Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2019, Vol. 29 Issue (5) : 658-674     DOI: 10.1007/s11442-019-1620-3
Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015
ZHANG Yuan1,2(),ZANG Shuying3,*(),SUN Li3,YAN Binghe3,YANG Tianpeng1,YAN Wenjia1,MEADOWS E Michael1,4,WANG Cuizhen5,QI Jiaguo6
1. Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
2. Institute of Eco-Chongming, East China Normal University, Shanghai 200062, China
3. Key Laboratory of Remote Sensing Monitoring of Geographic Environment, College of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
4. Department of Environmental & Geographical Science, University of Cape Town, Rondebosch 7701, South Africa
5. Department of Geography, University of South Carolina, Columbia, SC 29208, USA
6. Center for Global Change and Earth Observations and Department of Geography, Michigan State University, East Lansing, MI 48824, USA
Download: PDF(8022 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Quantitative characterization of environmental characteristics of cropland (ECC) plays an important role in maintaining sustainable development of agricultural systems and ensuring regional food security. In this study, the changes in ECC over the Songnen Plain, a major grain crops production region in Northeast China, were investigated for the period 1990-2015. The results revealed significant changes in climate conditions, soil physical properties and cropland use patterns with socioeconomic activities. Trends in climate parameters showed increasing temperature (+0.49°C/decade, p < 0.05) and decreasing wind speed (-0.3 m/s/decade, p < 0.01) for the growing season, while sunshine hours and precipitation exhibited non-significant trends. Four topsoil parameters including soil organic carbon (SOC), clay, bulk density and pH, indicated deteriorating soil conditions across most of the croplands, although some do exhibited slight improvement. The changing amplitude for each of the four above parameters ranged within -0.052 to 0.029 kg C/kg, -0.38 to 0.30, -0.60 to 0.39 g/cm3, -3.29 to 2.34, respectively. Crop production significantly increased (44.0 million tons) with increasing sown area of croplands (~2.5 million ha) and fertilizer application (~2.5 million tons). The study reveals the dynamics of ECC in the Songnen Plain with intensive cultivation from 1990 to 2015. Population growth, economic development, and policy reform are shown to strongly influence the spatiotemporal changes in cropland characteristics. The study potentially provides valuable scientific information to support sustainable agroecosystem management in the context of global climate change and national socioeconomic development.

Keywords Songnen Plain      environmental characteristics of cropland      climate change      soil properties      grain yield     
Fund:National Natural Science Foundation of China, No.41571410, No.41571199, No.41401589
Corresponding Authors: ZANG Shuying     E-mail:;
Issue Date: 19 April 2019
E-mail this article
E-mail Alert
Articles by authors
ZANG Shuying
YAN Binghe
YANG Tianpeng
YAN Wenjia
WANG Cuizhen
QI Jiaguo
Cite this article:   
ZHANG Yuan,ZANG Shuying,SUN Li, et al. Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015[J]. Journal of Geographical Sciences, 2019, 29(5): 658-674.
URL:     OR
Figure 1  Conceptual diagram of a cropland ecosystem
Figure 2  The Songnen Plain, Northeast China and its digital elevation model (DEM)
Figure 3  Spatial distribution of climate stations and soil sampling sites observed in 2015
RS imagery Path No. Acquisition date for each row No.
