Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (3): 465-479.doi: 10.1007/s11442-019-1610-5
• Review Article • Previous Articles Next Articles
Like NING1,2(), Chesheng ZHAN3,*(
), Yong LUO1,2, Yueling WANG3, Liangmeizi LIU3,4
Received:
2018-05-18
Accepted:
2018-06-30
Online:
2019-03-25
Published:
2019-03-20
Contact:
Chesheng ZHAN
E-mail:ninglk@igsnrr.ac.cn;zhancs@igsnrr.ac.cn
About author:
Author: Ning Like (1986-), PhD, specialized in climate change, hydrology and water resources. E-mail:
Supported by:
Like NING, Chesheng ZHAN, Yong LUO, Yueling WANG, Liangmeizi LIU. A review of fully coupled atmosphere-hydrology simulations[J].Journal of Geographical Sciences, 2019, 29(3): 465-479.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of parameterization schemes of runoff generation and river routing in land surface models"
Model | Runoff scheme | Routing scheme | Human water use | |
---|---|---|---|---|
Surface | Subsurface | |||
BASE | Saturation excess | Gravity drainage | No | No |
BATS | Saturation excess | Gravity drainage | Basin aggregation of runoff | |
BUCK | Saturation excess | Bucket drainage | No | No |
CLASS | Saturation excess | Gravity drainage | Linear reservoir cascade & unit hydrograph | No |
IAP94 | Saturation excess | Not quite clear | No | No |
ISBA | Saturation excess | Gravity drainage | MODCOU | No |
MOSAIC | Saturation excess | Downslope drainage | No | No |
PLACE | Infiltration excess | Lateral flow and gravity drainage | No | No |
SSIB | Saturation excess | Gravity drainage | TOPMODEL | No |
UKMO | Infiltration excess | Gravity drainage | No | No |
VIC-3L | Saturation excess | Nonlinear Arno base flow curve | Unit hydrograph & linearized St. Venant | |
MATSIRO | TOPMODEL | Lateral flow and gravity drainage | TRIP | |
LaD | Saturation excess | Not quite clear | Basin aggregation of runoff | No |
JULES | Infiltration excess | Gravity drainage | No | No |
CLM | TOPMODEL | Lateral flow and gravity drainage | Linear reservoir |
Table 2
Comparison of parameterization schemes of some global hydrological models (Haddeland et al., 2011)"
Model | Forcing variables | Energy balance | ET scheme | Runoff scheme | Snow scheme | Vegetation dynamics | CO2 affected |
---|---|---|---|---|---|---|---|
DBH | P, T, W, Q, LW, SW, SP | Yes | Energy balance | Infiltration excess | Energy balance | No | Constant |
H08 | R, S, T, W, Q, LW, SW, SP | Yes | Bulk formula | Saturation excess | Energy balance | No | No |
Plum | P, T, Lawn, SW | No | Priestley-Taylor | Saturation excess | Degree-day | Yes | Yes |
Mac-PDM.09 | P, T, W, Q, Lawn, SW | No | Penman-Montecito | Saturation excess | Degree-day | No | No |
MATSIRO | R, S, T, W, Q, LW, SW, SP | Yes | Bulk formula | Infiltration and saturation excess | Energy balance | No | Constant |
MPI-HM | P, T, W, Q, Lawn, SW, SP | No | Penman-Montecito | Saturation excess | Degree-day | No | No |
PCR-GLOBWB | P, T | No | Harmon | Saturation excess | Degree-day | No | No |
Water GAP | P, T, Lawn, SW | No | Priestley-Taylor | Beta function | Degree-day | No | No |
WBM | P,T | No | Harmon | Beta function | Empirical formula | No | No |
[1] |
Arnell N W, 1999. A simple water balance model for the simulation of streamflow over a large geographic domain.Journal of Hydrology, 217(3/4): 314-335.http://linkinghub.elsevier.com/retrieve/pii/S0022169499000232
doi: 10.1016/S0022-1694(99)00023-2 |
[2] |
