Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (6): 984-1000.doi: 10.1007/s11442-019-1640-z
• Regular Articles • Previous Articles Next Articles
Qifei ZHANG1,2, Yaning CHEN1*(), Zhi LI1, Yupeng LI1,2, Yanyun XIANG1, Wei BIAN1,2
Received:
2018-03-22
Accepted:
2018-09-29
Online:
2019-06-25
Published:
2019-06-25
About author:
Author: Zhang Qifei, PhD, specialized in glacier change and water resources. E-mail:
Supported by:
Qifei ZHANG, Yaning CHEN, Zhi LI, Yupeng LI, Yanyun XIANG, Wei BIAN. Glacier changes from 1975 to 2016 in the Aksu River Basin, Central Tianshan Mountains[J].Journal of Geographical Sciences, 2019, 29(6): 984-1000.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Remote sensing image data of Landsat images"
Period | Data | Path/Row | Satellite sensor | Spatial resolution |
---|---|---|---|---|
1975 | 1977-08-18 | 158/31 | Landsat MSS | 80 m (Channels 4-6, 7) |
1975-08-12 | 159/31 | Landsat MSS | ||
1975-08-13 | 160/31 | Landsat MSS | ||
1975-08-13 | 160/32 | Landsat MSS | ||
1990 | 1990-08-02 | 146/31 | Landsat TM | 30 m (Channels 3-5, 7) |
1989-08-22 | 147/31 | Landsat TM | ||
1991-08-19 | 148/31 | Landsat TM | ||
1991-08-19 | 148/32 | Landsat TM | ||
1990-08-07 | 149/31 | Landsat TM | ||
1990-08-07 | 149/32 | Landsat TM | ||
2000 | 2003-07-29 | 146/31 | Landsat ETM+ | 15/30 m (Channels 3-5, 7) |
1999-08-26 | 147/31 | Landsat ETM+ | ||
1999-09-18 | 148/31 | Landsat ETM+ | ||
1999-09-18 | 148/32 | Landsat ETM+ | ||
1999-08-16 | 149/32 | Landsat ETM+ | ||
2016 | 2016-08-09 | 146/31 | Landsat OLI | 15/30 m (Channels 4-6, 7) |
2016-09-01 | 147/31 | Landsat OLI | ||
2015-08-21 | 148/31 | Landsat OLI | ||
2016-09-08 | 148/32 | Landsat OLI | ||
2015-08-12 | 149/31 | Landsat OLI | ||
2015-08-12 | 149/32 | Landsat OLI |
Table 2
Changes in glacier area according to various glacier sizes of the Aksu River Basin from 1975 to 2016"
Interval area (km2) | 0.01-0.1 | 0.1-0.5 | 0.5-1 | 1-2 | 2-5 | 5-10 | 10-20 | 20-30 | 30-50 | 50-70 | >70 |
---|---|---|---|---|---|---|---|---|---|---|---|
Number change | 317 | -84 | -173 | -156 | -41 | -31 | -10 | -1 | 0 | -1 | 0 |
Number change (%) | 147.44 | -6.80 | -30.89 | -43.94 | -22.53 | -33.70 | -38.46 | -12.50 | 0 | -100 | 0 |
Area change (%) | 131.58 | -14.72 | -29.20 | -43.20 | -21.06 | -34.76 | -35.25 | -16.17 | -1.71 | -100 | -7.63 |
Figure 4
Distribution of glacier areas and their changes according to aspect in the Aksu River Basin and sub-basins during 1975-2016 (a. Glacier area changes in the Aksu Basin; b. Distribution of glacier areas in different Aksu sub-basins in 1975; c. Relative changes in glacier areas in different Aksu sub-basins)"
Table 3
Glacier changes in the Aksu River Basin in different periods from 1975 to 2016"
Sub-basin | Glacier number | Glacier area proportion (%) | ||||||
---|---|---|---|---|---|---|---|---|
1975 | 1990 | 2000 | 2016 | 1975 | 1990 | 2000 | 2016 | |
Toxkan | 998 | 968 | 971 | 970 | 4.77 | 3.90 | 3.87 | 3.66 |
Kumalak | 1710 | 1597 | 1572 | 1536 | 22.30 | 17.62 | 17.32 | 16.34 |
Total | 2708 | 2565 | 2543 | 2506 | 12.04 | 9.59 | 9.45 | 8.92 |
Table 4
Terminus retreat of the typical glaciers in the Aksu River Basin"
Glacier ID | Sub-basin | Length change | Area change | Terminus change | ||||||
---|---|---|---|---|---|---|---|---|---|---|
