Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (7): 1081-1097.doi: 10.1007/s11442-019-1646-6
• Orginal Article • Previous Articles Next Articles
Li CHEN1,2(), Wangya HAN1,2, Dan LIU1,2, Guohua LIU1,2,*(
)
Received:
2018-05-10
Accepted:
2019-01-22
Online:
2019-07-25
Published:
2019-07-25
Contact:
Guohua LIU
E-mail:lichen_st@rcees.ac.cn;ghliu@rcees.ac.cn
About author:
Author: Chen Li (1989-), PhD, specialized in landscape ecology. E-mail:
Supported by:
Li CHEN, Wangya HAN, Dan LIU, Guohua LIU. How forest gaps shaped plant diversity along an elevational gradient in Wolong National Nature Reserve?[J].Journal of Geographical Sciences, 2019, 29(7): 1081-1097.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 1
Diagram showing the information about location and topography (a), sampling pots (b) and subplots (c) in the Wolong National Nature Reserve in southwest China. In panel b, each elevation interval contains three plots of each category. Panel c illustrates how the nine subplots were distributed within a plot."
Table 1
One-way ANOVA results comparing the effects of habitat type, gap size and elevation. F and P values are derived from ANOVA."
Variables | Habitat types N=84 | Elevation (all plots), N=84 | Gap size N=63 | Elevation (gaps), N=63 |
---|---|---|---|---|
Above-ground environmental factors | ||||
Annual mean air temperature (℃) | 1.34 | 47.07*** | 0.115 | 36.42*** |
PPFD (μ mol m-2 s-1) | 3771.46*** | 0.02 | 37.41*** | 0.576 |
UV-A365 (μ W cm-2) | 91.30*** | 5.52*** | 20.43*** | 12.73*** |
UV-B297 (μ W cm-2) | 30.50*** | 15.78*** | 1.00 | 144.94*** |
UV-B254 (μ W cm-2) | 78.16*** | 6.78*** | 12.044*** | 21.503*** |
Moss thickness (cm) | 4.2* | 6.81*** | 0.876 | 4.74*** |
Below-ground environmental factors | ||||
Annual mean soil temperature (℃) | 1.02 | 285.51*** | 0.03 | 314.76*** |
Soil water content (%) | 0.17 | 10.80*** | 0.03 | 13.96*** |
Soil pH | 1.83 | 3.45** | 0.93 | 3.65** |
Soil total carbon (%) | 3.18 | 17.33*** | 2.83 | 9.87*** |
Soil total nitrogen (%) | 7.84** | 38.77*** | 2.63 | 37.38*** |
Soil total sulfur (%) | 5.83*** | 2.64* | 5.60*** | 3.56*** |
Carbon/nitrogen ratio | 1.94 | 2.40* | 0.35 | 1.64 |
NH4-N (mg kg-1) | 8.20*** | 1.71 | 2.47 | 11.82*** |
NO3- N (mg kg-1) | 3.64* | 5.71* | 0.33 | 18.06*** |
Table 2
Pearson correlation results between environmental factors (above- and below-ground environmental factors) and diversity (α-diversity and β-diversity)"
Above-ground environment factors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
PPFD | UV-A365 | UV-B297 | UV-B254 | MT | ||||||
All plots (N=84) | ||||||||||
α-diversity | 0.81*** | 0.43*** | 0.02 | 0.39*** | 0.03 | |||||
β-diversity | -0.944*** | -0.83*** | -0.57*** | -0.79*** | -0.35** | |||||
Gaps (N=63) | ||||||||||
α-diversity | 0.44*** | -0.34*** | -0.72*** | -0.36*** | 0.28** | |||||
β-diversity | -0.54*** | -0.61*** | -0.3** | -0.54*** | 0.14 | |||||
Below-ground environment factors | ||||||||||
AMST | pH | SWC | STC | STN | C/N ratio | NH4-N | NO3-N | STS | ||
All plots (N=84) | ||||||||||
α-diversity | 0.44*** | 0.14 | -0.1 | 0.38*** | 0.55*** | 0.04 | -0.51*** | -0.003 | -0.09 | |
β-diversity | 0.01 | -0.1 | 0.07 | -0.2 | -0.23** | -0.25** | 0.74*** | -0.25** | 0.17 | |