Barnett T P, Pierce D W, Hidalgo H Get al., 2008. Human-induced changes in the hydrology of the western United States.Science, 319(5866): 1080-1083.http://www.sciencemag.org/cgi/doi/10.1126/science.1152538
doi: 10.1126/science.1152538 pmid: 18239088 |
[3] | Bates B, Kundzewicz Z, Wu S, 2008. Climate change and water. Intergovernmental Panel on Climate Change Secretariat, Geneva. |
[4] |
Benke K K, Lowell K E, Hamilton A J, 2008. Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model.Mathematical and Computer Modelling, 47(11/12): 1134-1149.https://linkinghub.elsevier.com/retrieve/pii/S0895717707002373
doi: 10.1016/j.mcm.2007.05.017 |
[5] |
Bergstrom S, Graham L P, 1998. On the scale problem in hydrological modelling.Journal of Hydrology, 211(1-4): 253-265.http://linkinghub.elsevier.com/retrieve/pii/S0022169498002480
doi: 10.1016/S0022-1694(98)00248-0 |
[6] |
Beven K, Cloke H, Pappenberger Fet al., 2015. Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface.Science China-Earth Sciences, 58(1): 25-35.http://link.springer.com/10.1007/s11430-014-5003-4
doi: 10.1007/s11430-014-5003-4 |
[7] |
Beven K J, Cloke H L, 2012. Comment on “Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water” by Eric F. Woodet al. Water Resources Research, 48(1): W01801.http://onlinelibrary.wiley.com/doi/10.1029/2010WR010090/full
doi: 10.1029/2010WR010090 |
[8] |
Bierkens M F P, 2015. Global hydrology 2015: State, trends, and directions.Water Resources Research, 51(7): 4923-4947.http://doi.wiley.com/10.1002/2015WR017173
doi: 10.1002/2015WR017173 |
[9] |
Bierkens M F P, Bell V A, Burek Pet al., 2015. Hyper-resolution global hydrological modelling: What is next? “Everywhere and locally relevant”.Hydrological Processes, 29(2): 310-320.http://doi.wiley.com/10.1002/hyp.v29.2
doi: 10.1002/hyp.v29.2 |
[10] |
Chen F, Xie Z H, 2010. Effects of interbasin water transfer on regional climate: A case study of the Middle Route of the South-to-North Water Transfer Project in China.Journal of Geophysical Research: Atmospheres, 115(D11): 112.http://onlinelibrary.wiley.com/doi/10.1029/2009JD012611/full
doi: 10.1029/2009JD012611 |
[11] |
Chen Z Q R, Kavvas M L, Ohara Net al., 2011a. Coupled regional hydroclimate model and its application to the Tigris-Euphrates Basin.Journal of Hydrologic Engineering, 16(12): 1059-1070.http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0000207
doi: 10.1061/(ASCE)HE.1943-5584.0000207 |
[12] |
Chen Z Q R, Kavvas M L, Ohara Net al., 2011b. Impact of water resources utilization on the hydrology of mesopotamian marshlands.Journal of Hydrologic Engineering, 16(12): 1083-1092.http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0000208
doi: 10.1061/(ASCE)HE.1943-5584.0000208 |
[13] |
Chiew F H S, Kirono D G C, Kent D Met al., 2010. Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates.Journal of Hydrology, 387(1/2): 10-23.https://linkinghub.elsevier.com/retrieve/pii/S0022169410001514
doi: 10.1016/j.jhydrol.2010.03.025 |
[14] |
Costa M H, Botta A, Cardille J A, 2003. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia.Journal of Hydrology, 283(1-4): 206-217.https://linkinghub.elsevier.com/retrieve/pii/S0022169403002671
doi: 10.1016/S0022-1694(03)00267-1 |
[15] |
Dai Y J, Zeng X B, Dickinson R Eet al., 2003. The common land model.Bulletin of the American Meteorological Society, 84(8): 1013-1023.http://journals.ametsoc.org/doi/10.1175/BAMS-84-8-1013
doi: 10.1175/BAMS-84-8-1013 |
[16] |
Decker M, Zeng X B, 2009. Impact of modified richards equation on global soil moisture simulation in the Community Land Model (CLM3.5).Journal of Advances in Modeling Earth Systems, 1(3): 22.http://onlinelibrary.wiley.com/doi/10.3894/JAMES.2009.1.5/citedby