m | (%) | m yr-1 | km2 | (%) | km2 yr-1 | m | (%) | m yr-1 | ||
RGI50-13.09540 | Toxkan | 1530.1 | 1.54 | 37.32 | 5.43 | 26.26 | 0.13 | 47 | 1.21 | 1.15 |
RGI50-13.04920 | Kumalak | 660.22 | 12.87 | 16.1 | 1.9 | 19.62 | 0.05 | 77 | 2.18 | 1.88 |
Table 5
Glaciers retreat in the Aksu River Basin in different periods from 1975 to 2016"
Glacier ID | Sub-basin | Length change (m yr-1) | Area change (% yr-1) | ||||
---|---|---|---|---|---|---|---|
1975-1990 | 1990-2000 | 2000-2016 | 1975-1990 | 1990-2000 | 2000-2016 | ||
RGI50-13.09540 | Toxkan | 44.36 | 35.69 | 31.74 | 1.42 | 0.2 | 0.27 |
RGI50-13.04920 | Kumalak | 10.79 | 13.95 | 22.43 | 1.02 | 0.27 | 0.15 |
[1] | Armstrong R L, 2010. The glaciers of the Hindu Kush-Himalayan region: A summary of the science regarding glacier melt/retreat in the Himalayan, Hindu Kush, Karakoram, Pamir, and Tien Shan mountain ranges.International Centre for Integrated Mountain Development, 1-16. |
[2] |
Barry R G, 2006. The status of research on glaciers and global glacier recession: A review.Phog. Phys. Geog., 30(3): 285-306.
doi: 10.1191/0309133306pp478ra |
[3] |
Bolch T, 2007. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data.Global Planet. Change, 56(1): 1-12.
doi: 10.1016/j.gloplacha.2006.07.009 |
[4] |
Bolch T, Yao T, Kang Set al., 2010. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976-2009.Cryosphere, 4(3): 419-433.
doi: 10.5194/tc-4-419-2010 |
[5] |
Chen Y N, Li W H, Deng H Jet al., 2016. Changes in Central Asia’s Water Tower: Past, Present and Future.Sci. Rep-UK, 6: 35458.
doi: 10.1038/srep35458 |
[6] | Chen Y N, Li W H, Fang G Het al., 2017. Impact of climate change on water resources in the Tianshan Mountains, Central Asia.Acta Geographica Sinica, 72(1): 18-26. (in Chinese) |
[7] | Chen Y N, Li Z, Fan Y Tet al., 2014. Research progress on the impact of climate change on water resources in the arid region of Northwest China.Acta Geographica Sinica, 69(9): 1295-1304. (in Chinese) |
[8] |
Deng H J, Chen Y N, 2017. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol., 544: 46-57.
doi: 10.1016/j.jhydrol.2016.11.006 |
[9] |
Ding Y H, Ren G Y, Zhao Z Cet al., 2007. Detection, causes and projection of climate change over China: An overview of recent progress.Adv. Atmos. Sci., 24(6): 954-971.
doi: 10.1007/s00376-007-0954-4 |
[10] |
Duethmann D, Bolch T, Farinotti Det al., 2015. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia.Water Resources Res., 51: 4727-4750.
doi: 10.1002/2014WR016716 |
[11] | Falorni G, Teles V, Vivoni E Ret al., 2005. Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Topography Mission.J. Geophys. Res., 110(F2): 1-20. |
[12] |
Fan Y T, Chen Y N, Li W H, 2014. Increasing precipitation and baseflow in Aksu River since the 1950s.Quatern. Int., 336(12): 26-34.
doi: 10.1016/j.quaint.2013.09.037 |
[13] |
Farinotti D, Longuevergne L, Moholdt Get al., 2015. Substantial glacier mass loss in the Tien Shan over the past 50 years.Nat. Geosci., 8(9): 716-722.
doi: 10.1038/ngeo2513 |
[14] | Feng T, Liu S Y, Xu J Let al., 2015. Glacier changes of the Yarkant River Basin from 1968 to 2009 derived from the First and Second Glacier Inventories of China.J. Glacio. Geocryology, 37(1): 1-13. (in Chinese) |
[15] |
Gardner A S, Moholdt G, Cogley J Get al., 2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009.Science, 340: 852-857.