Gaps (N=63) | ||||||||||
α-diversity | 0.653*** | 0.03 | -0.13 | 0.38** | 0.59*** | -0.14 | 0.21 | -0.29** | 0.21 | |
β-diversity | 0.224 | 0.12 | 0.15 | -0.13 | 0.02 | -0.13 | 0.05 | -0.25** | -0.22 |
Table 3
Values of the fit indices of the four structural equation models for α-diversity and β-diversity in a subalpine coniferous forest (For the information associated with models a, b, c, and d, see Figure 3)"
Models | Model fit indices | ||||||
---|---|---|---|---|---|---|---|
χ2 | DF | p | RMSEA | GFI | CFI | AIC | |
a | 3.869 | 8 | 0.869 | <0.001 | 0.988 | 1 | 59.869 |
b | 9.609 | 13 | 0.726 | <0.001 | 0.974 | 1 | 73.609 |
c | 0.216 | 3 | 0.975 | <0.001 | 0.99 | 1 | 36.216 |
d | 10.119 | 14 | 0.753 | <0.001 | 0.959 | 1 | 54.119 |
Criterion | - | - | >0.05 | <0.05 | >0.9 | >0.9 | Lowest |
Figure 4
Best-fitting structural equation models. Four models are presented in relation to the four aspects of forest gaps (gap/non-gap and gap area) and elevational effects on diversity (α-diversity and β-diversity). Positive and negative pathways are indicated by black and gray lines, respectively. Arrow thickness is scaled to illustrate the relative strength of effects, and significant coefficients are indicated with asterisks (* p < 0.05; ** p< 0.01; *** p< 0.001). The coefficient of determination (R2) is shown in the black box for all response variables. The independent variable, as a predictor, is the habitat type coded as plots with gaps = 2 and non-gap plots = 1; thus, in the SEMs, the habitat type is an ordered categorical variable."
Table 4
Standardized total effect, indirect effect and direct effect of predictor variables on α-diversity and β-diversity for the best SEMs, as shown in Figure 3"
All plots (N=84) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Elevation | Habitat types | AMAT | PPFD | UV-B297 | UV-A365 | C/N ratio | MT | NH4-N | |
Total effect | |||||||||
α-diversity | -0.7 | 0.77 | 0.13 | 1.13 | -0.68 | — | -0.11 | 0.04 | — |
β-diversity | -0.14 | -0.9 | -0.21 | -0.55 | — | -0.4 | -0.07 | 0.03 | 0.1 |
Direct effect | |||||||||
α-diversity | 0 | 0 | 0.21 | 1.13 | -0.68 | — | -0.11 | 0 | — |
β-diversity | 0 | 0 | -0.15 | -0.55 | — | -0.4 | -0.07 | 0 | 0.1 |
Indirect effect | |||||||||
α-diversity | -0.7 | 0.77 | -0.09 | 0 | 0 | — | 0 | 0.04 | — |
β-diversity | -0.14 | -0.9 | -0.06 | 0 | — | 0 | -0.07 | 0.03 | 0 |
Gaps (N=63) | |||||||||
Elevation | Gap area | AMAT | PPFD | UV-A365 | UV-B297 | C/N ratio | NH4-N | NO3-N | |
Total effect | |||||||||
α-diversity | -0.66 | 0.25 | 0.31 | — | 0.44 | — | -0.2 | — | — |
β-diversity | -0.26 | -0.21 | -0.53 | -0.42 | — | -0.72 | — | -0.31 | -0.21 |
Direct effect | |||||||||
α-diversity | -0.53 | 0 | 0.5 | — | 0.44 | — | -0.2 | — | — |
β-diversity | 0 | 0 | -0.53 | -0.42 | — | -0.84 | — | -0.31 | -0.21 |
Indirect effect | |||||||||
α-diversity | -0.13 | 0.25 | -0.19 | — | 0 | — | 0 | — | — |
β-diversity | -0.26 | -0.21 | 0 | 0 | — | 0.12 | — | 0 | 0 |
1 |
Anderson K L, Leopold D J, 2002. The role of canopy gaps in maintaining vascular plant diversity at a forested wetland in New York State. Journal of the Torrey Botanical Society, 129(3): 238-250.
