Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (6): 909-921.doi: 10.1007/s11442-019-1636-8
• Special Issue: Water Resources in Beijing-Tianjin-Hebei Region • Previous Articles Next Articles
Yucui ZHANG, Yongqing QI*(), Yanjun SHEN, Hongying WANG, Xuepeng PAN
Received:
2018-05-12
Accepted:
2018-11-23
Online:
2019-06-25
Published:
2019-06-25
Contact:
Yongqing QI
E-mail:qiyq@sjziam.ac.cn
About author:
Author: Zhang Yucui (1984-), Assistant Professor, specialized in eco-hydrology and isotope hydrology.E-mail:
Supported by:
Yucui ZHANG, Yongqing QI, Yanjun SHEN, Hongying WANG, Xuepeng PAN. Mapping the agricultural land use of the North China Plain in 2002 and 2012[J].Journal of Geographical Sciences, 2019, 29(6): 909-921.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Area and proportion of crops in the North China Plain"
Year | Items | Winter wheat-summer maize | Cotton | Single spring maize | Forest/ fruit trees | Vegetables | Paddy | Summation |
---|---|---|---|---|---|---|---|---|
2002 | Area (103 ha) | 5065.40 | 1087.37 | 1045.88 | 997.60 | 447.62 | 283.88 | 8927.75 |
Proportion (%) | 56.74 | 12.18 | 11.72 | 11.17 | 5.01 | 3.18 | 100.00 | |
2012 | Area (103 ha) | 5031.21 | 865.90 | 1226.10 | 1271.17 | 648.02 | 216.51 | 9258.91 |
Proportion (%) | 54.34 | 9.35 | 13.24 | 13.73 | 7.00 | 2.34 | 100.00 |
Table 2
Agricultural land use area change of municipalities or prefectures in the North China Plain from 2002 to 2012 (103 ha)"
Cotton | Single spring maize | Forest/ fruit trees | Winter wheat | Vegetables | Paddy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing (BJ) | 0.13 | -21.09 | 69.96 | -8.57 | 7.13 | 0.93 | |||||||||
Tianjin (TJ) | 0.24 | -5.09 | -31.64 | -19.91 | 48.92 | -28.78 | |||||||||
Hebei Province | Qinhuangdao (QHD) | 0.72 | 13.78 | 14.63 | -24.89 | 0.49 | -2.36 | ||||||||
Tangshan (TS) | 0.16 | -31.07 | 35.38 | -24.91 | 45.04 | -25.12 | |||||||||
Langfang (LF) | 8.78 | 56.61 | 33.18 | -81.30 | 13.69 | 1.19 | |||||||||
Cangzhou (CZ) | 9.61 | 63.08 | 34.28 | -120.33 | 33.10 | 9.72 | |||||||||
Hengshui (HS) | -22.74 | 41.22 | 28.14 | -78.82 | 23.27 | 0.56 | |||||||||
Baoding (BD) | 8.06 | -17.40 | 95.50 | -38.88 | -1.67 | 1.61 | |||||||||
Shijiazhuang (SJZ) | -10.62 | -7.24 | 0.78 | 57.33 | -1.72 | 0.01 | |||||||||
Xingtai (XT) | 15.27 | -29.04 | -4.64 | 54.21 | -0.51 | 0.00 | |||||||||
Handan (HD) | -9.36 | 10.71 | -2.76 | 24.06 | 28.19 | 0.05 | |||||||||
Shandong Province | Dongying (DY) | 8.50 | 2.09 | -7.61 | 10.46 | -6.08 | -10.58 | ||||||||
Binzhou (BZ) | -6.43 | 5.85 | 8.44 | -23.92 | -2.85 | -4.35 | |||||||||
Jinan (JN) | 10.26 | 2.99 | 0.73 | -10.56 | -0.07 | 1.80 | |||||||||
Dezhou (DZ) | -85.27 | 21.83 | 47.79 | 16.09 | 6.59 | 5.01 | |||||||||
Liaocheng (LC) | -139.00 | 12.08 | -28.95 | 177.93 | 11.39 | -7.18 | |||||||||
Henan Province | Hebi (HB) | 0.13 | 3.43 | -0.28 | 7.53 | -0.10 | 0.00 | ||||||||
Xinxiang (XX) | -7.24 | 17.90 | 0.65 | 12.56 | -0.80 | -4.07 | |||||||||
Jiaozuo (JZ) | 0.29 | 5.49 | 1.32 | -10.96 | 0.03 | 0.31 | |||||||||
Puyang (PY) | -0.52 | 21.79 | -8.66 | 33.22 | -0.81 | -6.79 | |||||||||
Anyang (AY) | -2.34 | 12.38 | -12.78 | 14.85 | -2.11 | 0.01 | |||||||||
Total | -221.38 | 180.28 | 273.44 | -34.82 | 201.15 | -68.03 |
[1] | An G, 2018. Study on spatio-temporal change of ecological land in Yellow River Delta based on RS&GIS. E3S Web of Conferences. EDP Sciences, 38: 01008. . |
[2] |
Boryan C, Yang Z, Mueller Ret al., 2011. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program.Geocarto International, 26(5): 341-358.
doi: 10.1080/10106049.2011.562309 |
[3] | Breiman L, Friedam J H, Olshen R Aet al., 1984. Classification and Regression Trees. Belmont: Wadsworth International Group, 1-358. |
[4] | Chaudhuri A S, Singh P, Rai S C, 2018. Modelling LULC change dynamics and its impact on environment and water security: geospatial technology based assessment.Ecology, Environment and Conservation, 24(Suppl.): S292-S298. |
[5] |
Clevers J G P W, 1997. A simplified approach for yield prediction of sugar beet based on optical remote sensing data.Remote Sensing of Environment, 61(2): 221-228.
doi: 10.1016/S0034-4257(97)00004-7 |
[6] |
Cohen Y, Shoshany M, 2002. A national knowledge-based crop recognition in Mediterranean environment.International Journal of Applied Earth Observation and Geoinformation, 4(1): 75-87.
doi: 10.1016/S0303-2434(02)00003-X |
[7] |
Conrad C, Lamers J P A, Ibragimov Net al., 2016. Analysing irrigated crop rotation patterns in arid Uzbekistan by the means of remote sensing: A case study on post-Soviet agricultural land use.Journal of Arid Environments, 124: 150-159.
doi: 10.1016/j.jaridenv.2015.08.008 |
[8] |
de Oliveira S N, de Carvalho Júnior O A, Gomes R A Tet al., 2017. Landscape-fragmentation change due to recent agricultural expansion in the Brazilian Savanna, Western Bahia, Brazil.Regional Environmental Change, 17(2): 411-423.
doi: 10.1007/s10113-016-0960-0 |
[9] | Fan J, Wu B, 2004. A methodology for retrieving cropping index from NDVI profile.Journal of Remote Sensing, 8(6): 628-636. (in Chinese). |
[10] |
Fang Q, Ma L, Green Tet al., 2010. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options.Agricultural Water Management, 97(8): 1102-1116.
doi: 10.1016/j.agwat.2010.01.008 |
[11] | Frolking S, Qiu J, Boles Set al., 2002. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochemical Cycles, 16(4): 38-1-38-10. |
[12] | Gallego F, 1999. Crop area estimation in the MARS Project. Conference on ten years of the MARS Project. |
[13] |
Kingra P, Majumder D, Singh S P, 2016. Application of remote sensing and GIS in agriculture and natural resource management under changing climatic conditions.Agricultural Research Journal, 53(3): 295-302.
doi: 10.5958/2395-146X.2016.00058.2 |
[14] | Kleweno D D, Miller C E, 1981. 1980 AgRISTARS DC/LC Project Summary Crop Area Estimates for Kansas and Iowa. U.S. Department of Agriculture Economics and Statistics Service Statistical Research Division. ESS Staff Report, No.AGESS-810414. |
[15] |
Li X, Tong L, Niu Jet al., 2017. Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China.Agricultural Water Management, 179: 55-63.
doi: 10.1016/j.agwat.2016.07.010 |
[16] |
Liang S, Ma W, Sui Xet al., 2017. Extracting the spatiotemporal pattern of cropping systems from NDVI time series using a combination of the spline and HANTS algorithms: A case study for Shandong Province.Canadian Journal of Remote Sensing, 43(1): 1-15.
doi: 10.1080/07038992.2017.1252906 |
[17] |
Liu J, Kuang W, Zhang Zet al., 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s.Journal of Geographical Sciences, 24(2): 195-210.
doi: 10.1007/s11442-014-1082-6 |
[18] |
Liu J, Liu M, Tian Het al., 2005. Spatial and temporal patterns of China's cropland during 1990-2000: An analysis based on Landsat TM data.Remote Sensing of Environment, 98(4): 442-456.
doi: 10.1016/j.rse.2005.08.012 |
[19] | Liu J, Liu M, Zhuang Det al., 2003. Study on spatial pattern of land-use change in China during 1995-2000.Science in China Series D: Earth Sciences, 46(4): 373-384. |
[20] |
Liu J, Zhang Z, Xu Xet al., 2010. Spatial patterns and driving forces of land use change in China during the early 21st century.Journal of Geographical Sciences, 20(4): 483-494.
doi: 10.1007/s11442-010-0483-4 |
[21] |
Lu Y, Zhang X, Chen S et al.Chen S , 2016. Changes in water use efficiency and water footprint in grain production over the past 35 years: A case study in the North China Plain.Journal of Cleaner Production, 116: 71-79.
doi: 10.1016/j.jclepro.2016.01.008 |
[22] | MacDonald R, Hall F G, Erb R, 1975. The use of Landsat data in a large area crop inventory experiment (LACIE). |
[23] |
Marshall M, Thenkabail P, 2015. Developing in situ non-destructive estimates of crop biomass to address issues of scale in remote sensing.Remote Sensing, 7(1): 808.
doi: 10.3390/rs70100808 |
[24] |
Murakami T, Ogawa S, Ishitsuka Net al., 2001. Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan.International Journal of Remote Sensing, 22(7): 1335-1348.
doi: 10.1080/01431160151144378 |
[25] |
Oguro Y, Suga Y, Takeuchi Set al., 2001. Comparison of SAR and optical sensor data for monitoring of rice plant around Hiroshima.Advances in Space Research, 28(1): 195-200.
doi: 10.1016/S0273-1177(01)00345-3 |
[26] |
Panigrahy S, Sharma S A, 1997. Mapping of crop rotation using multidate Indian remote sensing satellite digital data.ISPRS Journal of Photogrammetry and Remote Sensing, 52(2): 85-91.
doi: 10.1016/S0924-2716(97)83003-1 |
[27] |
Pei H, Scanlon B R, Shen Yet al., 2015. Impacts of varying agricultural intensification on crop yield and groundwater resources: Comparison of the North China Plain and US High Plains.Environmental Research Letters, 10(4): 044013.
doi: 10.1088/1748-9326/10/4/044013 |
[28] |
Roerink G, Menenti M, Verhoef W, 2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series.International Journal of Remote Sensing, 21(9): 1911-1917.
doi: 10.1080/014311600209814 |
[29] |
Serra P, Salvati L, Queralt Eet al., 2016. Estimating water consumption and irrigation requirements in a long-established mediterranean rural community by remote sensing and field data.Irrigation and Drainage, 65(5): 578-588.
doi: 10.1002/ird.v65.5 |
[30] | Tang H, Wu W, Yang Pet al., 2010. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies.Scientia Agricultura Sinica, 43(14): 2879-2888. |
[31] |
Turner M D, Congalton R G, 1998. Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African floodplain.International Journal of Remote Sensing, 19(1): 21-41.
doi: 10.1080/014311698216404 |
[32] |
Wardlow B D, Egbert S L, 2008. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains.Remote Sensing of Environment, 112(3): 1096-1116.
doi: 10.1016/j.rse.2007.07.019 |
[33] |
White M A, BEURS D, Kirsten Met al., 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006.Global Change Biology, 15(10): 2335-2359.
doi: 10.1111/gcb.2009.15.issue-10 |
[34] | Wilson W W, Sebaugh J L, 1981. Established criteria and selected methods for evaluating crop yield models in the AgRISTARS Program. Proceedings of the American Statistical Association, American Statistical Association, Washington, DC: 24-34. |
[35] |
Wu B, Li Q, 2012. Crop planting and type proportion method for crop acreage estimation of complex agricultural landscapes.International Journal of Applied Earth Observation and Geoinformation, 16: 101-112.
doi: 10.1016/j.jag.2011.12.006 |
[36] |
Xiao X, Boles S, Liu Jet al., 2005. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images.Remote Sensing of Environment, 95(4): 480-492.
doi: 10.1016/j.rse.2004.12.009 |
[37] |
Yuan Z, Shen Y, 2013. Estimation of agricultural water consumption from meteorological and yield data: A case study of Hebei, North China.PloS One, 8(3): e58685.
doi: 10.1371/journal.pone.0058685 |
[38] |
Zhang J, Manske G, Zhou Pet al., 2017. Factors influencing farmers’ decisions on nitrogen fertilizer application in the Liangzihu Lake basin, Central China.Environment, Development and Sustainability, 19(3): 791-805.
doi: 10.1007/s10668-016-9765-z |
[39] |
Zhang M, Zhou Q, Chen Zet al., 2008. Crop discrimination in northern China with double cropping systems using Fourier analysis of time-series MODIS data. International Journal of Applied Earth Observation and Geoinformation, 10(4): 476-485.
doi: 10.1016/j.jag.2007.11.002 |
[40] |
Zhang Y, Shen Y, Xu Xet al., 2013. Characteristics of the water-energy-carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd) orchards in the North China Plain.Agricultural Water Management, 128: 140-148.
doi: 10.1016/j.agwat.2013.07.007 |
[41] |
Zhao Y, Feng D, Yu Let al., 2016. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data.Remote Sensing of Environment, 183: 170-185.
doi: 10.1016/j.rse.2016.05.016 |
[42] | Zhao Y, Lv H, 2015. The challenges and path selection in the development of modern agriculture in the background of 10 years of continuous growth of grain production in China.Research of Agricultural Modernization, 36(4): 561-567. (in Chinese) |
[43] |
Zhong L, Hu L, Yu Let al., 2016. Automated mapping of soybean and corn using phenology.ISPRS Journal of Photogrammetry and Remote Sensing, 119: 151-164.
doi: 10.1016/j.isprsjprs.2016.05.014 |
[1] | HUANG Huiping, CHEN Wei, ZHANG Yuan, QIAO Lin, DU Yunyan. Analysis of ecological quality in Lhasa Metropolitan Area during 1990-2017 based on remote sensing and Google Earth Engine platform [J]. Journal of Geographical Sciences, 2021, 31(2): 265-280. |
[2] | XU Chenchen, LIAO Xiaohan, YE Huping, YUE Huanyin. Iterative construction of low-altitude UAV air route network in urban areas: Case planning and assessment [J]. Journal of Geographical Sciences, 2020, 30(9): 1534-1552. |
[3] | ZHAO Guining, ZHANG Zhengyong, LIU Lin, LI Zhongqin, WANG Puyu, XU Liping. Simulation and construction of the glacier mass balance in the Manas River Basin, Tianshan, China from 2000 to 2016 [J]. Journal of Geographical Sciences, 2020, 30(6): 988-1004. |
[4] | LIU Wenchao, LIU Jiyuan, KUANG Wenhui. Spatio-temporal characteristics of soil protection efforts of the Grain for Green Project in northern Shaanxi Province [J]. Journal of Geographical Sciences, 2020, 30(3): 401-422. |
[5] | LI Deren, GUO Wei, CHANG Xiaomeng, LI Xi. From earth observation to human observation: Geocomputation for social science [J]. Journal of Geographical Sciences, 2020, 30(2): 233-250. |
[6] | YAO Yonghui, SUONAN Dongzhu, ZHANG Junyao. Compilation of 1:50,000 vegetation type map with remote sensing images based on mountain altitudinal belts of Taibai Mountain in the North-South transitional zone of China [J]. Journal of Geographical Sciences, 2020, 30(2): 267-280. |
[7] | ZHANG Yongqiang. Using LiDAR-DEM based rapid flood inundation modelling framework to map floodplain inundation extent and depth [J]. Journal of Geographical Sciences, 2020, 30(10): 1649-1663. |
[8] | CHEN Shaodan, ZHANG Liping, ZHANG Yanjun, GUO Mengyao, LIU Xin. Evaluation of Tropical Rainfall Measuring Mission (TRMM) satellite precipitation products for drought monitoring over the middle and lower reaches of the Yangtze River Basin, China [J]. Journal of Geographical Sciences, 2020, 30(1): 53-67. |
[9] | Leilei MIN, Yongqing QI, Yanjun SHEN, Ping WANG, Shiqin WANG, Meiying LIU. Groundwater recharge under irrigated agro-ecosystems in the North China Plain: From a critical zone perspective [J]. Journal of Geographical Sciences, 2019, 29(6): 877-890. |
[10] | Xifang WU, Yongqing QI, Yanjun SHEN, Wei YANG, Yucui ZHANG, Akihiko KONDOH. Change of winter wheat planting area and its impacts on groundwater depletion in the North China Plain [J]. Journal of Geographical Sciences, 2019, 29(6): 891-908. |
[11] | Qifei ZHANG, Yaning CHEN, Zhi LI, Yupeng LI, Yanyun XIANG, Wei BIAN. Glacier changes from 1975 to 2016 in the Aksu River Basin, Central Tianshan Mountains [J]. Journal of Geographical Sciences, 2019, 29(6): 984-1000. |
[12] | Cunjian YANG, Guanghong XU, Hechao LI, Defei YANG, He HUANG, Jing NI, Xiao LI, Xiao XIANG. Measuring the area of cultivated land reclaimed from rural settlements using an unmanned aerial vehicle [J]. Journal of Geographical Sciences, 2019, 29(5): 846-860. |
[13] | LIU Qionghuan, ZHANG Yili, LIU Linshan, LI Lanhui, QI Wei. The spatial local accuracy of land cover datasets over the Qiangtang Plateau, High Asia [J]. Journal of Geographical Sciences, 2019, 29(11): 1841-1858. |
[14] | Yong GE, Yuehong CHEN, Yuanxin JIA, Xian GUO, Shan HU. Dynamic monitoring the infrastructure of major ports in Sri Lanka by using multi-temporal high spatial resolution remote sensing images [J]. Journal of Geographical Sciences, 2018, 28(7): 973-984. |
[15] | Boyi LIANG, Suhong LIU. Measurement of vegetation parameters and error analysis based on Monte Carlo method [J]. Journal of Geographical Sciences, 2018, 28(6): 819-832. |
|