Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (5): 803-817.doi: 10.1007/s11442-019-1629-7
Previous Articles Next Articles
Kanda SAKAYAROTE1(), Rajendra P. SHRESTHA2,*(
)
Received:
2018-08-04
Accepted:
2018-12-20
Online:
2019-05-25
Published:
2019-04-19
Contact:
Rajendra P. SHRESTHA
E-mail:kanda839@hotmail.com;rajendra@ait.ac.th
About author:
Author: K. Sakayarote, E-mail:
Kanda SAKAYAROTE, Rajendra P. SHRESTHA. Simulating land use for protecting food crop areas in northeast Thailand using GIS and Dyna-CLUE[J].Journal of Geographical Sciences, 2019, 29(5): 803-817.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Change of rubber area and paddy area in Thailand from 2007 to 2016"
Year | Para rubber area (ha) | Paddy area (ha) | ||
---|---|---|---|---|
Of the country | Of the study area | Of the country | Of the study area | |
2007 | 2,888,800 | 85,043 | 9,181,760 | 143,183 |
2008 | 3,009,440 | 102,052 | 9,187,520 | 141,119 |
2009 | 3,140,000 | 96,259 | 9,199,520 | 111,788 |
2010 | 3,242,240 | 134,126 | 10,331,840 | 199,671 |
2011 | 3,386,400 | 136,310 | 10,448,640 | 180,584 |
2012 | 3,597,120 | 136,432 | 10,392,160 | 179,838 |
2013 | 3,711,040 | 162,506 | 9,932,800 | 156,297 |
2014 | 3,738,999 | 162,666 | 9,726,560 | 153,909 |
2015 | 3,733,108 | 162,706 | 9,290,080 | 152,849 |
2016 | 3,734,400 | 166,934 | 9,348,320 | 156,716 |
Table 2
Land suitability for rice and rubber"
Land characteristics | Limiting values for rice | Limiting values for rubber | ||||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | N | S1 | S2 | S3 | N | |
Annual mean temperature | >24 | 21-24 | 18-21 | <18 | 26-28 | 23-25, 29-34 | 20-22 | >34, <20 |
(℃) | ||||||||
Elevation (m) | 0-600 | 600-1200 | 1200-1800 | >1800 | < 250 | 250-400 | 400-500 | >500 |
75% probability rainfall (mm) | >1300 | 900-1300 | 500-900 | <500 | 1500-2000 | 2000-3000 | 1500-2000 | 2000-3000 |
Soil drainage class | Poorly drained | Imperfectly drained | Moderately well drained | Excessively drained | Well to moderately well | Moderately well to somewhat poorly | Poorly | Very poorly |
Soil texture | C, ZC, ZCL, L | SC, SCL, ZL, Z | SL | S, LS | SSiL, SiL | SCL, CL | LS | - |
Soil depth (cm) | >80 | 60-80 | 40-60 | <40 | >150 | 100-150 | 50-100 | <50 |
pH of flooded soil | 7-Jun | 5 6, 7-8 | 4.5-5, 8-8.5 | <4.5 | 5.0-7.3 | 7.3-8.0 | 3.5-4.0 | >8.0, <3.5 |
ECe (mS cm-1) | <3 | 3-5 | 5-7 | >7 | >10 | 3-10 | <3 | - |
Slope angle (degrees) | <1 | 1-2 | 2-6 | >6 | <20 | 20-40 | 40-60 | >60 |
Table 3
Land demand characteristics of three scenarios"
Land use type | Percentage change from the current trend | ||
---|---|---|---|
Scenario 1: Business as usual (A continuation of the land transformation rates for the past ten year is assumed) | Scenario 2: Policy to protect high potential land for paddy cultivation (2032) | Scenario 3: Policy to protect high and moderate potential land for paddy cultivation (2032) | |
Field crops Forest Paddy Perennial crops Water Rubber Orchard Urban Others | -2.69 -1.31 -24.09 5.71 -2.19 18.72 0.03 0.15 5.68 | -4.16 1.59 -17.46 2.84 -2.22 14.23 -0.33 0.60 4.91 | -2.80 -2.62 -11.87 3.76 -1.88 9.96 0.08 0.16 5.21 |