doi: 10.2307/3088774 |
2 |
Barbier S, Gosselin F, Balandier P, 2008. Influence of tree species on understory vegetation diversity and mechanisms involved: A critical review for temperate and boreal forests. Forest Ecology and Management, 254(3): 1-15.
doi: 10.1016/j.foreco.2007.09.038 |
3 |
Barnes P W, Ryel R J, Flint S D, 2017. UV screening in native and non-native plant species in the tropical alpine: Implications for climate change-driven migration of species to higher elevations. Frontiers in Plant Science, 8(1): 1451.
doi: 10.3389/fpls.2017.01451 |
4 |
Battles J J, Shlisky A J, Barrett R H, 2001. The effects of forest management on plant species diversity in a Sierranconifer forest. Forest Ecology and Management, 146(1-3): 211-222.
doi: 10.1016/S0378-1127(00)00463-1 |
5 |
Beck J, Chey V K, 2008. Explaining the elevational diversity pattern of geometrid moths from Borneo: A test of five hypotheses. Journal of Biogeography, 35(8): 1452-1464.
doi: 10.1111/jbi.2008.35.issue-8 |
6 |
Bello F D, Lavergne S, Meynard C N et al., 2010. The partitioning of diversity: Showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 21(5): 992-1000.
doi: 10.1111/jvs.2010.21.issue-5 |
7 |
Bongers F, Poorter F, Hawthorne W et al., 2009. The intermediate disturbance hypothesis applies to tropical forest, but disturbance contributes little to tree diversity. Ecology Letters, 12(8): 798-805.
doi: 10.1111/ele.2009.12.issue-8 |
8 |
Brown J H, Gillooly J F, Allen A P et al., 2004. Toward a metabolic theory of ecology. Ecology, 85(7): 1771-1789.
doi: 10.1890/03-9000 |
9 | Caquet B, Montpied P, Dreyer E et al., 2010. Response to canopy opening does not act as a filter to Fagus sylvatica and Acer sp advance regeneration in a mixed temperate forest. Annals of Forest Science, 67(1): 105p1-105p11. |
10 | Chen L, Liu, G H, Liu D, 2018. How forest gap and elevation shaped Abiesfaxoniana Rehd. et Wils. Regeneration in a subalpine coniferous forest, Southwestern China. Forests, 9(5). doi: 10.3390/f9050271 |
11 |
Cienciala E, Russ R, Santruckova H et al., 2016. Discerning environmental factors affecting current tree growth in Central Europe. Science of the Total Environment, 573: 541-554.
doi: 10.1016/j.scitotenv.2016.08.115 |
12 |
Condit R, Pitman N, Leigh E G et al., 2002. Beta-diversity in tropical forest trees. Science, 295(5555): 666-669.
doi: 10.1126/science.1066854 |
13 |
Crist T O, Veech J A, 2006. Additive partitioning of rarefaction curves and species-area relationships: Unifying alpha-, beta- and gamma-diversity with sample size and habitat area. Ecology Letters, 9(8): 923-932.
doi: 10.1111/ele.2006.9.issue-8 |
14 |
Denslow J S, 1987. Tropical rainforest gaps and tree species diversity. Annual Review of Ecology and Systematics,18: 431-451.
doi: 10.1146/annurev.es.18.110187.002243 |
15 |
Denslow J S, Ellison A M, Sanford R E, 1998. Treefall gap size effects on above- and below-ground processes in a tropical wet forest. Journal of Ecology, 86(4): 597-609.
doi: 10.1046/j.1365-2745.1998.00295.x |
16 |
Diaci J, Adamic T, Rozman A, 2012. Gap recruitment and partitioning in an old-growth beech forest of the Dinaric Mountains: Influences of light regime, herb competition and browsing. Forest Ecology and Management, 285: 20-28.
