Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (7): 1228-1242.doi: 10.1007/s11442-019-1655-5
• Orginal Article • Previous Articles
Yijie YIN(), Shiliang LIU*(
), Yongxiu SUN, Shuang ZHAO, Yi AN, Shikui DONG, COXIXO Ana
Received:
2018-05-10
Accepted:
2019-01-22
Online:
2019-07-25
Published:
2019-07-25
Contact:
Shiliang LIU
E-mail:yijieyin@126.com;shiliangliu@bnu.edu.cn
About author:
Author: Yin Yijie, (1991-), Master Student, specialized in environmental sciences and landscape ecology. E-mail:
Supported by:
Yijie YIN, Shiliang LIU, Yongxiu SUN, Shuang ZHAO, Yi AN, Shikui DONG, COXIXO Ana. Identifying multispecies dispersal corridor priorities based on circuit theory: A case study in Xishuangbanna, Southwest China[J].Journal of Geographical Sciences, 2019, 29(7): 1228-1242.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The assignment of permeability values"
Factors | Variables | Permeability |
---|---|---|
Land use | Cultivated land | 100 |
Forest | 1000 | |
Grassland | 1000 | |
Shrubland | 1000 | |
Wetland | 1000 | |
Water body | 10 | |
Artificial surface | 10 | |
Roads | First level | 10 |
Second level | 100 | |
Third level | 1000 | |
Terrain feature | 0<TRI≤5 | 1000 |
5<TRI≤10 | 100 | |
TRI>10 | 10 |
Table 2
Proportions of potential corridors for different ranking levels in each national nature reserve (%)"
Corridor ranks | Mengyang | Mengla | Shangyong | Menglun | Mangao |
---|---|---|---|---|---|
< 50% | 48.3 | 43.5 | 13.8 | 28.3 | 2.3 |
> 50% | 51.7 | 56.5 | 86.2 | 71.7 | 97.7 |
> 80% | 21.3 (6.3) | 19.6 (5.9) | 29.3 (2.6) | 23.1 (0.7) | 46.6 (1.2) |
Percentage of total key corridors | 4.6 | 7.2 | 3.7 | 0.8 | 0.9 |
Figure A1
Top 20% of the potential corridors were extracted and classified into two levels (0.8-0.9 and 0.9-1). The block points were marked as the green points according to following standards (these standards must be satisfied at the same time): All the intersections should locate at top 10% area (0.9-1).There should be at least 5 top 10% grids in a 3 × 3 road grid which surrounds the target intersection.Compared with the situation in the 3 × 3 road grid, it is supposed to increase at least 1 key corridor grid that belongs to top 20% in a 4 × 4 road grid which includes the compared 3 × 3 road grid.Any two intersections are at least 400 m apart."
Figure A2
Details of the distribution of key corridors (top 20%) in each reserve (Mengyang, Mengla, Shangyong, Menglun, Mangao) were shown respectively. The key corridors distributed evenly within the scope of Mengyang and Mengla nature reserves, while the key corridors exhibited much more clear structures in the other three reserves. These areas recognized as key corridors at the scale of Xishuangbanna play a critical role in biodiversity protection for sub-reserve management."
Figure A3
Different scenarios - 5 nodes, 10 nodes, 15 nodes, 20 nodes, 25 nodes and 50 nodes - were shown as the order alphabetic characters (from “a” to “f”). (i) and (ii) represent the first trial and the second trial respectively which were under the same nodes number. The differences among these current density maps can be intuitively compared."
1 |
Adriaensen F, Chardon J P, De Blust G et al., 2003. The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning, 64(4): 233-247.
doi: 10.1016/S0169-2046(02)00242-6 |
2 |
Anderson B J, Armsworth P R, Eigenbrod F et al., 2009. Spatial covariance between biodiversity and other ecosystem service priorities. Journal of Applied Ecology, 46(6): 888-896.
doi: 10.1111/jpe.2009.46.issue-4 |
3 | Asian Development Bank, 2005. News Release: Mekong Leaders Endorse Biodiversity Conservation Corridors Initiative. (Accessed May, 2017 at: ) |
4 |
Belote R T, Dietz M S, McRae B H et al., 2016. Identifying corridors among large protected areas in the United States. Plos One, 11(4): e0154223.
doi: 10.1371/journal.pone.0154223 |
5 | Bennett A F, 2003. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation. IUCN, Switzerland and Cambridge, UK. |
6 |
Braaker S, Moretti M, BoeschR et al.BoeschR , 2014. Assessing habitat connectivity for ground-dwelling animals in an urban environment. Ecological Applications, 24(7): 1583-1595.