doi: 10.1126/science.1234532 |
[16] |
Grinsted A, 2013. An estimate of global glacier volume.Cryosphere, 7(1): 141-151.
doi: 10.5194/tc-7-141-2013 |
[17] |
Haeberli W, Cihlar J, Barry R G, 2000. Glacier monitoring within the Global Climate Observing System.Ann. Glaciol., 31(1): 241-246.
doi: 10.3189/172756400781820192 |
[18] |
Haeberli W, Hoelzle M, Paul Fet al., 2007. Integrated monitoring of mountain glaciers as key indicators of global climate change: The European Alps.Ann. Glaciol., 46(1): 150-160.
doi: 10.3189/172756407782871512 |
[19] |
Hagg W, Mayer C, Lambrecht Aet al., 2013. Glacier changes in the Big Naryn basin, Central Tian Shan.Global Planet. Change, 110: 40-50.
doi: 10.1016/j.gloplacha.2012.07.010 |
[20] |
Huai B J, Li Z Q, Sun M Pet al., 2015. Change in glacier area and thickness in the Tomur Peak, western Chinese Tien Shan over the past four decades.J. Earth Syst. Sci., 124(2): 353-363.
doi: 10.1007/s12040-015-0541-5 |
[21] | IPCC, 2013. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 1308. |
[22] | Kaldybayev A, Chen Y N, Vilesov E, 2016. Glacier change in the Karatal River Basin, Zhetysu (Dzhungar) Alatau, Kazakhstan.Ann. Glaciol., 57(71): 11-19. |
[23] | Krysanova V, Wortmann M, Bolch Tet al., 2014. Analysis of current trends in climate parameters, river discharge and glaciers in the Aksu River basin (Central Asia).Hydrolog. Sci. J., 60(4): 566-590. |
[24] |
Kutuzov S and Shahgedanova M, 2009. Glacier retreat and climatic variability in the eastern Terskey-Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century.Global Planet. Change, 69(1/2): 59-70.
doi: 10.1016/j.gloplacha.2009.07.001 |
[25] | Lai Z M, Cao Z T, Liu C H, 1986. Glacier catalogue of China III: Tianshan Mountain Area: The inner flow region of Zhungeer in Northwest China. Beijing: Science Press: 1-201. (in Chinese) |
[26] |
Li B F, Chen Y N, Chen Z Set al., 2012. Trends in runoff versus climate change in typical rivers in the arid region of northwest China.Quatern. Int., 282: 87-95.
doi: 10.1016/j.quaint.2012.06.005 |
[27] |
Li B L, Zhu A X, Zhang Y Cet al., 2006. Glacier change over the past four decades in the middle Chinese Tien Shan.J. Glaciol., 52(178): 425-432.
doi: 10.3189/172756506781828557 |
[28] |
Li X, Cheng G D, Jin H Jet al., 2008. Cryospheric change in China.Global Planet. Change, 62(3/4): 210-218.
doi: 10.1016/j.gloplacha.2008.02.001 |
[29] |
Liu S Y, Ding Y J, Shangguan D Het al.2006. Glacier retreat as a result of climate warming and increased precipitation in the Tarim River Basin, Northwest China.Ann. Glacio., 43(1): 91-96.
doi: 10.3189/172756406781812168 |
[30] |
Machguth H, Huss M, 2014. The length of the world’s glacier: A new approach for the global calculation of center lines. Cryosphere, 8(5): 1741-1755.
doi: 10.5194/tc-8-1741-2014 |
[31] | Nie Y, Zhang Y L, Liu L Set al., 2010. Monitoring glacier change based on remote sensing in the Mt. Qomolangma National Nature Preserve, 1976-2006.Acta Geographica Sinica, 65(1): 13-28. (in Chinese) |
[32] | Nuth C, Moholdt G, Kohler Jet al., 2010. Svalbard glacier elevation changes and contribution to sea level rise. J. Geophys. Re., 115(F1). . |
[33] |
Oerlemans J, 2005. Extracting a climate signal from 169 glacier records.Science, 308(5722): 675-677.