doi: 10.1016/j.foreco.2012.08.010 |
17 |
Dolezal J, Srutek M, 2002. Altitudinal changes in composition and structure of mountain-temperate vegetation: A case study from the Western Carpathians. Plant Ecology, 158(2): 201-221.
doi: 10.1023/A:1015564303206 |
18 |
Duivenvoorden J F, Svenning J C, Wright S J, 2002. Beta diversity in tropical forests. Science, 295(5555): 636-637.
doi: 10.1126/science.295.5555.636 |
19 |
Fernandezpalacios F M, Denicolas J P, 1995. Attitudinal pattern of vegetation variation on Tenerife. Journal of Vegetation Science, 6(2): 183-190.
doi: 10.2307/3236213 |
20 |
Galhidy L, Mihok B, Hagyo A et al., 2006. Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecology, 183(1): 133-145.
doi: 10.1007/s11258-005-9012-4 |
21 |
Garbarino M, Mondino E B, Lingua E et al., 2012. Gap disturbances and regeneration patterns in a Bosnian old-growth forest: A multispectral remote sensing and ground-based approach. Annals of Forest Science, 69(5): 617-625.
doi: 10.1007/s13595-011-0177-9 |
22 |
Gendron F, Messier C, Comeau P G, 1998. Comparison of various methods for estimating the mean growing season percent photosynthetic photon flux density in forests. Agricultural and Forest Meteorology, 92(1): 55-70.
doi: 10.1016/S0168-1923(98)00082-3 |
23 |
Gray A N, Spies T A, Pabst R J, 2012. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest. Forest Ecology and Management, 281: 111-120.
doi: 10.1016/j.foreco.2012.06.035 |
24 |
Hardtle W, Oheimb G V, Westphal C, 2003. The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). Forest Ecology and Management, 182(1-3): 327-338.
doi: 10.1016/S0378-1127(03)00091-4 |
25 |
Jin Y, Qian H, Yu M, 2015. Phylogenetic structure of tree species across different life stages from seedlings to canopy trees in a subtropical evergreen broad-leaved forest. Plos One, 10(6): e0131162.
doi: 10.1371/journal.pone.0131162 |
26 |
Kern C C, Montgomery R A, Reich P B et al., 2013. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. Journal of Plant Ecology, 6(1): 101-112.
doi: 10.1093/jpe/rts016 |
27 | Korner C, 1992. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology & Evolution, 45(8): 618-619. |
28 |
Kraft N J B, Comita L S, Chase J M et al., 2011. Disentangling the drivers of beta diversity along latitudinal and elevational gradients. Science, 333(6050): 1755-1758.
doi: 10.1126/science.1208584 |
29 |
Kraft N J B, Cornwell W K, Webb C O et al., 2007. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. American Naturalist, 170(2): 271-283.
doi: 10.1086/519400 |
30 |
Kreft H, Jetz W, 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 104(14): 5925-5930.
doi: 10.1073/pnas.0608361104 |
31 |
Kubota Y, Murata H, Kikuzawa K, 2004. Effects of topographic heterogeneity on tree species richness and stand dynamics in a subtropical forest in Okinawa Island, southern Japan. Journal of Ecology, 92(2): 230-240.
doi: 10.1111/jec.2004.92.issue-2 |
32 |
Lindo Z G A, 2010. The bryosphere: An integral and influential component of the Earth’s biosphere. Ecosystems, 13(4): 612-627.
doi: 10.1007/s10021-010-9336-3 |
33 |
Liu D, Wu X, Shi S L et al., 2016. A hollow bacterial diversity pattern with elevation in Wolong Nature Reserve, Western Sichuan Plateau. Journal of Soils and Sediments, 16(10): 2365-2374.
doi: 10.1007/s11368-016-1422-5 |
34 |
Loreau M, 2000. Are communities saturated on the relationship between α, β and γ diversity. Ecology Letters, 3(2): 73-76.
doi: 10.1046/j.1461-0248.2000.00127.x |
35 |
McCain C, 2007. Area and mammalian elevational diversity. Ecology, 88(1): 76-86.