doi: 10.1890/13-1088.1 |
7 |
Breckheimer I, Haddad N M, Morris W F et al., 2014. Defining and evaluating the umbrella species concept for conserving and restoring landscape connectivity. Conservation Biology, 28(6): 1584-1593.
doi: 10.1111/cobi.12362 |
8 |
Bright P W, 1998. Behaviour of specialist species in habitat corridors: Arboreal dormice avoid corridor gaps. Animal Behaviour, 56(6): 1485-1490.
doi: 10.1006/anbe.1998.0921 |
9 |
Brockerhoff E G, Jactel H, Parrotta J A et al., 2008. Plantation forests and biodiversity: Oxymoron or opportunity? Biodiversity and Conservation, 17(5): 925-951.
doi: 10.1007/s10531-008-9380-x |
10 |
Carroll C, McRae B H, Brookes A, 2012. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conservation Biology, 26(1): 78-87.
doi: 10.1111/j.1523-1739.2011.01753.x |
11 |
Chen Y, Marino J, Chen Y et al., 2016. Predicting hotspots of human-elephant conflict to inform mitigation strategies in Xishuangbanna, Southwest China. Plos One, 11(9): e0162035.
doi: 10.1371/journal.pone.0162035 |
12 | Crooks K R, Sanjayan M A, 2006. Connectivity Conservation. Cambridge University Press. |
13 |
Dickson B G, Roemer G W, McRae B H et al., 2013. Models of regional habitat quality and connectivity for pumas (Puma concolor) in the Southwestern United States. Plos One, 8(12): e81898.
doi: 10.1371/journal.pone.0081898 |
14 | Eide N E, Nelleman C, Prestrud P, 2000. Terrain structure and selection of denning areas by arctic foxes on Svalbard. Polar Biology, 24(2): 132-138. |
15 | Eigenbrod F, Hecnar S J, Fahrig L, 2009. Quantifying the road-effect zone: Threshold effects of a motorway on anuran populations in Ontario, Canada. Ecology & Society, 14: 24-[18pp]. |
16 | Fagan W F, Calabrese J M, 2006. Quantifying Connectivity: Balancing Metric Performance with Data Requirements. New York: Cambridge University Press. |
17 |
Feng L, Wang Z, Lin L et al., 2010. Habitat selection in dry season of Asian elephant (Elephas maximus) and conservation strategies in Nangunhe National Nature Reserve, Yunnan, China. Acta Theriologica Sinica, 30(1): 1-10. (in Chinese)
doi: 10.1016/j.chnaes.2009.12.001 |
18 | Foltête J-C, Clauzel C, Vuidel G, 2012. A software tool dedicated to the modelling of landscape networks. Environmental Modelling & Software, 38: 316-327. |
19 |
Forman R T T, Deblinger R D, 2000. The ecological road-effect zone of a Massachusetts (U.S.A.) suburban highway. Conservation Biology, 14(1): 36-46.
doi: 10.1046/j.1523-1739.2000.99088.x |
20 | Gan H X, Hu H B, 2008. Biodiversity conservation corridor design based on habitat selection of gaur (Bos gaurus): A case study from Xishuangbanna, China. Chinese Journal of Ecology, 27(12): 2153-2158. (in Chinese) |
21 |
Gilbert-Norton L, Wilson R, Stevens J R et al., 2010. A meta-analytic review of corridor effectiveness. Conservation Biology, 24(3): 660-668.
doi: 10.1111/cbi.2010.24.issue-3 |
22 |
Graves T A, Farley S, Goldstein M I et al., 2007. Identification of functional corridors with movement characteristics of brown bears on the Kenai Peninsula, Alaska. Landscape Ecology, 22(5): 765-772.
doi: 10.1007/s10980-007-9082-x |
23 |
Gray M, Wilmers C C, Reed S E et al., 2016. Landscape feature-based permeability models relate to puma occurrence. Landscape and Urban Planning, 147: 50-58.
doi: 10.1016/j.landurbplan.2015.11.009 |
24 | Gurrutxaga M, Saura S, 2013. Prioritizing highway defragmentation locations for restoring landscape connectivity. Environmental Conservation, 41(2): 157-164. |
25 |
Haddad N M, 1999. Corridor and distance effects on interpatch movements: A landscape experiment with Butterflies. Ecological Applications, 9(2): 612-622.
doi: 10.1890/1051-0761(1999)009[0612:CADEOI]2.0.CO;2 |
26 | He Q, Wu Z, Xu F et al., 2014. Human-elephant relations becoming crisis in Xishuangbanna, Southwest China. In: Hong S-K, Bogaert J, Min Q (eds.). Biocultural Landscapes: Diversity, Functions and Values. Dordrecht: Springer Netherlands, 69-80. |
27 |
Howey M C L, 2011. Multiple pathways across past landscapes: Circuit theory as a complementary geospatial method to least cost path for modeling past movement. Journal of Archaeological Science, 38(10): 2523-2535.