doi: 10.3894/JAMES.2009.1.5 |
[17] |
Fiorentini M, Orlandini S, Paniconi C, 2015. Control of coupling mass balance error in a process-based numerical model of surface-subsurface flow interaction.Water Resources Research, 51(7): 5698-5716.http://doi.wiley.com/10.1002/2014WR016816
doi: 10.1002/2014WR016816 |
[18] |
Foley J A, DeFries R, Asner G Pet al., 2005. Global consequences of land use.Science, 309(5734): 570-574.http://www.sciencemag.org/cgi/doi/10.1126/science.1111772
doi: 10.1126/science.1111772 |
[19] |
Gregersen J B, Gijsbers P J A, Westen S J P, 2007. OpenMI: Open modelling interface.Journal of Hydroinformatics, 9(3): 175-191.https://iwaponline.com/jh/article/9/3/175-191/3096
doi: 10.2166/hydro.2007.023 |
[20] | Guo S, Liu C, 1997. Large scale hydrological models and its coupling with atmospheric models.Journal of Hydraulic Engineering, 7: 37-41. (in Chinese) |
[21] |
Habets F, Noilhan J, Golaz Cet al., 1999. The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area (Part II): Simulation of streamflows and annual water budget.Journal of Hydrology, 217(1/2): 97-118.http://linkinghub.elsevier.com/retrieve/pii/S0022169499000207
doi: 10.1016/S0022-1694(99)00020-7 |
[22] |
Haddeland I, Clark D B, Franssen Wet al., 2011. Multimodel estimate of the global terrestrial water balance: Setup and first results.Journal of Hydrometeorology, 12(5): 869-884.http://journals.ametsoc.org/doi/abs/10.1175/2011JHM1324.1
doi: 10.1175/2011JHM1324.1 |
[23] |
Haddeland I, Skaugen T, Lettenmaier D P, 2006. Anthropogenic impacts on continental surface water fluxes.Geophysical Research Letters, 33(8): L08406.http://onlinelibrary.wiley.com/doi/10.1029/2006GL026047/full
doi: 10.1029/2006GL026047 |
[24] |
Hanasaki N, Kanae S, Oki Tet al., 2008. An integrated model for the assessment of global water resources (Part 1): Model description and input meteorological forcing.Hydrology and Earth System Sciences, 12(4): 1007-1025.http://www.hydrol-earth-syst-sci.net/12/1007/2008/
doi: 10.5194/hess-12-1007-2008 |
[25] |
Heuvelmans G, Muys B, Feyen J, 2004. Evaluation of hydrological model parameter transferability for simulating the impact of land use on catchment hydrology.Physics and Chemistry of the Earth, 29(11/12): 739-747.https://linkinghub.elsevier.com/retrieve/pii/S1474706504001068
doi: 10.1016/j.pce.2004.05.002 |
[26] | IPCC, 2015. Climate Change 2014: Mitigation of Climate Change. Vol. 3. Cambridge: Cambridge University Press. |
[27] |
Kavvas M L, Kure S, Chen Z Qet al., 2013. WEHY-HCM for modeling interactive atmospheric-hydrologic processes at watershed scale. I: Model description.Journal of Hydrologic Engineering, 18(10): 1262-1271.http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0000724
doi: 10.1061/(ASCE)HE.1943-5584.0000724 |
[28] |
Kerandi N, Arnault J, Laux Pet al., 2018. Joint atmospheric-terrestrial water balances for East Africa: A WRF-Hydro case study for the upper Tana River basin.Theoretical and Applied Climatology, 131(3): 1337-1355.http://link.springer.com/10.1007/s00704-017-2050-8
doi: 10.1007/s00704-017-2050-8 |
[29] |
Kollet S J, Maxwell R M, 2008a. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model.Water Resources Research, 44(2): W02402.http://onlinelibrary.wiley.com/doi/10.1029/2007WR006004/full
doi: 10.1029/2007WR006004 |
[30] |
