Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (9): 1507-1526.doi: 10.1007/s11442-019-1674-2
Previous Articles Next Articles
LI Wei1,2,3, LI Xiaoyan1,3,*(), HUANG Yongmei1,3, WANG Pei1,3, ZHANG Cicheng3
Received:
2019-01-30
Accepted:
2019-03-30
Online:
2019-09-25
Published:
2019-12-11
Contact:
LI Xiaoyan
E-mail:xyli@bnu.edu.cn
About author:
Li Wei (1987–), PhD, specialized in ecohydrological processes and water resource management. E-mail: liwei19870316@hotmail.com
Supported by:
LI Wei, LI Xiaoyan, HUANG Yongmei, WANG Pei, ZHANG Cicheng. Spatial patch structure and adaptive strategy for desert shrub of Reaumuria soongorica in arid ecosystem of the Heihe River Basin[J].Journal of Geographical Sciences, 2019, 29(9): 1507-1526.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 2
Spatial heterogeneity in surface soil properties, consisting of biological soil crust (BSC) developed with shrub patch and bare soil patch covered with fine gravels (BG) at (a) Site 1 and (b) Site 5; (c) surface soil sampling design for individual shrubs, the bold rings represent the average extent of shrub size"
Table 1
Summary of climate and soil properties in the middle and lower Heihe River Basin"
Site 1 Piedmont Gobi desert | Site 2 Piedmont Gobi desert | Site 3 Piedmont Gobi desert | Site 4 Gobi desert | Site 5 Gobi desert | |
---|---|---|---|---|---|
Longitude | 100.30°E | 100.12°E | 99.61°E | 98.99°E | 101.01°E |
Latitude | 38.91°N | 39.40°N | 39.31°N | 39.88°N | 42.04°N |
Elevation (m) | 1473 | 1442 | 1355 | 1413 | 940 |
Main shrub | R.soongorica; S.passerine | R.soongorica; N.sphaerpcarpa | R.soongorica; K.foliatum | R.soongorica; N.sphaerpcarpa | R.soongorica; H.ammodendron |
MAP (mm) | 122.93a | 112.29b | 100.33b | 65.70c | 35.02d |
MAT (℃) | 7.32a | 7.99ab | 7.87bc | 9.02d | 9.11e |
Sand content (%) | 57.65 | 89.85 | 86.82 | 89.44 | 97.51 |
Silt content (%) | 39.46 | 8.13 | 11.50 | 8.75 | 1.68 |
Clay content (%) | 2.89 | 2.02 | 1.68 | 1.81 | 0.81 |
SOM content (%) | 1.97 | 0.97 | 0.73 | 1.84 | 0.62 |
TN content (%) | 0.09 | 0.02 | 0.05 | 0.02 | 0.01 |
CaCO3 content (%) | 44.12 | 30.71 | 14.64 | 42.57 | 35.61 |
BSC:BG | 0.13:1 | 0.09:1 | 0.06:1 | 0.06:1 | 0.02:1 |
Table 2
Summary of R. soongorica patch structure across the mean annual precipitation gradient"
Site | Percentage (%) | N | C | KA (m2) | H (cm) | $\bar{A}$(m2) |
---|---|---|---|---|---|---|
Site 1 | 63.4a | 1049±128a | 1.68±0.19a | 4.1±0.7a | 10.15±0.32a | 0.02±0.01a |
Site 2 | 58.5a | 174±80ab | 0.33±0.14b | 2.6±1.0a | 18.08±0.31b | 0.10±0.02ab |
Site 3 | 89.4b | 821±261a | 1.08±0.40a | 4.6±0.4b | 17.53±2.36bc | 0.04±0.01a |
Site 4 | 92.6b | 356b | 0.57±0.00b | 4.7±0.2b | 17.57±0.34bc | 0.08±0.00ab |
Site 5 | 95.1b | 48±11c | 0.08±0.01c | 1.6±1.0c | 23.10±5.60d | 0.21±0.11b |
Table 3
Summary statistics and statistical differences of vegetation community characteristics"
Site | Cover (%) | AGB (g/m2) | SR | Simpson index | Shannon index | Important value | V/m | PD (m) |
---|---|---|---|---|---|---|---|---|
Site 1 | 11.16±0.03a | 92.36±15.21a | 4 | 0.69 | 1.28 | 0.42 | 13.4 | 0.56±0.04a |
Site 2 | 8.03±0.04b | 38.64±10.29b | 3 | 0.64 | 1.05 | 0.42 | 2.9 | 1.40±0.33c |
Site 3 | 5.33±0.01c | 25.92±7.35c | 3 | 0.61 | 1.06 | 0.58 | 5.3 | 0.60±0.03a |
Site 4 | 5.61±0.00c | 27.01±0.17c | 2.5 | 0.50 | 0.74 | 0.66 | 3.4 | 0.95±0.00b |
Site 5 | 1.85±0.01d | 8.14±1.20d | 2 | 0.51 | 0.63 | 0.68 | 0.9 | 2.80±0.54d |
Table 1S
Pearson’s correlation analysis between shrub patch structure index and environmental factors (climate, soil and vegetation)"
Factors structure | Climate | Soil | Vegetation | |||
---|---|---|---|---|---|---|
MAP | Sand | TN | BSC:BG | AGB | RS | |
Height | -0.71** | 0.80** | -0.74** | -0.67** | -0.78** | -0.76** |
Size | -0.69** | 0.62** | -0.54** | -0.51* | -0.53* | -0.58* |