doi: 10.1890/0012-9658(2007)88[76:AAMED]2.0.CO;2 |
36 |
Molina-Venegas R, Aparicio A, Lavergne S et al., 2016. How soil and elevation shape local plant biodiversity in a Mediterranean hotspot. Biodiversity and Conservation, 25(6): 1133-1149.
doi: 10.1007/s10531-016-1113-y |
37 |
Muscolo A, Bagnato S, Sidari M et al., 2014. A review of the roles of forest canopy gaps. Journal of Forestry Research, 25(4): 725-736.
doi: 10.1007/s11676-014-0521-7 |
38 | Muscolo A, Mallamaci C, Sidari M et al., 2011. Effect of gap size and soil chemical properties on the natural regeneration in black pine (Pinusnigra. Arn.) stands. Tree Forest Science Biotechnology, 5: 65-71. |
39 |
Naaf T, Wulf M, 2007. Effects of gap size, light and herbivory on the herb layer vegetation in European beech forest gaps. Forest Ecology and Management, 244(1-3): 141-149.
doi: 10.1016/j.foreco.2007.04.020 |
40 |
Parent S, Messier C, 1996. A simple and efficient method to estimate microsite light availability under a forest canopy. Canadian Journal of Forest Research, 26(1): 151-154.
doi: 10.1139/x26-017 |
41 | Piazena H, Hader D P, 2009. Solar UV-B and UV-A irradiance in arid high-mountain regions: Measurements on the island of Tenerife as compared to previous tropical Andes data. Journal of Geophysical Research-Biogeosciences, 114: 1-15. |
42 |
Ping A, Li X J, Zheng Y R et al., 2015. Distribution of plant species and species-soil relationship in the east central Gurbantunggut Desert, China. Journal of Geographical Sciences, 25(1): 101-112.
doi: 10.1007/s11442-015-1156-0 |
43 |
Rahbek C, 1995. The elevational gradient of species richness: A uniform pattern. Ecography, 18(2): 200-205.
doi: 10.1111/eco.1995.18.issue-2 |
44 |
Raymond P, Munson A D, Ruel J C et al., 2006. Spatial patterns of soil microclimate, light, regeneration, and growth within silvicultural gaps of mixed tolerant hardwood - white pine stands. Canadian Journal of Forest Research, 36(3): 639-651.
doi: 10.1139/x05-269 |
45 |
Ricklefs R E, 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7(1): 1-15.
doi: 10.1046/j.1461-0248.2003.00554.x |
46 |
Runkle J R, 1981. Gap regeneration in some old-growth forests of the eastern United-States. Ecology, 62(4): 1041-1051.
doi: 10.2307/1937003 |
47 |
Santibáñez-Andrade G, Castillo-Argüero S, Vega-Peña E V et al., 2015. Structural equation modeling as a tool to develop conservation strategies using environmental indicators: The case of the forests of the Magdalena river basin in Mexico City. Ecological Indicators, 54: 124-136.
doi: 10.1016/j.ecolind.2015.02.022 |
48 |
Sariyildiz T, 2008. Effects of gap-size classes on long-term litter decomposition rates of beech, oak and chestnut species at high elevations in northeast Turkey. Ecosystems, 11(6): 841-853.
doi: 10.1007/s10021-008-9164-x |
49 |
Scharenbroch B C, Bockheim J G, 2007. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant and Soil, 294(1/2): 219-233.
doi: 10.1007/s11104-007-9248-y |
50 |
Scharenbroch B C, Bockheim J G, 2008. Gaps and soil C dynamics in old growth northern hardwood-hemlock forests. Ecosystems, 11(3): 426-441.
doi: 10.1007/s10021-008-9131-6 |
51 | Tang Z Y, Fang J Y, 2004. A review on the elevational patterns of plant species diversity. Biodiversity Science, 12: 20-28. (in Chinese) |
52 |
Toledo M, Poorter L, Peña-Claros M et al., 2011. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 99(1): 254-264.
doi: 10.1111/jec.2010.99.issue-1 |
53 |
Vajari K A, Jalilvand H, Pourmajidian M R et al., 2012. Effect of canopy gap size and ecological factors on species diversity and beech seedlings in managed beech stands in Hyrcanian forests. Journal of Forestry Research, 23(2): 217-222.