R26 R27 R28 R29 R30
P117 - 1990/6/20, 1990/8/07 1990/6/20, 1990/8/07 1990/8/07 -
P118 1990/6/27 1990/6/27 1990/6/27, 1990/9/15 1990/6/27, 1990/9/15 1990/6/27, 1990/9/15
P119 1990/7/04, 1990/9/06 1990/7/20, 1990/9/06 1990/7/20,
1990/7/04 -
P120 1990/6/25 1990/6/25 1990/6/25 1990/7/11 -
P121 - - 1990/8/03 - -
P117 - 2015/9/29 2015/5/24 2015/5/24 -
P118 2016/5/17 2016/5/17 2016/5/17 2016/5/17 2016/5/17
P119 2015/9/24 2015/5/22 2015/5/22 2015/5/22 2015/6/23
P120 2016/5/31 2016/5/31 2016/5/31 2016/5/31 -
P121 - - 2015/6/21 - -
Table 1  Landsat-5 TM images acquired in 1990 and Landsat-8 OLI in 2015/2016 for cropland mapping
Figure 4  Climate parameters in the Songnen Plain from 1990 to 2015. (a) annual sunshine hours and annual mean temperature, (b) annual precipitation and annual mean wind speed, (c) sunshine hours and mean temperature in the growing season (May-October), and (d) precipitation and mean wind speed in the growing season
Figure 5  Trends of 4 main climate factors for growing season (May to October) by using Mann-Kendall (MK) trend test tool, where the Z value is denoted by the changing significance of climate factors. (a) mean temperature, (b) sunshine hours, (c) precipitation and (d) mean wind speed; positive values denote increase and negative values denote decrease over the period 1990-2015
Figure 6  Spatial distribution of soil properties in 1990 and 2015, and their corresponding differences representing the increased (positive values) or decreased (negative values) trend in SOC, clay, bulk density and pH
Figure 7  Spatial distribution of croplands (drylands and rice paddies) and built-up areas in 1990 and 2015
Figure 8  Agronomic statistics (total sown area, fertilizer inputs and grain output) in the Songnen Plain, from 1990 to 2015
[1] Alvarez R, Lavado R S, 1998. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina.Geoderma, 83: 127-141.
doi: 10.1016/s0016-7061(97)00141-9
[2] Bakker M M, Hatna E, Kuhlman T et al., 2011. Changing environmental characteristics of European cropland.Agricultural Systems, 104(7): 522-532.
doi: 10.1016/j.agsy.2011.03.008
[3] Bohlen P J, House G, 2009. Sustainable Agroecosystem Management: Integrating Ecology, Economics, and Society. Boca Raton: CRC Press.
[4] Burke I C, Yonker C M, Parton W J et al., 1989. Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils.Soil Science Society of America Journal, 53(3): 800-805.
doi: 10.2136/sssaj1989.03615995005300030029x
[5] Chaplin-Kramer R, Sharp R P, Mandle, Let al., 2015. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage.PNAS, 112(24): 7402-7407.
doi: 10.1073/pnas.1406485112 pmid: 26082547
[6] Chen C Q, Lei C X, Deng A X et al., 2011. Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965-2008.Agricultural and Forest Meteorology, 151(12): 1580-1588.
doi: 10.1016/j.agrformet.2011.06.013
[7] Chen X Q, Hu B, Yu R, 2005. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China.Global Change Biology, 11: 1118-1130.
doi: 10.1111/j.1365-2486.2005.00974.x
[8] Chi C M, Zhao C W, Sun X J et al., 2012. Reclamation of saline-sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China.Geoderma, 187/188: 24-30.
doi: 10.1016/j.geoderma.2012.04.005
[9] Cui X, Zhu W, Xu X et al., 2015. Land-use Changes in China: Historical Reconstruction Over the Past 300 Years and Future Projection. Danvers: World Scientific.
[10] Dai W, Huang Y, 2006. Relation of soil organic matter concentration to climate and altitude in zonal soils of China.Catena, 65(1): 87-94.
doi: 10.1016/j.catena.2005.10.006
[11] Deng L, Liu G B, Shangguan Z P et al., 2014. Land use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis.Global Change Biology, 20: 3544-3556.
doi: 10.1111/gcb.12508 pmid: 24357470
[12] Ding C R, 2003. Land policy reform in China: Assessment and prospects.Land Use Policy, 20(2): 109-120.
doi: 10.1016/S0264-8377(02)00073-X
[13] Dong W Y, Zhang X Y, Dai X Qet al., 2014. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China.Applied Soil Ecology, 84: 140-147.
doi: 10.1016/j.apsoil.2014.06.007
[14] Fantappiè M, L'Abate G, Costantini E A C, 2011. The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008.Geomorphology, 135(3/4): 343-352.
doi: 10.1016/j.geomorph.2011.02.006
[15] Gao J, Liu Y S, Chen Y F, 2006. Land cover changes during agrarian restructuring in Northeast China.Applied Geography, 26: 312-322.
doi: 10.1016/j.apgeog.2006.09.001
[16] Gao J, Liu Y S, 2011. Climate warming and land use change in Heilongjiang Province, Northeast China.Applied Geography, 31: 476-482.
doi: 10.1016/j.apgeog.2010.11.005
[17] Guo E, Liu X, Zhang J et al., 2017. Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China.Journal of Hydrology, 553(Suppl. C): 231-247.
doi: 10.1016/j.jhydrol.2017.07.060
[18] Heilongjiang Statistical Bureau (HSB), 2016. Heilongjiang Statistical Yearbook 2016. Beijing: China Statistics Press. (in Chinese)
[19] Hillel D, Rosenzweig C, 2011. Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation. London: Imperial College Press.