Cover | 0.85** | -0.85** | 0.72** | 0.99** | 0.91** | 0.80** |
Density | 0.73** | -0.87** | 0.95** | 0.77** | 0.87** | 0.83** |
PD | -0.79** | 0.69** | -0.61** | -0.68** | -0.61** | -0.61** |
V/m | 0.76** | -0.93** | 0.93** | 0.77** | 0.90** | 083** |
Table 4
Regression analysis between R. soongorica patch structure patch and climate, soil and vegetation factors"
Dependent factor | Independent factor | Regression function |
---|---|---|
Height | Sand content | y=0.33x-0.97 R2=0.64 P<0.001 |
Size | MAP | y=-0.002x-0.26 R2=0.44 P<0.01 |
Distance | MAP | y=-0.02x+3.23 R2=0.61 P<0.001 |
Shrub cover | MAP, species richness, BSC:BG | y=0.007x1-0.19x2+84.70x3+0.46 R2=0.99 P<0.001 |
Shrub density | TN | y=34.48x-0.03 R2=0.89 P<0.001 |
V/m | MAP, sand content | y=-0.07x1-0.52x2+54.60 R2=0.93 P<0.001 |
Table 2S
Comparison of soil moisture, soil organic matter, total nitrogen and particle size from biological soil crust (BSC) and bare gravels (BG)"
Sites | Type | SM | SOM | TN | Soil particles | ||
---|---|---|---|---|---|---|---|
Sand | Loam | Clay | |||||
Site 1 | BSC | 7.88±1.14% | 4.28±.97% | 0.14±0.11% | 64.95% | 31.30% | 3.75% |
BG | 5.44±1.09% | 3.83±0.58% | 0.07±0.03% | 83.52% | 10.43% | 6.05% | |
FIE | 1.44 | 1.12 | 1.85 | 0.78 | 3.00 | 0.62 | |
Site 2 | BSC | 3.24±1.27% | 2.13±0.30% | 0.02±0.00% | 79.43% | 18.15% | 2.42% |
BG | 2.53±1.00% | 2.13±0.46% | 0.02±0.01% | 88.48% | 9.42% | 2.10% | |
FIE | 1.27 | 1 | 1 | 0.90 | 1.93 | 1.15 | |
Site 5 | BSC | 0.88±0.35% | 1.27±0.30% | 0.01±0.00% | 97.00% | 1.75% | 1.25% |
BG | 0.95±0.54% | 1.33±0.41% | 0.01±0.00% | 97.90% | 1.28% | 0.82% | |
FIE | 0.93 | 0.96 | 1 | 0.99 | 1.36 | 1.52 |
[1] | Aguiar M R, Sala O A , 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology & Evolution, 14:273-277. |
[2] | Bai Y F, Wu J G, Xing Q et al., 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89:2140-2153. |
[3] | Bedford D R, Small E E , 2008. Spatial patterns of ecohydrologic properties on a hillslope-alluvial fan transect central New Mexico. Catena, 73(1):34-48. |
[4] | Bremmer J M, Mulvaney C S , 1982. Nitrogen-total. In: Page A L, Miller R H, Keeney D R (eds.). Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (Agronomy), vol. 9. American Society of Agronomy, Madison, 595-624. |
[5] | Casati P, Campi M, Morrow D J et al., 2011. Transcriptomic, proteomic and metabolomic analysis of maize responses to UV-B: Comparison of greenhouse and field growth conditions. Plant Signaling & Behavior, 6(8):1146-1153. |
[6] | Chen L Y, Li H, Zhang P J et al., 2014. Climate and native grassland vegetation as divers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landscape Ecology, 30(9):1627-1641. |
[7] | Cheng X L, An S Q, Li B et al., 2006. Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecology, 184(1):1-12. |
[8] | Cipriotti P A, Aguiar M R , 2015. Is the balance between competition and facilitation a driver of the patch dynamics in arid vegetation mosaics? Oikos, 124:139-149. |
[9] | Cipriotti P A, Aguiar M R, Wiegand T et al., 2012. Understanding the long-term spatial dynamics of a semiarid grass-shrub steppe through inverse parameterization for simulation models. Oikos, 121(6):848-861. |
[10] | Couteron P, Lejeune O , 2001. Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. Journal of Ecology, 89(4):616-628. |
[11] | Dan M, Jeltsch F , 2007. Intraspecific facilitation: A missing process along increasing stress gradients - insights from simulated shrub populations. Ecography, 30(3):339-348. |
[12] | Du J H, Yan P, Dong Y X et al., 2012. Water driving mechanism of patched vegetation formation in arid areas: A review. Chinese Journal of Ecology, 31(8):2137-2144. (in Chinese) |
[13] | Dunkerley D L, Brown K J , 1999. Banded vegetation near Broken Hill, Australia: Significance of surface roughness and soil physical properties. Catena, 37(1/2):75-88. |