doi: 10.1126/science.1107046 |
[34] |
Ouyang R L, Cheng W M, Wang W Set al., 2007. Research on runoff forecast approaches to the Aksu River Basin.Science in China Series D, 50(1): 16-25.
doi: 10.1007/s11430-007-5008-3 |
[35] |
Pan B T, Zhang G L, Wang Jet al., 2012. Glacier changes from 1966-2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai-Tibetan Plateau and their climatic forcing.Cryosphere, 6(5): 1087-1101.
doi: 10.5194/tc-6-1087-2012 |
[36] | Petrakov D, Shpuntova A, Aleinikov Aet al., 2016. Accelerated glacier shrinkage in the Ak-Shyirak massif, Inner Tien Shan, during 2003-2013.Sci. Total Environ., 562: 364-378. |
[37] |
Pieczonka T, Bolch T, 2015. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery.Global Planet. Change, 128: 1-13.
doi: 10.1016/j.gloplacha.2014.11.014 |
[38] | Pieczonka T, Bolch T, Wei J Fet al., 2013. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery.Remote Sens. Environ., 130(4): 233-244. |
[39] |
Racoviteanu A, Williams M W, 2012. Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga Area, Eastern Himalaya. Remote. Sens., 4(10): 3078-3109.
doi: 10.3390/rs4103078 |
[40] | Radić V, Hock R, 2010. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys Res.-Earth, 115(F1). |
[41] | Rodríguez E, Morris C S, Belz J E, 2006. A global assessment of the SRTM performance.Photogramm. Eng. Rem. Sens., 72(3): 249-260. |
[42] |
Schauwecker S, Rohrer M, Acuña Det al., 2014. Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited.Global Planet. Change, 119: 85-97.
doi: 10.1016/j.gloplacha.2014.05.005 |
[43] |
Shangguan D H, Liu S Y, Ding Y Jet al., 2009. Glacier changes during the last forty years in the Tarim interior river basin, Northwest China.Prog. Nat. Sci-Mater., 19(6): 727-732.
doi: 10.1016/j.pnsc.2008.11.002 |
[44] | Shi Y F, 2008. Concise Glacier Inventory of China. Shanghai: Shanghai Popular Science Press, 205. (in chinese) |
[45] |
Sidjak R W, 1999. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data.Int. J. Remote Sens., 20(2): 273-284.
doi: 10.1080/014311699213442 |
[46] |
Sorg A, Bolch T, Stoffel Met al., 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia).Nat. Clim. Change, 2(10): 725-731.
doi: 10.1038/nclimate1592 |
[47] |
Vuille M, Kaser G, Juen I, 2008. Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation.Global Planet. Change, 62: 14-28.
doi: 10.1016/j.gloplacha.2007.11.003 |
[48] |
Wang X, Liu S, Ding Yet al., 2012. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data.Nat. Hazard Hazard Earth Sys., 12(10): 3109-3122.
doi: 10.5194/nhess-12-3109-2012 |
[49] |
Wang P Y, Li Z Q, Xu C Het al., 2017. Multi-decadal variations in glacier flow velocity and the influencing factors of Urumqi Glacier No.1 in Tianshan Mountains, Northwest China.J. Arid Land, 9(6): 900-910.
doi: 10.1007/s40333-017-0067-6 |
[50] |
Willmes S, Bareiss J, Haas Cet al., 2009. Observing snowmelt dynamics on fast ice in Kongsfjorden, Svalbard, with NOAA/AVHRR data and field measurements.Polar Res., 28(2): 203-213.
doi: 10.1111/j.1751-8369.2009.00095.x |
[51] |
Xu J H, Chen Y N, Lu Fet al., 2011. The Nonlinear trend of runoff and its response to climate change in the Aksu River, western China. Int. J. Climatol., 31(5): 687-695.
doi: 10.1002/joc.v31.5 |
[52] |
Yu X Y, Lu C H, 2015. Alpine Glacier Change in the Eastern Altun Mountains of Northwest China during 1972-2010.Plos One, 10(2): e0117262.
doi: 10.1371/journal.pone.0117262 |
[53] |
Zhao Q D, Zhang S Q, Ding Y Jet al., 2015. Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma Like River Catchment, Central Tian Shan.J. Hydrometeorol., 16(6): 2383-2402.
