6.52 | 15.83 | ||||
20-30 | 2 | 2.27 | 8.07 | 0 | 0.00 | 0.00 | 1 | 2.17 | 6.67 | ||||
30-40 | 1 | 1.14 | 4.62 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | ||||
40-50 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 |
[1] | Bellot J, Escarre A , 1998. Stemflow and throughfall determination in a resprouted Mediterranean holm-oak forest. Annales Des Sciences Forestieres, 55(7):847-865. |
[2] | Bogena H R, Herbst M, Huisman J A et al., 2010. Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone Journal, 9(4):1002-1013. |
[3] | Campbell Scientific , 2006. CS616 and CS625 Water Content Reflectometers, Instruction Manual. Revison: 8/06. |
[4] | Carlyle-Moses D E , 2004. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community. Journal of Arid Environments, 58(2):181-202. |
[5] | Cheng G D, Xiao H L, Fu B J et al., 2014. Advances in synthetic research on the eco-hydrological process of the Heihe River Basin. Advances in Earth Science, 29(4):431-437. (in Chinese) |
[6] | Crockford R H, Richardson D P , 2000. Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate. Hydrological Processes, 14(16/17):2903-2920. |
[7] | David T S, Gash J H C, Valente F et al., 2006. Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah. Hydrological Processes, 20(13):2713-2726. |
[8] | Dekker C S, Rietkerk M, Bierkens F P M , 2007. Coupling microscale vegetation-soil water and macroscale vegetation-precipitation feedbacks in semiarid ecosystems. Global Change Biology, 13(3):671-678. |
[9] | Dunkerley D , 2008. Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site. Hydrological Processes, 22(26):5024-5036. |
[10] | Famiglietti J S, Rudnicki J W, Rodell M , 1998. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210(1-4):259-281. |
[11] | Fan C R, Li C Y, Jia K L et al., 2015. Grass canopy interception of Hulun watershed under different grazing systems. Acta Ecologica Sinica, 35(14):4716-4724. (in Chinese) |
[12] | Fu B J, Pan N Q , 2016. Integrated studies of physical geography in China: Review and prospects. Journal of Geographical Sciences, 26(7):771-790. |
[13] | Herbst M, Rosier P T W, McNeil D D et al., 2008. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agriculture and Forest Meteorology, 148(11):1655-1667. |
[14] | Hu J Z, Li W Z, Zheng J L et al., 2004. Rainfall interception capability of canopy layer of main plant community in rehabilitation lands at southern foot of Qilian Mountain. Journal of Mountain Science, 22(4):492-501. (in Chinese) |
[15] | Hu W, Chau H W, Qiu W W et al., 2017. Environmental controls on the spatial variability of soil water dynamics in a small watershed. Journal of Hydrology, 551:47-55. |
[16] | Li C J, Ren D X, Wang G X et al., 2009. Analysis of artificial precipitation interception over two meadow species on Qinghai-Tibet Plateau. Advances in Water Science, 20(6):769-774. (in Chinese) |
[17] | Li X, Cheng G D, Liu S M et al., 2013. Heihe Watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8):1145-1160. |
[18] | Li X, Lu L, Cheng G D et al., 2001. Quantifying landscape structure of the Heihe River Basin, north-west China using FRAGSTATS. Journal of Arid Environments, 48(4):521-535. |
[19] | Li X Y, Yang Z P, Li Y T et al., 2009. Connecting ecohydrology and hydropedology in desert shrubs: Stemflow as a source of preferential flow in soils. Hydrology and Earth System Sciences, 13(7):1133-1144. |
[20] | Li X Y, Zhang S Y, Peng H Y et al., 2013. Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171/172(8):20-30. |
[21] | Liu B, Zhao W Z , 2009. Rainfall partitioning by desert shrubs in arid regions. Sciences in Cold and Arid Regions, 1(3):215-229. |
[22] | Liu H, Zhao W Z, He Z B et al., 2015. Soil moisture dynamics across landscape types in an arid inland river basin of Northwest China. Hydrological Processes, 29(15):3328-3341. |
[23] | Liu S M, Li X, Xu Z W et al., 2018. The Heihe Integrated Observatory Network: A basin-scale land surface processes observatory in China. Vadose Zone Journal, 17:180072. |
[24] | Liu S M, Xu Z W, Wang W Z et al., 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4):1291-1306. |
[25] | Liu Y Y, Peng H H, Meng W P et al., 2013. Artificial rainfall interception characteristics in alpine meadows under different grazing scenarios in the upper reach of Heihe River. Journal of Lanzhou University (Natural Sciences), 49(6):799-806. (in Chinese) |