[20] Hillel D, Rosenzweig C, 2013. Handbook of Climate Change and Agroecosystems: Global and Regional Aspects and Implications. London: Imperial College Press.
[21] Hirsch R M, Slack J R, Smith R A et al., 1982. Techniques for trend analysis for monthly water quality data.Water Resources Research, 18(1): 107-121.
doi: 10.1029/WR018i001p00107
[22] Homann P S, Kapchinske J S, Boyce A, 2007. Relations of mineral-soil C and N to climate and texture: Regional differences within the conterminous USA.Biogeochemistry, 85(3): 303-316.
doi: 10.1007/s10533-007-9139-6
[23] Huang F, Wang P, 2010. Vegetation change of ecotone west of Northeast China Plain using time-series remote sensing data.Chinese Geographical Science, 20(2): 167-175.
doi: 10.1007/s11769-010-0167-0
[24] Huang F, Wang P, Zhang J, 2012. Grasslands changes in the northern Songnen Plain, China during 1954-2000.Environmental Monitoring and Assessment, 184(4): 2161-2175.
doi: 10.1007/s10661-011-2107-6 pmid: 21614622
[25] IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. London: Cambridge University Press.
[26] IPCC (Intergovernmental Panel on Climate Change), 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. London: Cambridge University Press.
[27] Jiang L, Zhang L, Zang S et al., 2016. Accuracy assessment of approaches to spatially explicit reconstruction of historical cropland in Songnen Plain, Northeast China.Journal of Geographical Sciences, 26(2): 219-229.
doi: 10.1007/s11442-016-1264-5
[28] Jiang S C, He N P, Wu L et al., 2010. Vegetation restoration of secondary bare saline-alkali patches in the Songnen Plain, China.Applied Vegetation Science, 13(1): 47-55.
doi: 10.1111/j.1654-109X.2009.01048.x
[29] Jilin Statistical Bureau (JSB), 2016. Jilin Statistical Yearbook 2016. Beijing: China Statistics Press. (in Chinese)
[30] Jobággy E G, Jackson R B, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecological Applications, 10(2): 423-436.[0423:TVDOSO]2.0.CO;2
doi: 10.2307/2641104
[31] Kendall M G, 1975. Rank Correlation Methods. London: Charles Griffin.
[32] Lal R, 2004. Soil carbon sequestration to mitigate climate change.Geoderma, 123(1): 1-22.
doi: 10.1016/j.geoderma.2004.01.032
[33] Leipnik M, Su Y, Ye X, 2014. The main agricultural regions of China and the U.S. A Comparative Geography of China and the U.S. Hartmann R and Wang J (eds.). New York: Springer.
doi: 10.1007/978-94-017-8792-5_10
[34] Li Z, Tang H, Yang P et al., 2012. Spatio-temporal responses of cropland phenophases to climate change in Northeast China.Journal of Geographical Sciences, 22(1): 29-45.
doi: 10.1007/s11442-012-0909-2
[35] Liu D, Wang Z, Song K et al., 2009. Land use/cover changes and environmental consequences in Songnen Plain, Northeast China.Chinese Geographical Science, 19(4): 299-305.
doi: 10.1007/s11769-009-0299-2
[36] Liu S, Zhang P, Lo K, 2014. Urbanization in remote areas: A case study of the Heilongjiang reclamation area, Northeast China.Habitat International, 42: 103-110.
doi: 10.1016/j.habitatint.2013.11.003
[37] Liu Z, Dong X, Liu Z, 2014. Spatiotemporal evolution of the drought and flood in Northeast China. Advanced Materials Research, 1010-1012: 1075-1083.