Kollet S J, Maxwell R M, 2008b. Demonstrating fractal scaling of baseflow residence time distributions using a fully-coupled groundwater and land surface model.Geophysical Research Letters, 35(7): L07402.http://adsabs.harvard.edu/abs/2008GeoRL..35.7402K
doi: 10.1029/2008GL033215 |
[31] |
Kruk N S, Vendrame I F, Chou S C, 2013. Coupling a mesoscale atmospheric model with a distributed hydrological model applied to a watershed in Southeast Brazil.Journal of Hydrologic Engineering, 18(1): 58-65.http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0000606
doi: 10.1061/(ASCE)HE.1943-5584.0000606 |
[32] |
Landman W A, Kgatuke M J, Mbedzi Met al., 2009. Performance comparison of some dynamical and empirical downscaling methods for South Africa from a seasonal climate modelling perspective.International Journal of Climatology, 29(11): 1535-1549.http://doi.wiley.com/10.1002/joc.v29%3A11
doi: 10.1002/joc.1766 |
[33] |
Larsen M A D, Refsgaard J C, Drews Met al., 2014. Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model for a Danish catchment.Hydrology and Earth System Sciences, 18(11): 4733-4749.https://www.hydrol-earth-syst-sci.net/18/4733/2014/
doi: 10.5194/hess-18-4733-2014 |
[34] |
Lawrence P J, Chase T N, 2010. Investigating the climate impacts of global land cover change in the community climate system model.International Journal of Climatology, 30(13): 2066-2087.http://doi.wiley.com/10.1002/joc.v30%3A13
doi: 10.1002/joc.2061 |
[35] |
Li M X, Ma Z G, Lv M X, 2017. Variability of modeled runoff over China and its links to climate change.Climatic Change, 144(3): 433-445.http://link.springer.com/10.1007/s10584-015-1593-x
doi: 10.1007/s10584-015-1593-x |
[36] |
Liang X, Lettenmaier D P, Wood E Fet al., 1994. A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models.Journal of Geophysical Research-Atmospheres, 99(D7): 14415-14428.http://doi.wiley.com/10.1029/94JD00483
doi: 10.1029/94JD00483 |
[37] |
Liang X, Wood E F, Lettenmaier D Pet al., 1998. The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment: 2. Spatial and temporal analysis of energy fluxes.Global and Planetary Change, 19(1-4): 137-159.http://linkinghub.elsevier.com/retrieve/pii/S0921818198000459
doi: 10.1016/S0921-8181(98)00046-0 |
[38] | Liu C, Li D, Tian Yet al., 2003. An application study of dem based distributed hydrological model on macroscale watershed.Progress in Geography, 22(5): 437-445. (in Chinese) |
[39] |
Liu Y, Weerts A H, Clark Met al., 2012. Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities.Hydrology and Earth System Sciences, 16(10): 3863-3887.https://www.hydrol-earth-syst-sci.net/16/3863/2012/
doi: 10.5194/hess-16-3863-2012 |
[40] |
Livneh B, Xia Y L, Mitchell K Eet al., 2010. Noah LSM snow model diagnostics and enhancements.Journal of Hydrometeorology, 11(3): 721-738.http://journals.ametsoc.org/doi/abs/10.1175/2009JHM1174.1
doi: 10.1175/2009JHM1174.1 |
[41] |
Luo S Q, Lu S H, Zhang Y, 2009. Development and validation of the frozen soil parameterization scheme in Common Land Model.Cold Regions Science and Technology, 55(1): 130-140.https://linkinghub.elsevier.com/retrieve/pii/S0165232X08001122
doi: 10.1016/j.coldregions.2008.07.009 |
[42] |
Manabe S, 1969. Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface.Monthly Weather Review, 97(11): 739-774.http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281969%29097%3C0739%3ACATOC%3E2.3.CO%3B2
doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2 |
[43] |