[26] | Liu Z W, Chen R S, Song Y X et al., 2012. Characteristics of rainfall interception for four typical shrubs in Qilian Mountain. Acta Ecologica Sinica, 32(4):1337-1346. (in Chinese) |
[27] | Llorens P, Domingo F , 2007. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology, 335(1/2):37-54. |
[28] | Loik M E, Breshears D D, Lauenroth W K et al., 2004. A multi-scale perspective of water pulses in dryland ecosystems: Climatology and ecohydrology of the western USA. Oecologia, 141(2):269-281. |
[29] | Ma Y J, Gao S Y, Li X Y et al., 2012. Rainfall canopy partitioning and its influencing factors of riparian shrub in the alpine region. Journal of Desert Research, 32(4):963-971. (in Chinese) |
[30] | Martinez-Meza E, Whitford W G , 1996. Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs. Journal of Arid Environments, 32(3):271-287. |
[31] | Monson R K, Grant M C, Jaeger C H et al., 1992. Morphological causes for the retention of precipitation in the crowns of alpine plants. Environmental and Experimental Botany, 32(4):319-327. |
[32] | Navar J, Charles F, Jurado E , 1999. Spatial variations of interception loss components by Tamaulipan thornscrub in northeastern Mexico. Forest Ecology & Management, 124(2/3):231-239. |
[33] | Ochsner T E, Cosh M H, Cuenca R H et al., 2013. State of the art in large-scale soil moisture monitoring. Soil Science Society of America Journal, 77(6):1888-1919. |
[34] | Owens M K, Lyons R K, Alejandro C L , 2006. Rainfall partitioning within semiarid juniper communities: Effects of event size and canopy cover. Hydrological Processes, 20(15):3179-3189. |
[35] | Pan Q M, Tian S L , 2001. Water Resources in the Heihe Watershed. Zhengzhou: The Yellow River Press, 1-3. (in Chinese) |
[36] | Peng H H, Zhao C Y, Feng Z D et al., 2014. Canopy interception by a spruce forest in the upper reach of Heihe River basin, Northwestern China. Hydrological Processes, 28(4):1734-1741. |
[37] | Price A G, Carlyle-Moses D E , 2003. Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. Agricultural and Forest Meteorology, 119(1/2):69-85. |
[38] | Shu J L , 2014. Rainfall redistribution in natural grassland community and its dominant species response in loess hilly-gully region [D]. Yangling: Northwest Agricultural and Forest University. (in Chinese) |
[39] | Soubie R, Heinesch B, Granier A et al., 2016. Evapotranspiration assessment of a mixed temperate forest by four methods: Eddy covariance, soil water budget, analytical and model. Agricultural and Forest Meteorology, 228/229:191-204. |
[40] | Staelens J, Schrijver A D, Verheyen K et al., 2008. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: Influence of foliation, rain event characteristics, and meteorogly. Hydrological Processes, 22(1):33-45. |
[41] | Tan J L, Ma M G, Che T et al., 2009. A study of interception of Picea crassifolia based on different canopy closure. Advances in Earth Science, 24(7):825-833. (in Chinese) |
[42] | Wan Y F, Liu X D, Wang S L et al., 2016. Rainfall canopy partitioning and its influencing factors of Picea crassifolia forest in the Qilian Mountains. Journal of Soil and Water Conservation, 30(5):224-229. (in Chinese) |
[43] | Wang G , 2007. Effects of land-use changes on hydrological processes in the middle basin of the Heihe River, Northwest China. Hydrological Processes, 21(10):1370-1382. |
[44] | Wang T J, Liu Q, Franz E T et al., 2017. Spatial patterns of soil moisture from two regional monitoring networks in the United States. Journal of Hydrology, 552:578-585. |
[45] | Wang W Z, Xu Z W, Liu S M et al., 2009. The characteristics of heat and water vapor fluxes over different surfaces in the Heihe River Basin. Advances in Earth Science, 24(7):714-723. (in Chinese) |
[46] | Wang X P, Li X R, Kang E S et al., 2003. The infiltration and redistribution of precipitation in revegetated sand dunes in the Tengger Desert, Shapotou, China. Acta Ecologica Sinica, 23(6):1234-1241. (in Chinese) |
[47] | Wang X P, Li X R, Xiao H L et al., 2007. Effects of surface characteristics on infiltration patterns in an arid shrub desert. Hydrological Processes, 21(1):72-79. |
[48] | Weltzin E J, Mcpherson R G , 2000. Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology, 81(7):1902-1913. |
[49] | Wohlfahrt G, Bianchi K, Cernusca A , 2006. Leaf and stem maximum water storage capacity of herbaceous plants in a mountain meadow. Journal of Hydrology, 319(1-4):383-390. |