[14] | Fan Y, Li X Y, Huang Y M et al., 2017. Shrub patch configuration in relation to precipitation and soil properties in Northwest China. Ecohydrology, 11(6):e1916. |
[15] | Fu A H, Chen Y N, Li W H , 2014. Water use strategies of the desert riparian forest plant community in the lower reaches of Heihe River Basin, China. Science China: Earth Sciences, 57(6):1293-1305. |
[16] | Gaitán J J, Bran D, Oliva G et al., 2014. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands. Biology Letters , 10(10). doi: 10.1098/rsbl.2014.0673. |
[17] | Greig-Smith P , 1983. Quantitative Plant Ecology. London: Blackwell. |
[18] | Hamerlynck E P, McAuliffe J R, McDonald E V et al., 2002. Ecological responses of two Mojave desert shrubs to soil horizon development and soil water dynamics. Ecology, 83:768-779. |
[19] | Harman C J, Lohse K A, Troch P A et al., 2014. Spatial patterns of vegetation, soils, and microtopography from terrestrial laser scanning on two semiarid hillslopes of contrasting lithology. Journal of Geophysical Research Biogeosciences, 119(2):163-180. |
[20] | Holthuijzen M F, Veblen K E , 2015. Grass-shrub associations over a precipitation gradient and their implications for restoration in the Great Basin, USA. PloS One , 10(12). doi: 10.1371/journal.pone.0143170. |
[21] | Hu G L, Zhao W Z, Wang G 2011. Reviews on spatial pattern and sand-binding effect of patch vegetation in arid desert area. Acta Ecologica Sinica, 31(24):7609-4616. (in Chinese) |
[22] | Hufford K M, Mazer S J, Schimel J P , 2014. Soil heterogeneity and the distribution of native grasses in California: Can soil properties inform restoration plans? Ecosphere, 5(4):1-14. |
[23] | Kang M Y, Dai C, Ji W Y et al., 2013. Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia grasslands, China. PloS One, 8(7). doi 10.1371/journal.pone.0069561. |
[24] | Kéfi S M, Rietkerk C L, Burras B J et al., 2007. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature, 449:213-215. |
[25] | Kröpfl A I, Cecchi G A, Villasuso N M et al., 2013. Degradation and recovery processes in semi-arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24(4):393-399. |
[26] | Li Q S, Zhang C, Wang F et al., 2009. Responses of spatial distribution pattern of Artemisia ordosica population to the precipitation gradient on Ordos Plateau. Chinese Journal of Applied Ecology, 20(9):2105-2110. (in Chinese) |
[27] | Li X R, Zhang Z S, Huang L et al., 2013. Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China. Chinese Science Bulletin, 58(13):1483-1496. |
[28] | Li X Y , 2011. Mechanism of coupling, response and adaptation between soil, vegetation and hydrology in arid and semiarid regions. Science Sinica Terrae, 41:1721-1730. (in Chinese) |
[29] | Li X Y, Zhang S Y, Peng H Y et al., 2013. Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171/172:20-30. |
[30] | Liu M L, Li X R, Liu Y B et al., 2015. Analysis of differentially expressed genes under UV-B radiation in the desert plant Reaumuria soongorica. Gene, 574:265-272. |
[31] | Ludwig J A, Tongway D J, Eager R W et al., 1999. Fine-scale vegetation patches decline in size and cover with increasing rainfall in Australian savanna. Landscape Ecology, 14:557-566. |
[32] | Ludwig J A, Wilcox B P, Breshears D D et al., 2005. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86(2):288-297. |
[33] | Luo W C, Zhao W Z, He Z B et al., 2018. Spatial characteristics of two dominant shrub populations in the transition zone between oasis and desert in the Heihe River Basin, China. Catena, 170:356-364. |
[34] | Ma W, Yang Y H, He J et al., 2008. Above- and below-ground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science China Life Sciences, 51:263-270. |
[35] | Malkinson D, Jeltsch F , 2007. Intraspecific facilitation: A missing process along increasing stress gradients - insights from simulated shrub populations. Ecography, 30(3):339-348. |