[38] Lu R K, 2000. Analytical Method of Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press. (in Chinese).
[39] Lu Y, Jenkins A, Ferrier R C et al., 2015. Addressing China's grand challenge of achieving food security while ensuring environmental sustainability.Science Advances, 1(1): e1400039.
doi: 10.1126/sciadv.1400039 pmid: 4644077
[40] Mann H B, 1945. Nonparametric tests against trend.Econometrica, 13(3): 245-259.
doi: 10.2307/1907187
[41] McPhaden M J, 1999. Genesis and evolution of the 1997-98 El Ni?o.Science, 283(5404): 950-954.
doi: 10.1126/science.283.5404.950
[42] Mao D, Wang Z, Wu C et al., 2014. Topsoil carbon stock dynamics in the Songnen Plain of Northeast China from 1980 to 2010.Fresenius Environmental Bulletin, 23(2A): 531-539.
[43] Meng Q, Li D, Zhang J et al., 2016. Soil properties and corn (Zea mays L.) production under manure application combined with deep tillage management in solonetzic soils of Songnen Plain, Northeast China.Journal of Integrative Agriculture, 15(4): 879-890.
doi: 10.1016/S2095-3119(15)61196-0
[44] National Bureau of Statistics of China (NBSC), 2016. China Statistical Yearbook 2016. Beijing: China Statistics Press.
[45] Périé C, Ouimet R, 2008. Organic carbon, organic matter and bulk density relationships in boreal forest soils.Canadian Journal of Soil Science, 88(3): 315-325.
doi: 10.4141/CJSS06008
[46] Piao S L, Fang, J Y, Ciais P et al., 2009. The carbon balance of terrestrial ecosystems in China.Nature, 458: 1009-1014.
doi: 10.1038/nature07944 pmid: 19396142
[47] Podwojewski P, Poulenard J, Nguyet M Let al., 2011. Climate and vegetation determine soil organic matter status in an alpine inner-tropical soil catena in the Fan Si Pan Mountain, Vietnam.Catena, 87(2): 226-239.
doi: 10.1016/j.catena.2011.06.002
[48] Qiu X, Zhang L, Li W et al., 2016. Studies on changes and cause of the minimum air temperature in Songnen Plain of China during 1961-2010.Acta Ecologica Sinica, 36(5): 311-320.
doi: 10.1016/j.chnaes.2016.06.009
[49] Quideau S, Chadwick O A, Benesi A et al., 2001. A direct link between forest vegetation type and soil organic matter composition.Geoderma, 104(1/2): 41-60.
doi: 10.1016/S0016-7061(01)00055-6
[50] Richter D D, Houghton R A, 2011. Gross CO2 fluxes from land-use change: Implications for reducing global emissions and increasing sinks.Carbon Management, 2(1): 41-47.
doi: 10.4155/cmt.10.43
[51] Schauberger B, Archontoulis S, Arneth A et al., 2017. Consistent negative response of US crops to high temperatures in observations and crop models.Nature Communications, 8: 13931.
doi: 10.1038/ncomms13931 pmid: 5253679
[52] Shepard D, 1968. A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 23rd Association for Computing Machinery (ACM) National Conference. New York: ACM, 517-524.
[53] Shi X Z, Yu D S, Warner E D et al., 2004. Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system.Soil Survey Horizons, 45(4): 129-136.
doi: 10.2136/sh2004.4.0129
[54] Song X, Li L, Fu G et al., 2014a. Spatial-temporal variations of spring drought based on spring-composite index values for the Songnen Plain, Northeast China.Theoretical and Applied Climatology, 116(3/4): 371-384.
doi: 10.1007/s00704-013-0957-2
[55] Song X, Peng C, Ghou G et al., 2014b. Chinese Grain for Green Program led to highly increased soil organic carbon levels: A meta-analysis.Scientific Reports, 4: 4460.
doi: 10.1038/srep04460 pmid: 24675818
[56] Tan J, Yang P, Liu Z et al., 2014. Spatio-temporal dynamics of maize cropping system in Northeast China between 1980 and 2010 by using spatial production allocation model.Journal of Geographical Sciences, 24(3): 397-410.