[50] | Xu G C, Zhang T G, Li Z B et al., 2017. Temporal and spatial characteristics of soil water content in diverse soil layers on land terraces of the Loess Plateau, China. Catena, 158:20-29. |
[51] | Xu Z L, Feng Z D, Zhao C Y et al., 2013. The canopy rainfall interception in actual and potential distribution of Qinghai spruce (Picea crassifolia) forest. Journal of Hydrology and Hydromechanics, 61(1):64-72. |
[52] | Yang Y G, Xiao H L, Wei Y P et al., 2012. Hydrological processes in the different landscape zones of alpine cold regions in the wet season, combining isotopic and hydrochemical tracers. Hydrological Processes, 26(10):1457-1466. |
[53] | Yu K L, Pypker T G, Keim R F et al., 2012. Canopy rainfall storage capacity as affected by sub-alpine grassland degradation in the Qinghai-Tibetan Plateau, China. Hydrological Processes, 26(20):3114-3123. |
[54] | Zhang Y F, Wang X P, Hu R et al., 2015. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. Journal of Hydrology, 527:1084-1095. |
[1] | GAO Jianbo, FANG Peng, YUAN Lihua. Analyses of geographical observations in the Heihe River Basin: Perspectives from complexity theory [J]. Journal of Geographical Sciences, 2019, 29(9): 1441-1461. |
[2] | YANG Jing, SU Kai, YE Sijing. Stability and long-range correlation of air temperature in the Heihe River Basin [J]. Journal of Geographical Sciences, 2019, 29(9): 1462-1474. |
[3] | ZHANG Ting, SHEN Shi, CHENG Changxiu. Impact of radiations on the long-range correlation of soil moisture: A case study of the A’rou superstation in the Heihe River Basin [J]. Journal of Geographical Sciences, 2019, 29(9): 1491-1506. |
[4] | LI Wei, LI Xiaoyan, HUANG Yongmei, WANG Pei, ZHANG Cicheng. Spatial patch structure and adaptive strategy for desert shrub of Reaumuria soongorica in arid ecosystem of the Heihe River Basin [J]. Journal of Geographical Sciences, 2019, 29(9): 1507-1526. |
[5] | YUAN Lihua, CHEN Xiaoqiang, WANG Xiangyu, XIONG Zhe, SONG Changqing. Spatial associations between NDVI and environmental factors in the Heihe River Basin [J]. Journal of Geographical Sciences, 2019, 29(9): 1548-1564. |
[6] | TONG Jinhui, HU Jinhua, LU Zheng, SUN Haoran, YANG Xiaofan. The impact of land use and cover change on soil organic carbon and total nitrogen storage in the Heihe River Basin: A meta-analysis [J]. Journal of Geographical Sciences, 2019, 29(9): 1578-1594. |
[7] | Lifang CHEN, Qun DOU, Zhiming ZHANG, Zehao SHEN. Moisture content variations in soil and plant of post-fire regenerating forests in central Yunnan Plateau, Southwest China [J]. Journal of Geographical Sciences, 2019, 29(7): 1179-1192. |
[8] | Guofeng ZHU, Hanxiong PAN, Yu ZHANG, Huiwen GUO, Leilei YONG, Qiaozhuo WAN, Huiying MA, Sen LI. Relative soil moisture in China’s farmland [J]. Journal of Geographical Sciences, 2019, 29(3): 334-350. |
[9] | TAO Zexing, DAI Junhu, WANG Huanjiong, HUANG Wenjie, GE Quansheng. Spatiotemporal changes in the bud-burst date of herbaceous plants in Inner Mongolia grassland [J]. Journal of Geographical Sciences, 2019, 29(12): 2122-2138. |
[10] | Baojuan HUAI, Zhongqin LI, Shengjie WANG, Meiping SUN, Ping ZHOU, Yan XIAO. RS analysis of glaciers change in the Heihe River Basin, Northwest China, during the recent decades [J]. Journal of Geographical Sciences, 2014, 24(6): 993-1008. |
[11] | ZHAO Lingling, XIA Jun, XU Chong-yu, WANG Zhonggen, SOBKOWIAK Leszek, LONG Cangrui. Evapotranspiration estimation methods in hydrological models [J]. Journal of Geographical Sciences, 2013, 23(2): 359-369. |
[12] | MA Xiaodong, CHEN Yaning, ZHU Chenggang, LI Weihong. The variation in soil moisture and the appropriate groundwater table for desert riparian forest along the Lower Tarim River [J]. Journal of Geographical Sciences, 2011, 21(1): 150-162. |
[13] | WANG Zhiqiang, LIU Baoyuan, ZHANG Yan. Soil moisture of different vegetation types on the Loess Plateau [J]. Journal of Geographical Sciences, 2009, 19(6): 707-718. |
[14] | WANG Genxu, YANG Lingyuan, CHEN Ling, Jumpei Kubota. Impacts of land use changes on groundwater resources in the Heihe River Basin [J]. Journal of Geographical Sciences, 2005, 15(4): 405-414. |
[15] | ZHANG Jishi, KANG Ersi, LAN Yongchao, CHEN Rensheng. Impact of climate change and variability on water resources in Heihe River Basin [J]. Journal of Geographical Sciences, 2003, 13(3): 286-292. |
|