doi: 10.1007/s11676-012-0244-6 |
54 |
Vetaas O R, Grytnes J A, 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11(4): 291-301.
doi: 10.1046/j.1466-822X.2002.00297.x |
55 |
Wang G L, Liu F, 2011. The influence of gap creation on the regeneration of Pinus tabuliformis planted forest and its role in the near-natural cultivation strategy for planted forest management. Forest Ecology and Management, 262(3): 413-423.
doi: 10.1016/j.foreco.2011.04.007 |
56 |
Wang Z, Tang Z Y, Fang J Y, 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions, 13(6): 845-854.
doi: 10.1111/j.1472-4642.2007.00335.x |
57 | Woch M W, Stefanowicz A M, Stanek M, 2017. Waste heaps left by historical Zn-Pb ore mining are hotspots of species diversity of beech forest understory vegetation. Science of Total Environment, 599: 32-41. |
[1] | LIU Jianbo,GAO Guangyao,WANG Shuai,JIAO Lei,WU Xing,FU Bojie. The effects of vegetation on runoff and soil loss:Multidimensional structure analysis and scale characteristics [J]. Journal of Geographical Sciences, 2018, 28(1): 59-78. |
[2] | ZHANG Baiping,*YAO Yonghui. Implications of mass elevation effect for the altitudinal patterns of global ecology [J]. Journal of Geographical Sciences, 2016, 26(7): 871-877. |
[3] | YAO Yonghui,XU Mei,ZHANG Baiping. The implication of mass elevation effect of the Tibetan Plateau for altitudinal belts [J]. Journal of Geographical Sciences, 2015, 25(12): 1411-1422. |
[4] | TANG Guoan,SONG Xiaodong,LI Fayuan,ZHANG Yong,XIONG Liyang. Slope spectrum critical area and its spatial variation in the Loess Plateau of China [J]. Journal of Geographical Sciences, 2015, 25(12): 1452-1466. |
[5] | Li WANG,Xinfa QIU,Peifa WANG,Xiaoying WANG,Aili LIU. Influence of complex topography on global solar radiation in the Yangtze River Basin [J]. Journal of Geographical Sciences, 2014, 24(6): 980-992. |
[6] | ZHAO Fang, ZHANG Baiping, PANG Yu, YAO Yonghui. A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere [J]. , 2014, 24(2): 226-236. |
[7] | HAN Fang, YAO Yonghui, DAI Shibao, WANG Chun, SUN Ranhao, XU Juan, ZHANG Baiping. Mass elevation effect and its forcing on timberline altitude [J]. Journal of Geographical Sciences, 2012, 22(4): 609-616. |
[8] | TAN Saichun, SHI Guangyu. Satellite-derived primary productivity and its spatial and temporal variability in the China seas [J]. Journal of Geographical Sciences, 2006, 16(4): 447-457. |
[9] | LIU Linshan, ZHANG Yili, BAI Wanqi, YAN Jianzhong,DING Mingjun,, SHEN Zhenxi, LI Shuangcheng, ZHENG Du. Characteristics of grassland degradation and driving forces in the source region of the Yellow River from 1985 to 2000* [J]. Journal of Geographical Sciences, 2006, 16(2): 131-142. |
[10] | ZENG Yan, QIU Xinfa, LIU Changming, JIANG Aijun. Distributed modeling of direct solar radiation on rugged terrain of the Yellow River Basin [J]. Journal of Geographical Sciences, 2005, 15(4): 439-447. |
[11] | QIU Xinfa, ZENG Yan, LIU Changming, WU Xianfeng. Simulation of astronomical solar radiation over Yellow River Basin based on DEM [J]. Journal of Geographical Sciences, 2004, 14(1): 63-69. |
[12] | ZHANG Yuanming, CHEN Yaning, ZHANG Daoyuan. Quantitative classification and analysis on plant communities in the middle reaches of the Tarim River [J]. Journal of Geographical Sciences, 2003, 13(2): 225-232. |
|