doi: 10.1016/j.jas.2011.03.024 |
28 |
Jiang G, Qi J, Wang G et al., 2015. New hope for the survival of the Amur leopard in China. Scientific Reports, 5: 15475.
doi: 10.1038/srep15475 |
29 |
Kang W M, Minor E S, Woo D et al., 2016. Forest mammal roadkills as related to habitat connectivity in protected areas. Biodiversity and Conservation, 25(13): 1-14.
doi: 10.1007/s10531-015-1026-1 |
30 |
Karlson M, Mortberg U, 2015. A spatial ecological assessment of fragmentation and disturbance effects of the Swedish road network. Landscape and Urban Planning, 134: 53-65.
doi: 10.1016/j.landurbplan.2014.10.009 |
31 | Kindlmann P, Burel F, 2008. Connectivity measures: A review. Landscape Ecology, 23(8): 879-890. |
32 | Koen E L, Bowman J, Sadowski C et al., 2014. Landscape connectivity for wildlife: Development and validation of multispecies linkage maps. Methods in Ecology and Evolution, 5(7): 626-633. |
33 |
Kool J T, Moilanen A, Treml E A, 2013. Population connectivity: Recent advances and new perspectives. Landscape Ecology, 28(2): 165-185.
doi: 10.1007/s10980-012-9819-z |
34 | Landguth E L, Hand B K, Glassy J et al., 2012. UNICOR: A species connectivity and corridor network simulator. ,Ecography, 35(1): 9-14. |
35 |
LaPoint S, Gallery P, Wikelski M et al., 2013. Animal behavior, cost-based corridor models, and real corridors. Landscape Ecology, 28(8): 1615-1630.
doi: 10.1007/s10980-013-9910-0 |
36 |
LaRue M A, Nielsen C K, 2008. Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecological Modelling, 212(3/4): 372-381.
doi: 10.1016/j.ecolmodel.2007.10.036 |
37 |
Lechner A M, Harris R M S, Doerr V et al., 2015. From static connectivity modelling to scenario-based planning at local and regional scales. Journal for Nature Conservation, 28: 78-88.
doi: 10.1016/j.jnc.2015.09.003 |
38 | Lehtomäki J, Moilanen A, 2013. Methods and workflow for spatial conservation prioritization using Zonation. Environmental Modelling & Software, 47: 128-137. |
39 |
Li H, Li D, Li T et al., 2010. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake: Case study of Wolong Nature Reserve in China. Ecological Modelling, 221(6): 944-952.
doi: 10.1016/j.ecolmodel.2009.12.006 |
40 | Li Z, Chen M, Wu Z, 2009. Research advances in biological conservation corridor. Chinese Journal of Ecology, 28(3): 523-528. (in Chinese) |
41 | Lin L, Feng L, Zhao J et al., 2006. A preliminary study on designing ecological corridors in Xishuangbanna National Nature Reserve with 3S techniques. Journal of Beijing Normal University (Natural Science), 42(4): 405-409. (in Chinese) |
42 | Lin L, Jin Y, Chen D et al., 2014. Population and habitat status of Asian elephants (Elephas maximus) in sub-reserve of Xishuangbanna National Nature Reserve, Yunnan of China. Acta Ecologica Sinica, 34(7): 1725-1735. (in Chinese) |
43 | Lin L, Zhang L, Luo A et al., 2011. Population dynamics, structure and seasonal distribution pattern of Asian elephant (Elephas maximus) in Shangyong Protected Area, Yunnan, China. Acta Theriologica Sinica, 31(3): 226-234. (in Chinese) |
44 | Lin L, Zhu W, Zhang L et al., 2008. The opening up and utilization of a new movement corridor by Asian elephants (Elephas maximus) in Shangong Nautre Reserve, Yunnan. Acta Theriologica Sinica, 28(4): 325-332. (in Chinese) |
45 | Liu S, Wen M, Cui B et al., 2008. Ecological effect of road based on network analysis: A case study in Lancang River Valley. Acta Ecologica Sinica, 28(4): 1672-1680. (in Chinese) |
46 | Liu X, Feng Z, Jiang L et al., 2014. Spatial-temporal pattern analysis of land use and land cover change in Xishuangbanna. Resources Science, 36(2): 233-244. (in Chinese) |
47 |
Loro M, Ortega E, Arce R M et al., 2015. Ecological connectivity analysis to reduce the barrier effect of roads. An innovative graph-theory approach to define wildlife corridors with multiple paths and without bottlenecks. Landscape and Urban Planning, 139: 149-162.