[36] | Mauchamp A, Montaña C, Lepart J et al., 1993. Ecotone dependent recruitment of a desert shrub, Flourensia cernua, in vegetation stripes. Oikos, 68(1):107-116. |
[37] | Merino-Martín L, Breshears D D, Heras M D L et al., 2012. Ecohydrological source-sink interrelationships between vegetation patches and soil hydrological properties along a disturbance gradient reveal a restoration threshold. Restoration Ecology, 20(3):360-368. |
[38] | Pueyo Y, Moret-Fernández D, Saiz H et al., 2013. Relationships between plant spatial patterns, water infiltration capacity, and plant community composition in semi-arid Mediterranean ecosystems along stress gradients. Ecosystems, 16(3):452-466. |
[39] | Ravi S, D'Odorico P, Okin G S , 2007. Hydrologic and aeolian controls on vegetation patterns in arid landscapes. Geophysical Research Letters, 34(24):1061-1064. |
[40] | Ravolainen V T, Bråthen K A, Ims R A et al., 2013. Shrub patch configuration at the landscape scale is related to diversity of adjacent herbaceous vegetation. Plant Ecology & Diversity, 6(2):257-268. |
[41] | Schenk H J, Jackson R B , 2005. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126(1/2):129-140. |
[42] | Schwinning S, Starr B I, Ehleringer J R , 2003. Dominant cold desert plants do not partition warm season precipitation by events size. Oecologia, 136(2):252-260. |
[43] | Segoli M, Ungar E D, Shachak M , 2008. Shrubs enhance resilience of a semi-arid ecosystem by engineering and regrowth. Ecohydrology, 1(4):330-339. |
[44] | Shackleton C M, Scholes R J , 2011. Above ground woody community attributes, biomass and carbon stocks along a rainfall gradient in the savannas of the central lowveld, South Africa. South African Journal of Botany, 77(1):184-192. |
[45] | Sileshi G W, Arshad M A, Konaté S et al., 2010. Termite-induced heterogeneity in African savanna vegetation: mechanisms and patterns. Journal of Vegetation Science, 21(5):923-937. |
[46] | Su P X, Yan Q D, Xie T T et al., 2012. Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species. Acta Physiologiae Plantarum, 34:2057-2068. |
[47] | Su Y Z, Zhao W Z, Su P X et al., 2007. Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an arid region: A case study in Hexi Corridor, northwest China. Ecological Engineering, 29(2):117-124. |
[48] | Valentin C, D’Herbès J M, Poesen J , 1999. Soil and water components of banded vegetation patterns. Catena, 37(1):1-24. |
[49] | Vincenot C E, Fabrizio C, Stefano M et al., 2017. Spatial self-organization of vegetation subject to climatic stress - insights from a system synamics: Individual-based hybrid model. Frontiers in Plant Science, 7(636):1-18. |
[50] | Wu G L, Wang D, Liu Y et al., 2016. Mosaic-pattern vegetation formation and dynamics driven by the water-wind crisscross erosion. Journal of Hydrology, 538:355-362. |
[51] | Xie L N, Guo H Y, Gabler C A et al., 2015. Changes in Spatial Patterns of Caragana stenophylla along a climatic drought gradient on the Inner Mongolian Plateau. PloS One, 10(3). doi 10.1371/journal.pone.0121234. |
[52] | Yao J, Peters D P C, Havstad K M et al., 2006. Multi-scale factors and long-term responses of Chihuahuan Desert grasses to drought. Landscape Ecology, 21(8):1217-1231. |
[53] | Zhang C C, Li X Y, Wu H W et al., 2017. Differences in water-use strategies along an aridity gradient between two coexisting desert shrubs (Reaumuria soongorica and Nitraria sphaerocarpa): Isotopic approaches with physiological evidence. Plant and Soil. doi: 10.1007/s11104-017-3332-8. |
[54] | Zhang P P, Shao M A, Zhang X C , 2017. Spatial pattern of plant species diversity and the influencing factors in a Gobi desert within the Heihe River Basin, Northwest China. Journal of Arid Land, 9(3):379-393. |