doi: 10.1007/s11442-014-1096-0
[57] Tilman D, Cassman K G, Matson P A et al., 2002. Agricultural sustainability and intensive production practices.Nature, 418: 671-677.
doi: 10.1038/nature01014
[58] Wagai R, Mayer L M, Kitayama K et al., 2008. Climate and parent material controls on organic matter storage in surface soils: A three-pool, density-separation approach.Geoderma, 147(1/2): 23-33.
doi: 10.1016/j.geoderma.2008.07.010
[59] Wang D D, Shi X Z, Wang H J et al., 2010a. Scale effect of climate and soil texture on soil organic carbon in the uplands of Northeast China.Pedosphere, 20(4): 525-535.
doi: 10.1016/S1002-0160(10)60042-2
[60] Wang H, Wan Z, Yu S et al., 2004. Catastrophic eco-environmental change in the Songnen Plain, northeastern China since 1900s.Chinese Geographical Science, 14(2): 179-185.
doi: 10.1007/s11769-004-0028-9
[61] Wang X, Shen H, Zhang W et al., 2015. Spatial and temporal characteristics of droughts in the Northeast China Transect.Natural Hazards, 6(1): 601-614.
doi: 10.1007/s11069-014-1507-7
[62] Wang Y, Li Y, 2013. Land exploitation resulting in soil salinization in a desert-oasis ecotone.Catena, 100: 50-56.
doi: 10.1016/j.catena.2012.08.005
[63] Wang Z, Huang N, Luo L et al., 2011. Shrinkage and fragmentation of marshes in the West Songnen Plain, China, from 1954 to 2008 and its possible causes.International Journal of Applied Earth Observation and Geoinformation, 13(3): 477-486.
doi: 10.1016/j.jag.2010.10.003
[64] Wang Z, Li Q, Li X et al., 2003. Sustainable agriculture development in saline-alkali soil area of Songnen Plain, Northeast China.Chinese Geographical Science, 13(2): 171-174.
doi: 10.1007/s11769-003-0012-9
[65] Wang Z, Zhang B, Song Ket al., 2010b. Spatial variability of soil organic carbon under maize monoculture in the Song-Nen Plain, Northeast China.Pedosphere, 20(1): 80-89.
doi: 10.1016/S1002-0160(09)60285-X
[66] Wen B, Liu X, Li X et al., 2012. Restoration and rational use of degraded saline reed wetlands: A case study in western Songnen Plain, China.Chinese Geographical Science, 22(2): 167-177.
doi: 10.1007/s11769-012-0519-z
[67] Wu H B, Guo Z T, Peng C H, 2003. Distribution and storage of soil organic carbon in China.Global Biogeochemical Cycles, 17(2): 1048-1058.
doi: 10.1029/2001GB001844
[68] Xia X, Yang Z, Liao Y et al., 2010. Temporal variation of soil carbon stock and its controlling factors over the last two decades on the southern Song-nen Plain, Heilongjiang Province.Geoscience Frontiers, 1(1): 125-132.
doi: 10.1016/j.gsf.2010.07.003
[69] Xie Z, Zhu J, Liu G et al., 2007. Soil organic carbon stocks in China and changes from 1980s to 2000s.Global Change Biology, 13(9): 1989-2007.
doi: 10.1111/j.1365-2486.2007.01409.x
[70] Xiong W, van der Velde M, Holman P et al., 2014. Can climate-smart agriculture reverse the recent slowing of rice yield growth in China?Agriculture, Ecosystems and Environment, 196: 125-136.
doi: 10.1016/j.agee.2014.06.014
[71] Yang J, Zhang S, Li Y et al., 2010. Dynamics of saline-alkali land and its ecological regionalization in western Songnen Plain, China.Chinese Geographical Science, 20(2): 159-166.
doi: 10.1007/s11769-010-0159-0
[72] Yu D S, Shi X Z, Wang H J et al., 2007. Regional patterns of soil organic carbon stocks in China.Journal of Environmental Management, 85(3): 680-689.
doi: 10.1016/j.jenvman.2006.09.020 pmid: 17126986
[73] Zhang B, Cui H S, Yu L et al., 2003. Land reclamation process in northeast China since 1900.Chinese Geographical Science, 13(2): 119-123.
doi: 10.1007/s11769-003-0004-9
[74] Zhang L, Wang Y H, 2014. Study on the effects of economic growth to farmland conversion in China.Open Journal of Social Sciences, 2: 25-29.