Maxwell R M, Lundquist J K, Mirocha J Det al., 2011. Development of a coupled groundwater-atmosphere model.Monthly Weather Review, 139(1): 96-116.http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3392.1
doi: 10.1175/2010MWR3392.1 |
[44] |
Maxwell R M, Miller N L, 2005. Development of a coupled land surface and groundwater model.Journal of Hydrometeorology, 6(3): 233-247.http://journals.ametsoc.org/doi/abs/10.1175/JHM422.1
doi: 10.1175/jhm422.1 |
[45] |
Ning L K, Xia J, Zhan C Set al., 2016. Runoff of arid and semi-arid regions simulated and projected by CLM-DTVGM and its multi-scale fluctuations as revealed by EEMD analysis.Journal of Arid Land, 8(4): 506-520.http://link.springer.com/10.1007/s40333-016-0126-4
doi: 10.1007/s40333-016-0126-4 |
[46] |
Niu G Y, Yang Z L, Dickinson R Eet al., 2005. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models.Journal of Geophysical Research-Atmospheres, 110(D21): D21106.http://doi.wiley.com/10.1029/2005JD006111
doi: 10.1029/2005JD006111 |
[47] |
Notter B, MacMillan L, Viviroli Det al., 2007. Impacts of environmental change on water resources in the Mt. Kenya region.Journal of Hydrology, 343(3/4): 266-278.https://linkinghub.elsevier.com/retrieve/pii/S0022169407003836
doi: 10.1016/j.jhydrol.2007.06.022 |
[48] | Oleson K W, Lawrence D M, Gordon Bet al., 2010. Technical description of version 4.0 of the Community Land Model (CLM). |
[49] |
Oubeidillah A A, Kao S C, Ashfaq Met al., 2014. A large-scale, high-resolution hydrological model parameter data set for climate change impact assessment for the conterminous US.Hydrology and Earth System Sciences, 18(1): 67-84.https://www.hydrol-earth-syst-sci.net/18/67/2014/
doi: 10.5194/hess-18-67-2014 |
[50] |
Patil S D, Stieglitz M, 2015. Comparing Spatial and temporal transferability of hydrological model parameters.Journal of Hydrology, 525: 409-417.https://linkinghub.elsevier.com/retrieve/pii/S0022169415002528
doi: 10.1016/j.jhydrol.2015.04.003 |
[51] | Peng T, Shen T, Gao Yet al., 2014. Research and application progress on basin hydro-meteorology coupling flood forecasting.Advances in Meteorological Science and Technology, 2(4): 52-58. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTotal-QXKZ201402011.htm |
[52] |
Pokhrel Y, Hanasaki N, Koirala Set al., 2012. Incorporating anthropogenic water regulation modules into a land surface model.Journal of Hydrometeorology, 13(1): 255-269.http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-11-013.1
doi: 10.1175/JHM-D-11-013.1 |
[53] |
Ragab R, Bromley J, 2010. IHMS-integrated hydrological modelling system. Part 1. Hydrological processes and general structure.Hydrological Processes, 24(19): 2663-2680.http://doi.wiley.com/10.1002/hyp.7681
doi: 10.1002/hyp.7681 |
[54] |
Sahoo A K, Dirmeyer P A, Houser P Ret al., 2008. A study of land surface processes using land surface models over the Little River Experimental Watershed, Georgia.Journal of Geophysical Research: Atmospheres, 113(D20): D20121.http://onlinelibrary.wiley.com/doi/10.1029/2007JD009671/citedby
doi: 10.1029/2007JD009671 |
[55] |
Salamon P, Feyen L, 2009. Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter.Journal of Hydrology, 376(3/4): 428-442.https://linkinghub.elsevier.com/retrieve/pii/S0022169409004533
doi: 10.1016/j.jhydrol.2009.07.051 |
[56] |
Senatore A, Mendicino G, Gochis D Jet al., 2015. Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales.Journal of Advances in Modeling Earth Systems, 7(4): 1693-1715.http://doi.wiley.com/10.1002/2015MS000510
doi: 10.1002/2015MS000510 |
[57] |