[55] | Zhang X L, Zhou J H, Cai W T et al., 2017. Diversity characteristics of plant communities in the arid desert of the Heihe Basin under different moisture gradients. Acta Ecological Sinica, 14(7):4627-4635. (in Chinese) |
[56] | Zhou Y, Boutton T W, Wu X B et al., 2017. Spatial heterogeneity of subsurface soil texture drives landscape-scale patterns of woody patches in a subtropical savanna. Landscape Ecology, 32(4):915-929. |
[1] | QI Wei, YI Jiawei. Spatial pattern and driving factors of migrants on the Qinghai-Tibet Plateau: Insights from short-distance and long-distance population migrants [J]. Journal of Geographical Sciences, 2021, 31(2): 215-230. |
[2] | MOU Naixia, WANG Chunying, CHEN Jinhai, YANG Tengfei, ZHANG Lingxian, LIAO Mengdi. Spatial pattern of location advantages of ports along the Maritime Silk Road [J]. Journal of Geographical Sciences, 2021, 31(1): 149-176. |
[3] | HOU Bingfei, JIANG Chao, SUN Osbert Jianxin. Differential changes in precipitation and runoff discharge during 1958-2017 in the headwater region of Yellow River of China [J]. Journal of Geographical Sciences, 2020, 30(9): 1401-1418. |
[4] | ZHANG Xueru, ZHOU Jie, LI Guoning, CHEN Chun, LI Mengmei, LUO Jianmei. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010 [J]. Journal of Geographical Sciences, 2020, 30(4): 601-620. |
[5] | ZHANG Chengming, WENG Shixiu, BAO Jigang. The changes in the geographical patterns of China’s tourism in 1978-2018: Characteristics and underlying factors [J]. Journal of Geographical Sciences, 2020, 30(3): 487-507. |
[6] | CAI Jianming, MA Enpu, LIN Jing, LIAO Liuwen, HAN Yan. Exploring global food security pattern from the perspective of spatio-temporal evolution [J]. Journal of Geographical Sciences, 2020, 30(2): 179-196. |
[7] | CHEN Shaodan, ZHANG Liping, ZHANG Yanjun, GUO Mengyao, LIU Xin. Evaluation of Tropical Rainfall Measuring Mission (TRMM) satellite precipitation products for drought monitoring over the middle and lower reaches of the Yangtze River Basin, China [J]. Journal of Geographical Sciences, 2020, 30(1): 53-67. |
[8] | GAO Jianbo, FANG Peng, YUAN Lihua. Analyses of geographical observations in the Heihe River Basin: Perspectives from complexity theory [J]. Journal of Geographical Sciences, 2019, 29(9): 1441-1461. |
[9] | YANG Jing, SU Kai, YE Sijing. Stability and long-range correlation of air temperature in the Heihe River Basin [J]. Journal of Geographical Sciences, 2019, 29(9): 1462-1474. |
[10] | YANG Chongyao, HUANG Yongmei, LI Engui, LI Zeqing. Rainfall interception of typical ecosystems in the Heihe River Basin: Based on high temporal resolution soil moisture data [J]. Journal of Geographical Sciences, 2019, 29(9): 1527-1547. |
[11] | YUAN Lihua, CHEN Xiaoqiang, WANG Xiangyu, XIONG Zhe, SONG Changqing. Spatial associations between NDVI and environmental factors in the Heihe River Basin [J]. Journal of Geographical Sciences, 2019, 29(9): 1548-1564. |
[12] | TONG Jinhui, HU Jinhua, LU Zheng, SUN Haoran, YANG Xiaofan. The impact of land use and cover change on soil organic carbon and total nitrogen storage in the Heihe River Basin: A meta-analysis [J]. Journal of Geographical Sciences, 2019, 29(9): 1578-1594. |
[13] | TAO Zexing, DAI Junhu, WANG Huanjiong, HUANG Wenjie, GE Quansheng. Spatiotemporal changes in the bud-burst date of herbaceous plants in Inner Mongolia grassland [J]. Journal of Geographical Sciences, 2019, 29(12): 2122-2138. |
[14] | Wenbo ZHU, Xiaodong ZHANG, Jingjing ZHANG, Lianqi ZHU. A comprehensive analysis of phenological changes in forest vegetation of the Funiu Mountains, China [J]. Journal of Geographical Sciences, 2019, 29(1): 131-145. |
[15] | Jing ZHANG, Yanjun SHEN. Spatio-temporal variations in extreme drought in China during 1961-2015 [J]. Journal of Geographical Sciences, 2019, 29(1): 67-83. |
|