[75] Zhuang Q L, Li Q, Jiang Y et al., 2007. Vertical distribution of soil organic carbon in agro-ecosystems of Songliao plain along a latitudinal gradient.American-Eurasian Journal of Agricultural and Environmental Science, 2(2): 127-132.
[76] Zhou X, Zhou L, Nie Y et al., 2016. Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis.Agriculture, Ecosystems and Environment, 228: 70-81.
doi: 10.1016/j.agee.2016.04.030
[1] LIU Yujie,QIN Ya,GE Quansheng. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010[J]. Journal of Geographical Sciences, 2019, 29(3): 351-362.
[2] MA Danyang,DENG Haoyu,YIN Yunhe,WU Shaohong,ZHENG Du. Sensitivity of arid/humid patterns in China to future climate change under a high-emissions scenario[J]. Journal of Geographical Sciences, 2019, 29(1): 29-48.
[3] ZHANG Man,CHEN Yaning,SHEN Yanjun,LI Baofu. Tracking climate change in Central Asia through temperature and precipitation extremes[J]. Journal of Geographical Sciences, 2019, 29(1): 3-28.
[4] ZHANG Jing,SHEN Yanjun. Spatio-temporal variations in extreme drought in China during 1961-2015[J]. Journal of Geographical Sciences, 2019, 29(1): 67-83.
[5] DENG Haijun,CHEN Yaning,LI Yang. Glacier and snow variations and their impacts on regional water resources in mountains[J]. Journal of Geographical Sciences, 2019, 29(1): 84-100.
[6] WANG Zhiyong,LI Lijuan. Determination of land salinization causes via land cover and hydrological process change detection in a typical part of Songnen Plain[J]. Journal of Geographical Sciences, 2018, 28(8): 1099-1112.
[7] HU Weijie,LIU Hailong,BAO Anming,Attia M. El-Tantawi. Influences of environmental changes on water storage variations in Central Asia[J]. Journal of Geographical Sciences, 2018, 28(7): 985-1000.
[8] XIE Yichun,ZHANG Yang,LAN Hai,MAO Lishen,ZENG Shi,CHEN Yulu. Investigating long-term trends of climate change and their spatial variations caused by regional and local environments through data mining[J]. Journal of Geographical Sciences, 2018, 28(6): 802-818.
[9] ZHANG Wenxia,,FENG Qingrong,WANG Tianguang,WANG Tianqiang. The spatiotemporal responses of Populus euphratica to global warming in Chinese oases between 1960 and 2015[J]. Journal of Geographical Sciences, 2018, 28(5): 579-594.
[10] FU Yang,CHEN Hui,NIU Huihui,ZHANG Siqi,YANG Yi. Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015[J]. Journal of Geographical Sciences, 2018, 28(4): 400-414.
[11] WAN Honglian,SONG Hailong,ZHU Chanchan,ZHANG Beibei,ZHANG Mi. Spatio-temporal evolution of drought and flood disaster chains in Baoji area from 1368 to 1911[J]. Journal of Geographical Sciences, 2018, 28(3): 337-350.
[12] SUN Meiping,LIU Shiyin,YAO Xiaojun,GUO Wanqin,XU Junli. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory[J]. Journal of Geographical Sciences, 2018, 28(2): 206-220.
[13] HUANG Gengzhi,LENG Shuying. The progress of human geography in China under the support of the National Natural Science Foundation of China[J]. Journal of Geographical Sciences, 2018, 28(12): 1735-1756.
[14] WANG Li,YU Haiying,ZHANG Qiang,XU Yunjia,TAO Zexing,ALATALO Juha,DAI Junhu. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau[J]. Journal of Geographical Sciences, 2018, 28(12): 1953-1964.
[15] WANG Huanjiong,WANG Hui,TAO Zexing,GE Quansheng. Potential range expansion of the red imported fire ant (Solenopsis invicta) in China under climate change[J]. Journal of Geographical Sciences, 2018, 28(12): 1965-1974.
Full text



Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd