Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (9): 1475-1490.doi: 10.1007/s11442-019-1672-4
Previous Articles Next Articles
NING Lixin1,2,3, CHENG Changxiu1,2,3,*(), SHEN Shi1,2,3
Received:
2018-10-23
Accepted:
2019-02-28
Online:
2019-09-25
Published:
2019-12-11
Contact:
CHENG Changxiu
E-mail:chengcx@bnu.edu.cn
About author:
Ning Lixin (1991-), specialized in disaster risk analysis. E-mail: ninglixin123@163.com
Supported by:
NING Lixin, CHENG Changxiu, SHEN Shi. Spatial-temporal variability of the fluctuation of soil temperature in the Babao River Basin, Northwest China[J].Journal of Geographical Sciences, 2019, 29(9): 1475-1490.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Correlation between elevation and classical statistics of ST at different depths in the Babao River Basin"
Soil depth | Max | Min | Range | Average | Standard deviation |
---|---|---|---|---|---|
ST_4 cm | -0.814** | 0.057 | -0.634** | -0.648** | -0.646** |
ST_10 cm | -0.757** | -0.229 | -0.396 | -0.695** | -0.490* |
ST_20 cm | -0.792** | -0.343 | -0.311 | -0.749** | -0.439* |
Table 3
PE values in different seasons for all sites and their correlations with elevation (4 cm depth) in the Babao River Basin"
Site | Elevation | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
26 | 3045 | 0.786 | 0.795 | 0.813 | 0.729 |
30 | 3091 | 0.746 | 0.788 | 0.692 | 0.745 |
33 | 3335 | 0.779 | 0.778 | 0.775 | 0.800 |
34 | 3356 | 0.750 | 0.767 | 0.779 | 0.761 |
42 | 3413 | 0.752 | 0.758 | 0.755 | 0.774 |
29 | 3414 | 0.778 | 0.748 | 0.759 | 0.721 |
13 | 3462 | 0.751 | 0.772 | 0.749 | 0.693 |
49 | 3478 | 0.799 | 0.768 | 0.780 | 0.763 |
10 | 3484 | 0.757 | 0.764 | 0.751 | 0.707 |
47 | 3515 | 0.791 | 0.759 | 0.798 | 0.772 |
20 | 3538 | 0.723 | 0.746 | 0.761 | 0.756 |
41 | 3635 | 0.764 | 0.785 | 0.671 | 0.641 |
12 | 3766 | 0.744 | 0.773 | 0.694 | 0.692 |
16 | 3792 | 0.775 | 0.739 | 0.690 | 0.766 |
24 | 3813 | 0.796 | 0.813 | 0.770 | 0.610 |
39 | 3829 | 0.760 | 0.752 | 0.624 | 0.726 |
45 | 3843 | 0.748 | 0.689 | 0.637 | 0.640 |
Average | - | 0.765 | 0.764 | 0.735 | 0.723 |
Correlation coefficient | 1 | -0.047 | -0.406 | -0.580* | -0.488* |
Table 4
PE values at different elevation in the Babao River Basin"
Elevation | Site | PE (ST_4 cm) | PE(ST_10 cm) | PE (ST_20 cm) |
---|---|---|---|---|
3045 | 26 | 0.898 | 0.854 | 0.825 |
3091 | 30 | 0.869 | 0.837 | 0.789 |
3335 | 33 | 0.899 | 0.865 | 0.766 |
3356 | 34 | 0.881 | 0.811 | 0.705 |
3413 | 42 | 0.883 | 0.84 | 0.773 |
3414 | 29 | 0.861 | 0.811 | 0.755 |
3462 | 13 | 0.866 | 0.822 | 0.794 |
3478 | 49 | 0.859 | 0.823 | 0.746 |
3484 | 10 | 0.848 | 0.812 | 0.738 |
3515 | 47 | 0.903 | 0.833 | 0.792 |
3538 | 20 | 0.863 | - | 0.742 |
3635 | 41 | 0.825 | 0.749 | 0.613 |
3766 | 12 | 0.84 | 0.8 | 0.772 |
3792 | 16 | 0.87 | 0.817 | 0.691 |
3813 | 24 | 0.871 | 0.828 | 0.756 |
3829 | 39 | 0.824 | 0.762 | 0.722 |
3843 | 45 | 0.804 | - | 0.676 |
Average | 0.863 | 0.818 | 0.744 |
Table 6
PE values of ST of different sites on shady slope and sunny slope sides in the Babao River Basin"
Site | PE (ST_4 cm) | PE (ST_10 cm) | PE (ST_20 cm) | Spring (4 cm) | Summer (4 cm) | Autumn (4 cm) | Winter (4 cm) | |
---|---|---|---|---|---|---|---|---|
Shady slope | 10 | 0.848 | 0.812 | 0.738 | 0.757 | 0.764 | 0.751 | 0.707 |
12 | 0.840 | 0.800 | 0.772 | 0.744 | 0.773 | 0.694 | 0.692 | |
13 | 0.866 | 0.822 | 0.794 | 0.751 | 0.772 | 0.749 | 0.693 | |
26 | 0.898 | 0.854 | 0.825 | 0.786 | 0.795 | 0.813 | 0.729 | |
29 | 0.861 | 0.811 | 0.755 | 0.778 | 0.748 | 0.759 | 0.721 | |
30 | 0.869 | 0.837 | 0.789 | 0.746 | 0.788 | 0.692 | 0.745 | |
47 | 0.903 | 0.833 | 0.792 | 0.791 | 0.759 | 0.798 | 0.772 | |
49 | 0.859 | 0.823 | 0.746 | 0.799 | 0.768 | 0.780 | 0.763 | |
Average value | 0.868 | 0.824 | 0.776 | 0.769 | 0.771 | 0.754 | 0.728 | |
Sunny slope | 16 | 0.870 | 0.817 | 0.691 | 0.775 | 0.739 | 0.690 | 0.766 |
20 | 0.863 | - | 0.742 | 0.723 | 0.746 | 0.761 | 0.756 | |
24 | 0.871 | 0.828 | 0.756 | 0.796 | 0.813 | 0.770 | 0.610 | |
33 | 0.899 | 0.865 | 0.766 | 0.779 | 0.778 | 0.775 | 0.800 | |
34 | 0.881 | 0.811 | 0.705 | 0.750 | 0.767 | 0.779 | 0.761 | |
39 | 0.824 | 0.762 | 0.722 | 0.760 | 0.752 | 0.624 | 0.726 | |
41 | 0.825 | 0.749 | 0.613 | 0.764 | 0.785 | 0.671 | 0.641 | |
42 | 0.883 | 0.840 | 0.773 | 0.752 | 0.758 | 0.755 | 0.774 | |
45 | 0.804 | - | 0.676 | 0.748 | 0.689 | 0.637 | 0.640 | |
Average value | 0.858 | 0.810 | 0.716 | 0.761 | 0.759 | 0.718 | 0.719 |
[1] | Araghi A, Mousavi-Baygi M, Adamowski J , 2017. Detecting soil temperature trends in Northeast Iran from 1993 to 2016. Soil and Tillage Research, 174:177-192. |
[2] | Bandt C, Pompe B , 2002. Permutation entropy: A natural complexity measure for time series. Physical Review Letters, 88(17):174102. |
[3] | Banwart S, Bernasconi S M, Bloem J et al., 2011. Soil processes and functions in critical zone observatories: Hypotheses and experimental design. Vadose Zone Journal, 10(3):974-987. |
[4] | Chen Y, Wang H, Zhou J et al., 2013. Minimum data set for assessing soil quality in farmland of northeast China. Pedosphere, 23(5):564-576. |
[5] | Dozier J , 2011. Mountain hydrology, snow color, and the fourth paradigm. Eos, Transactions American Geophysical Union, 92(43):373-374. |
[6] | Gao J, Hu J, Tung W-W et al., 2006. Assessment of long-range correlation in time series: How to avoid pitfalls. Physical Review E, 73(1):016117. |
[7] | Gao J, Hu J, Tung W-W , 2012. Entropy measures for biological signal analyses. Nonlinear Dynamics, 68(3):431-444. |
[8] | Gao J, Liu F, Zhang J et al., 2013. Information entropy as a basic building block of complexity theory. Entropy, 15(9):3396-3418. |
[9] | Gao J, Sultan H, Hu J et al., 2010. Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: A comparison. IEEE Signal Processing Letters, 17(3):237-240. |
[10] | Ge Y, Wang J, Heuvelink G et al., 2015. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River Basin, China. International Journal of Geographical Information Science, 29(1):92-110. |
[11] | Godfray H C J, Beddington J R, Crute I R et al., 2010. Food security: The challenge of feeding 9 billion people. Science, 327(5967):812-818. |
[12] | Heng L T, Heuvelink G B, Stein A , 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120(1/2):75-93. |
[13] | Hou Y, Liu F, Gao J et al., 2017. Characterizing complexity changes in chinese stock markets by permutation entropy. Entropy, 19(10):514. |
[14] | Hu Q, Feng S , 2003. A daily soil temperature dataset and soil temperature climatology of the contiguous United States. Journal of Applied Meteorology, 42(8):1139-1156. |
[15] | Islam K I, Khan A, Islam T , 2015. Correlation between atmospheric temperature and soil temperature: A case study for Dhaka, Bangladesh. Atmospheric and Climate Sciences, 5(3):200. |
[16] | Jin R, Li X, Yan B et al., 2014. A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China. IEEE Geoscience and Remote Sensing Letters, 11(11):2015-2019. |
[17] | Kalpakis K, Yang S, Hu P F et al., 2015. Permutation entropy analysis of vital signs data for outcome prediction of patients with severe traumatic brain injury. Computers in Biology and Medicine, 56:167-174. |
[18] | Kanafi M M, Tuononen A J , 2017. Top topography surface roughness power spectrum for pavement friction evaluation. Tribology International, 107:240-249. |
[19] | Kang J, Jin R, Li X et al., 2015. HiWATER: WATERNET observation dataset in the upper reaches of the Heihe River Basin in 2014. Heihe Plan Science Data Center. |
[20] | Kang J, Jin R, Li X et al., 2017. High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and MODIS apparent thermal inertia in the Babao River Basin, China. Remote Sensing of Environment, 191:232-245. |
[21] | Kang S, Kim S, Oh S et al., 2000. Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. Forest Ecology and Management, 136(1-3):173-184. |
[22] | Karlen D, Mausbach M J, Doran J et al., 1997. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal, 61(1):4-10. |
[23] | Lan Y, Ding H, Hu X , et al., 2015. The seasonal change characteristics of temperature, precipitation in the mountain areas of the Heihe River and Their Regional Differences. Mountain Research, 33(2):294-302. |
[24] | Li X, Li C , 2017. Pretreatment and wavelength selection method for near-infrared spectra signal based on improved CEEMDAN Energy Entropy and Permutation Entropy. Entropy, 19(7):380. |
[25] | Li X, Li X, Li Z et al., 2009. Watershed allied telemetry experimental research. Journal of Geophysical Research: Atmospheres, 114(D22). |
[26] | Lin G, Chen X, Fu Z , 2007. Temporal-spatial diversities of long-range correlation for relative humidity over China. Physica A: Statistical Mechanics and Its Applications, 383(2):585-594. |
[27] | Liu J, Dietz T, Carpenter S R et al., 2007. Complexity of coupled human and natural systems. Science, 317(5844):1513-1516. |
[28] | Liu Y, Liu C, Wang D , 2011. Understanding atmospheric behaviour in terms of entropy: A review of applications of the second law of thermodynamics to meteorology. Entropy, 13(1):211-240. |
[29] | Ludescher J, Bunde A, Franzke C L et al., 2016. Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica. Climate Dynamics, 46(1/2):263-271. |
[30] | Montanarella L, Vargas R , 2012. Global governance of soil resources as a necessary condition for sustainable development. Current Opinion in Environmental Sustainability, 4(5):559-564. |
[31] | Ning L, Zhou Y, Yang J et al., 2018. Spatial-temporal variability of the fluctuation of water level in Poyang Lake basin, China. Open Geosciences, 10(1):940-953. |
[32] | NRC, 2001. Basic Research Opportunities in Earth Science. Washington DC, USA: National Academies Press. |
[33] | Pardo-Igúzquiza E, Rodríguez-Tovar F J , 2005. MAXENPER: A program for maximum entropy spectral estimation with assessment of statistical significance by the permutation test. Computers & Geosciences, 31(5):555-567. |
[34] | Park S-G, Yi M-H, Shin H-T et al., 2011. Temporal change of soil animals of the stockpiled forest topsoil in relation to soil temperature and soil moisture. Journal of the Faculty of Agriculture, Kyushu University, 56(1):9-13. |
[35] | Pele D T, Lazar E, Dufour A , 2017. Information entropy and measures of market risk. Entropy, 19(5):226. |
[36] | Qi S, Luo F , 2007. Environmental degradation problems in the Heihe River Basin, Northwest China. Water and Environment Journal, 21(2):142-148. |
[37] | Riedl M, Müller A, Wessel N , 2013. Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2):249-262. |
[38] | Robinson D, Hockley N, Dominati E et al., 2012. Natural capital, ecosystem services, and soil change: Why soil science must embrace an ecosystems approach. Vadose Zone Journal, 11(1). |
[39] | Schwartz T U, Walczak R, Blobel G , 2004. Circular permutation as a tool to reduce surface entropy triggers crystallization of the signal recognition particle receptor β subunit. Protein Science, 13(10):2814-2818. |
[40] | Shen S, Ye S, Cheng C et al., 2018. Persistence and corresponding time scales of soil moisture dynamics during summer in the Babao River Basin, Northwest China. Journal of Geophysical Research: Atmospheres, 123(17):8936-8948. |
[41] | Song C, Yuan L, Yang X et al., 2017. Ecological-hydrological processes in arid environment: Past, present and future. Journal of Geographical Sciences, 27(12):1577-1594. |
[42] | Stosic T, Telesca L, de Souza Ferreira D V et al., 2016. Investigating anthropically induced effects in streamflow dynamics by using permutation entropy and statistical complexity analysis: A case study. Journal of Hydrology, 540:1136-1145. |
[43] | Toomey J, Kane D , 2014. Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. Optics Express, 22(2):1713-1725. |
[44] | Zhang T, Shen S, Cheng C et al., 2018. Long range correlation analysis of soil temperature and moisture on A'rou Hillsides, the Babao River Basin. Journal of Geophysical Research: Atmospheres, 123(22):12606-612620. |
[1] | Lifang CHEN, Qun DOU, Zhiming ZHANG, Zehao SHEN. Moisture content variations in soil and plant of post-fire regenerating forests in central Yunnan Plateau, Southwest China [J]. Journal of Geographical Sciences, 2019, 29(7): 1179-1192. |
|