doi: 10.1016/j.landurbplan.2015.03.006 |
48 |
McRae B H, 2006. Isolation by resistance. Evolution, 60(8): 1551-1561.
doi: 10.1111/evo.2006.60.issue-8 |
49 |
McRae B H, Beier P, 2007. Circuit theory predicts gene flow in plant and animal populations. PNAS, 104(50): 19885-19890.
doi: 10.1073/pnas.0706568104 |
50 |
McRae B H, Dickson B G, Keitt T H et al., 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10): 2712-2724.
doi: 10.1890/07-1861.1 |
51 | McRae B H, Kavanagh D M, 2011. Linkage mapper connectivity analysis software. The Nature Conservancy, Seattle WA. |
52 | McRae B H, Shah V B, Mohapatra T K, 2013. Circuitscape 4 User Guide. The Nautre Conservancy. |
53 |
Mimet A, Clauzel C, Foltête J-C, 2016. Locating wildlife crossings for multispecies connectivity across linear infrastructures. Landscape Ecology, 31(9): 1-19.
doi: 10.1007/s10980-015-0315-0 |
54 |
Moilanen A, Anderson B J, Eigenbrod F et al., 2011. Balancing alternative land uses in conservation prioritization. Ecological Applications, 21(5): 1419-1426.
doi: 10.1890/10-1865.1 |
55 | Moilanen A, Franco A M A, Early R I et al., 2005. Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proceedings of the Royal Society B: Biological Sciences, 272(1575): 1885-1891. |
56 |
Morrison J C, Sechrest W, Dinerstein E et al., 2007. Persistence of large mammal faunas as indicators of global human impacts. Journal of Mammalogy, 88(6): 1363-1380.
doi: 10.1644/06-MAMM-A-124R2.1 |
57 |
Myers N, Mittermeier R A, 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853.
doi: 10.1038/35002501 |
58 |
Pan W, Lin L, Luo A et al., 2009. Corridor use by Asian elephants. Integrative Zoology, 4(2): 220-231.
doi: 10.1111/j.1749-4877.2009.00154.x |
59 |
Pascual-Hortal L, Saura S, 2006. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landscape Ecology, 21(7): 959-967.
doi: 10.1007/s10980-006-0013-z |
60 |
Pinto N, Keitt T H, 2009. Beyond the least-cost path: Evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 24(2): 253-266.
doi: 10.1007/s10980-008-9303-y |
61 | Qu D, Xu J, Dai Z, 2015. Forest transition in Xishuangbanna, Yunnan. Plant Diversity and Resources, 37(1): 93-98. (in Chinese) |
62 |
Roever C L, van Aarde R J, Leggett K, 2013. Functional connectivity within conservation networks: Delineating corridors for African elephants. Biological Conservation, 157: 128-135.
doi: 10.1016/j.biocon.2012.06.025 |
63 |
Ruiz-Gonzalez A, Gurrutxaga M, Cushman S A et al., 2014. Landscape genetics for the empirical assessment of resistance surfaces: The European Pine Marten (Martesmartes) as a target-species of a regional ecological network. Plos One, 9(10): e110552.
doi: 10.1371/journal.pone.0110552 |
64 |
Saura S, Pascual-Hortal L, 2007. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning, 83(2/3): 91-103.
doi: 10.1016/j.landurbplan.2007.03.005 |
65 | Saura S, Torné J, 2009. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environmental Modelling & Software, 24(1): 135-139. |
66 |
Sawyer S C, Epps C W, Brashares J S, 2011. Placing linkages among fragmented habitats: Do least-cost models reflect how animals use landscapes? Journal of Applied Ecology, 48(3): 668-678.
doi: 10.1111/j.1365-2664.2011.01970.x |
67 |
Shen Z, Wang Y, Fu B, 2014. Corridors and networks in landscape: Structure, functions and ecological effects. Chinese Geographical Science, 24(1): 1-4.
doi: 10.1007/s11769-014-0668-3 |
68 |
Stevens V M, Polus E, Wesselingh R et al., 2004. Quantifying functional connectivity: Experimental evidence for patch-specific resistance in the Natterjack toad (Bufocalamita). Landscape Ecology, 19(8): 829-842.
doi: 10.1007/s10980-004-0166-6 |
69 |
Tewksbury J J, Levey D J, Haddad N M et al., 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS, 99(20): 12923-12926.
doi: 10.1073/pnas.202242699 |
[1] | YUE Tian-xiang, YE Qing-hua, LIU Qing-sheng,GONG Zheng-hui. On models for landscape connectivity:a case study of the new-born wetland of the Yellow River Delta [J]. Journal of Geographical Sciences, 2002, 12(2): 186-195. |
|