doi: 10.1175/JHM-D-14-0231.1 |
[1] | HUANG Huiping, CHEN Wei, ZHANG Yuan, QIAO Lin, DU Yunyan. Analysis of ecological quality in Lhasa Metropolitan Area during 1990-2017 based on remote sensing and Google Earth Engine platform [J]. Journal of Geographical Sciences, 2021, 31(2): 265-280. |
[2] | XU Chenchen, LIAO Xiaohan, YE Huping, YUE Huanyin. Iterative construction of low-altitude UAV air route network in urban areas: Case planning and assessment [J]. Journal of Geographical Sciences, 2020, 30(9): 1534-1552. |
[3] | ZHAO Guining, ZHANG Zhengyong, LIU Lin, LI Zhongqin, WANG Puyu, XU Liping. Simulation and construction of the glacier mass balance in the Manas River Basin, Tianshan, China from 2000 to 2016 [J]. Journal of Geographical Sciences, 2020, 30(6): 988-1004. |
[4] | LIU Wenchao, LIU Jiyuan, KUANG Wenhui. Spatio-temporal characteristics of soil protection efforts of the Grain for Green Project in northern Shaanxi Province [J]. Journal of Geographical Sciences, 2020, 30(3): 401-422. |
[5] | LI Deren, GUO Wei, CHANG Xiaomeng, LI Xi. From earth observation to human observation: Geocomputation for social science [J]. Journal of Geographical Sciences, 2020, 30(2): 233-250. |
[6] | YAO Yonghui, SUONAN Dongzhu, ZHANG Junyao. Compilation of 1:50,000 vegetation type map with remote sensing images based on mountain altitudinal belts of Taibai Mountain in the North-South transitional zone of China [J]. Journal of Geographical Sciences, 2020, 30(2): 267-280. |
[7] | ZHANG Yongqiang. Using LiDAR-DEM based rapid flood inundation modelling framework to map floodplain inundation extent and depth [J]. Journal of Geographical Sciences, 2020, 30(10): 1649-1663. |
[8] | LIU Juan, YAO Xiaojun, LIU Shiyin, GUO Wanqin, XU Junli. Glacial changes in the Gangdisê Mountains from 1970 to 2016 [J]. Journal of Geographical Sciences, 2020, 30(1): 131-144. |
[9] | CHEN Shaodan, ZHANG Liping, ZHANG Yanjun, GUO Mengyao, LIU Xin. Evaluation of Tropical Rainfall Measuring Mission (TRMM) satellite precipitation products for drought monitoring over the middle and lower reaches of the Yangtze River Basin, China [J]. Journal of Geographical Sciences, 2020, 30(1): 53-67. |
[10] | Xifang WU, Yongqing QI, Yanjun SHEN, Wei YANG, Yucui ZHANG, Akihiko KONDOH. Change of winter wheat planting area and its impacts on groundwater depletion in the North China Plain [J]. Journal of Geographical Sciences, 2019, 29(6): 891-908. |
[11] | Yucui ZHANG, Yongqing QI, Yanjun SHEN, Hongying WANG, Xuepeng PAN. Mapping the agricultural land use of the North China Plain in 2002 and 2012 [J]. Journal of Geographical Sciences, 2019, 29(6): 909-921. |
[12] | Cunjian YANG, Guanghong XU, Hechao LI, Defei YANG, He HUANG, Jing NI, Xiao LI, Xiao XIANG. Measuring the area of cultivated land reclaimed from rural settlements using an unmanned aerial vehicle [J]. Journal of Geographical Sciences, 2019, 29(5): 846-860. |
[13] | LIU Qionghuan, ZHANG Yili, LIU Linshan, LI Lanhui, QI Wei. The spatial local accuracy of land cover datasets over the Qiangtang Plateau, High Asia [J]. Journal of Geographical Sciences, 2019, 29(11): 1841-1858. |
[14] | Yong GE, Yuehong CHEN, Yuanxin JIA, Xian GUO, Shan HU. Dynamic monitoring the infrastructure of major ports in Sri Lanka by using multi-temporal high spatial resolution remote sensing images [J]. Journal of Geographical Sciences, 2018, 28(7): 973-984. |
[15] | Boyi LIANG, Suhong LIU. Measurement of vegetation parameters and error analysis based on Monte Carlo method [J]. Journal of Geographical Sciences, 2018, 28(6): 819-832. |
|