Spatial policy | No restriction on any land use class | Retention of natural forest and high potential land for paddy field (S1) | Restriction on high (S1) and moderate (S2) potential land for paddy field, forest, and unsuitable land for rubber |
Table 4
Location factors used for future land use simulation"
Factors | Variable scale | Minimum | Maximum |
---|---|---|---|
Elevation (m) | Continuous | 158 | 245 |
Distance to main road (km) | Continuous | 0 | 6.08 |
Distance to water resource (km) | Continuous | 0 | 6.9 |
Land with property right | Binary | 0= non-property right | 1= property right |
Distance to district (km) | Continuous | 30.9 | 41 |
Slope (%) | Continuous | 0 | 21.39 |
Land suitability for rice | Binary | 0= not suitable for rice | 1= suitable for rice |
Land suitability for rubber | Binary | 0= not suitable for rubber | 1= suitable for rubber |
Table 5
Land use transition matrix of the study area from 2002 to 2012 (ha)"
Land use type | Field crops | Forest | Paddy field | Perennial crops | Water | Rubber | Orchard | Urban area | Other | Total (2002) |
---|---|---|---|---|---|---|---|---|---|---|
Field crops | 6089 | 4676 | 4163 | 1448 | 1221 | 8542 | 1374 | 1177 | 2,580 | 31,269 |
Forest | 1466 | 38,151 | 12,988 | 2069 | 714 | 6479 | 647 | 1396 | 3,551 | 67,462 |
Paddy field | 7533 | 9605 | 153,439 | 16,149 | 10,191 | 53,919 | 919 | 10,755 | 22,650 | 285,160 |
Perennial crops | 1919 | 2548 | 6449 | 8788 | 839 | 17,417 | 120 | 887 | 2,908 | 41,875 |
Water | 851 | 537 | 7425 | 1176 | 8452 | 1786 | 143 | 1185 | 5,840 | 27,395 |
Rubber | 6289 | 2192 | 25,915 | 13,747 | 2933 | 91,684 | 485 | 4479 | 12,164 | 159,888 |
Orchard | 314 | 251 | 2301 | 332 | 283 | 641 | 145 | 475 | 604 | 5,347 |
Urban area | - | - | - | - | - | - | - | 11,352 | 839 | 12,193 |
Other | 9725 | 7641 | 22,172 | 7089 | 5414 | 20,707 | 303 | 3639 | 17,309 | 93,998 |
Total (Year 2012) | 34,187 | 65,600 | 234,852 | 50,798 | 30,047 | 201,174 | 4136 | 35,345 | 68,445 | 724,590 |
Table 6
Rubber cultivation in different land suitability levels for rubber in the study area"
Land suitability for rubber | Total study area (ha) | Rubber cultivation under different land suitability levels (ha) | |||
---|---|---|---|---|---|
2002 | 2006 | 2009 | 2012 | ||
Highly suitable | 31,666 | 1669 | 3735 | 4356 | 6019 |
Moderately suitable | 49,068 | 6484 | 14,825 | 21,456 | 26,497 |
Marginally suitable | 353,072 | 64,623 | 87,246 | 106,691 | 119,868 |
Unsuitable area and forests | 290,785 | 7075 | 9476 | 3720 | 4778 |
Total | 724,590 | 79,850 | 115,282 | 136,223 | 157,164 |
Table 7
Factors influencing land use type"
Variable | Field crops | Forest | Paddy | Perennial crops | Water | Rubber | Orchard | Urban | Other |
---|---|---|---|---|---|---|---|---|---|
Constant | -0.839 | -2.210 | 0.581 | -3.034 | -3.710 | -1.700 | -5.063 | -3.027 | -3.198 |
β values | |||||||||
Elevation | -0.012 | 0.008 | n.s. | 0.008 | -0.003 | 0.004 | -5.021 | n.s. | -0.003 |
Distance to main road | n.s. | -0.002 | 0.001 | n.s. | -0.001 | 0.008 | n.s. | 0.002 | -0.001 |
Distance to water resource | 0.001 | -0.002 | -0.078 | -0.004 | -0.002 | n.s. | -0.001 | 0.043 | n.s. |
Hill shade | -0.006 | -0.801 | -0.01 | 0.003 | 0.003 | n.s. | 0.005 | n.s. | 0.004 |
Land property rights | 0.597 | -0.266 | -0.10 | 0.357 | -0.397 | 0.415 | 0.466 | 0.289 | -0.296 |
Distance to town | n.s. | -0.002 | 0.01 | -0.001 | 0.001 | -0.003 | 0.002 | 0.005 | 0.013 |
Slope | -0.0014 | -0.348 | -0.06 | n.s. | -0.002 | 0.176 | 0.002 | -0.095 | 0.098 |
Land suitability for rice | -0.003 | 0.192 | 0.01 | -0.288 | -1.17 | -0.232 | n.s. | -0.004 | -0.003 |
Land suitability for rubber | 0.216 | 0.485 | -0.176 | -0.154 | -1.89 | 0.171 | 0.495 | -0.218 | 0.002 |
Table 8
Area coverage under projected land use types by 2032 in the study area"
Land use | Scenario 1: Business as usual (2032) | Scenario 2: Policy to protect high land potential for paddy cultivation (2032) | Scenario 3: Policy to protect high and moderate land potential for paddy cultivation (2032) | |||
---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | |
Field crops | 22,236 | 3.07 | 22,810 | 3.15 | 32,642 | 4.50 |
Forest | 45,531 | 6.28 | 83,084 | 11.47 | 52,649 | 7.27 |
Paddy | 225,785 | 31.16 | 275,452 | 38.01 | 315,979 | 43.61 |
Perennial crops | 41,532 | 5.73 | 31,834 | 4.39 | 38,509 | 5.31 |
Water | 31,502 | 4.35 | 31,636 | 4.37 | 34,078 | 4.70 |
Rubber | 255,118 | 35.21 | 183,539 | 25.33 | 152,577 | 21.06 |
Orchard | 1,813 | 0.25 | 1,779 | 0.25 | 4,749 | 0.66 |
Urban | 41,036. | 5.66 | 35,964 | 4.96 | 32,771 | 4.52 |
Other | 60,038 | 8.29 | 58,491 | 8.07 | 60,635 | 8.37 |
Total | 724,590 | 100 | 724,590 | 100 | 724,590 | 100 |
Table 9
Household rice production and income"
Variable | Average | Conversion (Change of paddy to rubber) (n=100) | Non-conversion (No change) (n=111) | T-value |
---|---|---|---|---|
1. Rice production (ton/household /year) | 3.14 | 1.83 (0.27) | 4.54 (0.37) | ** |
2. Rice productivity (ton/ha/year) | 1.77 | 1.74 (0.39) | 1.81 (0.25) | * |
3. Rice purchase for household consumption (ton/household/year) | 0.34 | 1.02 (0.79) | 0.02 (0.013) | ** |
4. Rice expenditure (USD102/household/year) | 1.57 | 2.26 (1.69) | 0.03 (0.027) | ** |
5. Household rice consumption (ton/ household/year) | 0.81 | 0.74 (0.25) | 0.86 (0.31) | * |
6. Rice consumption (kg/person) | 229 | 224 (111) | 238 (172) | * |
7. Household member (person) | 4.02 | 3.59 (0.91) | 4.45 (1.02) | * |
8. Net income of the household (103USD/year) | 7.58 | 8.89 (4.66) | 8.91 (4.89) | - |
9. Average yield of rubber (ton/ha/year) | 1.17 | 1.14 (0.24) | 1.18 (0.33) | * |
10. Income from rubber production (USD/ha/year)1 | 1,495 | 1477 (341) | 1491 (376) | * |
11. Income from rice production (USD/ha/year) 1 | 713 | 708 (245) | 722 (159) | * |
[1] | Ahmed F F, 2012. Income diversification determinants among farming households in Konduga, Borno State, Nigeria.Academic Research International, 2(2): 555-561. |
[2] |
Fox J, Castella J C, 2013. Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for smallholders? The Journal of Peasant Studies, 40(1): 155-170.
doi: 10.1080/03066150.2012.750605 |
[3] | Isvilanonda S, Bunyasiri I, 2009. Food security in Thailand: Status, rural poor vulnerability, and some policy options. ARE Working Paper No.2552/1. Department of Agricultural and Resource. |
[4] | Ivanic M, Martin W, 2008. Implications of higher global food prices for poverty in low-income countries. Available at SSRN 1149097. |
[5] | Kroeksakul P, Naipinit A, Sakolnakorn T P N, 2011. The economic and social effects of farmers growing para rubber in northeast Thailand: A case study of Sapsomboon village, Dun Sad sub-district, Kranoun district, Khon Kaen province.Journal of Business Case Studies (JBCS), 7(1): 113-118. |
[6] |
Lambin E F, Meyfroidt P, 2011. Global land use change, economic globalization, and the looming land scarcity.Proceedings of the National Academy of Sciences, 108(9): 3465-3472.
doi: 10.1073/pnas.1100480108 |
[7] | Li Z, Fox J M, 2011. Rubber tree distribution mapping in Northeast Thailand. International Journal of Geosciences, 2(4): 573-584. . |
[8] | Office of Agricultural Economics (OAE), 2013. Agriculture statistics of Thailand 2013. Ministry of Agriculture and Cooperatives. Bangkok, Thailand. |
[9] |
Partoyo Shrestha R P, 2013. Monitoring farmland loss and projecting the future land use of an urbanized watershed in Yogyakarta, Indonesia.Journal of Land Use Science, 8(1): 59-84.
doi: 10.1080/1747423X.2011.620993 |
[10] |
Pontius R G, Schneider L C, 2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA.Agriculture, Ecosystems & Environment, 85(1): 239-248.
doi: 10.1016/S0167-8809(01)00187-6 |
[11] |
Pontius Jr R G, Boersma W, Castella J Cet al., 2008. Comparing the input, output, and validation maps for several models of land change.The Annals of Regional Science, 42(1): 11-37.
doi: 10.1007/s00168-007-0138-2 |
[12] | Rubber Authority of Thailand, 2010. Central Market Daily Rubber Price Report by the Rubber Economic Research and Development. . |
[13] |
Sakayarote K, Shrestha R P, 2017. Policy-driven rubber plantation and its driving factors: A case of smallholders in northeast Thailand.International Journal of Sustainable Development & World Ecology, 24(1): 15-26.
doi: 10.1080/13504509.2016.1143410 |
[14] |
Schneider U A, Havlík P, Schmid Eet al., 2011. Impacts of population growth, economic development, and technical change on global food production and consumption.Agricultural Systems, 104(2): 204-215.
doi: 10.1016/j.agsy.2010.11.003 |
[15] |
Thongmanivong S, Fujita Y, 2006. Recent land use and livelihood transitions in northern Laos.Mountain Research and Development, 26(3): 237-244.
doi: 10.2307/4096458 |
[16] | Thongyou M, 2014. Rubber cash crop and changes in livelihoods strategies in a village in Northeastern Thailand.Asian Social Science, 10(13): 239-251. |
[17] |
Verburg P H, Soepboer W, Veldkamp Aet al., 2002. Modeling the spatial dynamics of regional land use: The CLUE-S model.Environmental Management, 30(3): 391-405
doi: 10.1007/s00267-002-2630-x pmid: 12148073 |
[18] | Viswanathan P, 2008. Emerging smallholder rubber farming systems in India and Thailand: A comparative economic analysis.Asian Journal of Agriculture and Development, 5(2): 2. |
[19] |
Wang J, Chen Y, Shao Xet al., 2012. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy, 29: 737-749.
doi: 10.1016/j.landusepol.2011.11.010 |
[20] |
Wannasai N, Shrestha R P, 2008. Role of land tenure security and farm household characteristics on land use change in the Prasae Watershed, Thailand.Land Use Policy, 25(2): 214-224.
doi: 10.1016/j.landusepol.2007.07.003 |
[1] | Fangqu NIU, Fang WANG, Mingxing CHEN. Modelling urban spatial impacts of land-use/transport policies [J]. Journal of Geographical Sciences, 2019, 29(2): 197-212. |
[2] | NING Jia,LIU Jiyuan,Kuang Wenhui,XU Xinliang,ZHANG Shuwen,YAN Changzhen,LI Rendong,WU Shixin,HU Yunfeng,DU Guoming,CHI Wenfeng,PAN Tao,NING Jing. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015 [J]. Journal of Geographical Sciences, 2018, 28(5): 547-562. |
[3] | YAO Jingtao,KONG Xiangbin. Modeling the effects of land-use optimization on the soil organic carbon sequestration potential [J]. Journal of Geographical Sciences, 2018, 28(11): 1641-1658. |
[4] | LIU Jiyuan, KUANG Wenhui, ZHANG Zengxiang, XU Xinliang, QIN Yuanwei, NING Jia, ZHOU Wancun, ZHANG Shuwen, LI Rendong, YAN Changzhen, WU Shixin, SHI Xuezheng, JIANG Nan, YU Dongsheng, PAN Xianzhang, CHI Wenfeng. Spatiotemporal characteristics, patterns, and caus-es of land-use changes in China since the late 1980s [J]. , 2014, 24(2): 195-210. |
[5] | ZHAO Dongsheng, WU Shaohong. Vulnerability of natural ecosystem in China under regional climate scenarios:An analysis based on eco-geographical regions [J]. , 2014, 24(2): 237-248. |
[6] | LIU Xiaona, FENG Zhiming, JIANG Luguang, LI Peng, LIAO Chenhua, YANG Yanzhao, YOU Zhen. Rubber plantation and its relationship with topographical factors in the border region of China, Laos and Myanmar [J]. , 2013, 23(6): 1019-1040. |
[7] | LIU Yansui, YANG Ren, LI Yuheng. Potential of land consolidation of hollowed villages under different urbanization scenarios in China [J]. Journal of Geographical Sciences, 2013, 23(3): 503-512. |
[8] | XU Yueqing, LUO Ding, PENG Jian. Land use change and soil erosion in the Maotiao River watershed of Guizhou Province [J]. Journal of Geographical Sciences, 2011, 21(6): 1138-1152. |
[9] | ZHANG Shifeng, HUA Dong, MENG Xiujing, ZHANG Yongyong. Climate change and its driving effect on the runoff in the “Three-River Headwaters”region [J]. Journal of Geographical Sciences, 2011, 21(6): 963-978. |
[10] | HEMMAVANH Chanhda, YE Yanmei, YOSHIDA A. Forest land use change at Trans-Boundary Laos-China Biodiversity Conservation Area [J]. Journal of Geographical Sciences, 2010, 20(6): 889-898. |
[11] | HE Chunyang, LI Jinggang, SHI Peijun, CHEN Jin, PAN Yaozhong, LI Xiaobing. Modelling scenarios of land use change in northern China in the next 50 years [J]. Journal of Geographical Sciences, 2005, 15(2): 177-186. |
[12] | YE Qinghua, TIAN Guoliang, LIU Gaohuan, YE Jingmin, YAO Xin, LIU Qingsheng, LOU Weiguo, WU Shuguang. Tupu methods of spatial-temporal pattern on land use change: a case study in the Yellow River Delta [J]. Journal of Geographical Sciences, 2004, 14(2): 131-142. |
|