Seuffert G, Gross P, Simmer Cet al., 2002. The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model.Journal of Hydrometeorology, 3(5): 505-523.http://journals.ametsoc.org/doi/abs/10.1175/1525-7541%282002%29003%3C0505%3ATIOHMO%3E2.0.CO%3B2
doi: 10.1175/1525-7541(2002)0032.0.CO;2 |
[58] |
Sheng M, Lei H, Jiao Yet al., 2017. Evaluation of the runoff and river routing schemes in the community land model of the Yellow River Basin.Journal of Advances in Modeling Earth Systems, 9(8): 2993-3018.http://doi.wiley.com/10.1002/jame.v9.8
doi: 10.1002/2017MS001026 |
[59] |
Shrestha P, Sulis M, Masbou Met al., 2014. A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and ParFlow.Monthly Weather Review, 142(9): 3466-3483.http://journals.ametsoc.org/doi/10.1175/MWR-D-14-00029.1
doi: 10.1175/MWR-D-14-00029.1 |
[60] |
Singh R S, Reager J T, Miller N Let al., 2015. Toward hyper-resolution land-surface modeling: The effects of fine-scale topography and soil texture on CLM4.0 simulations over the southwestern US.Water Resources Research, 51(4): 2648-2667.http://doi.wiley.com/10.1002/2014WR015686
doi: 10.1002/2014WR015686 |
[61] |
Sood A, Smakhtin V, 2015. Global hydrological models: A review.Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 60(4): 549-565.http://www.tandfonline.com/doi/full/10.1080/02626667.2014.950580
doi: 10.1080/02626667.2014.950580 |
[62] |
Su F, Hao Z, 2001. Review of land-surface hydrological processes parameterization.Advance in Earth Sciences, 16(6): 795-801. (in Chinese)http://en.cnki.com.cn/article_en/cjfdtotal-dxjz200106010.htm
doi: 10.11867/j.issn.1001-8166.2001.06.0795 |
[63] |
Subin Z M, Riley W J, Mironov D, 2012. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1.Journal of Advances in Modeling Earth Systems, 4(1): M02001.http://onlinelibrary.wiley.com/doi/10.1029/2011MS000072/full
doi: 10.1029/2011MS000072 |
[64] |
van Beek L P H, Wada Y, Bierkens M F P, 2011. Global monthly water stress: 1. Water balance and water availability.Water Resources Research, 47(7): W07517.http://onlinelibrary.wiley.com/doi/10.1029/2010WR009791/full
doi: 10.1029/2010WR009791 |
[65] |
van Dijk A I J M, Gash J H, van Gorsel Eet al., 2015. Rainfall interception and the coupled surface water and energy balance.Agricultural and Forest Meteorology, 214/215: 402-415.https://linkinghub.elsevier.com/retrieve/pii/S016819231500711X
doi: 10.1016/j.agrformet.2015.09.006 |
[66] |
Vrettas M D, Fung I Y, 2015. Toward a new parameterization of hydraulic conductivity in climate models: Simulation of rapid groundwater fluctuations in Northern California.Journal of Advances in Modeling Earth Systems, 7(4): 2105-2135.http://doi.wiley.com/10.1002/2015MS000516
doi: 10.1002/2015MS000516 |
[67] |
Wagner S, Fersch B, Yuan Fet al., 2016. Fully coupled atmospheric-hydrological modeling at regional and long-term scales: Development, application, and analysis of WRF-HMS.Water Resources Research, 52(4): 3187-3211.http://doi.wiley.com/10.1002/2015WR018185
doi: 10.1002/2015WR018185 |
[68] |
Wang C, Wang Y Y, Wang P F, 2006. Water Quality Modeling and Pollution Control for the Eastern Route of South to North Water Transfer Project in China.Journal of Hydrodynamics, 18(3): 253-261.http://link.springer.com/10.1016/S1001-6058(06)60001-2
doi: 10.1016/S1001-6058(06)60001-2 |
[69] |
Wilby R L, Wigley T M L, 2000. Precipitation predictors for downscaling: Observed and general circulation model relationships.International Journal of Climatology, 20(6): 641-661.http://doi.wiley.com/10.1002/%28ISSN%291097-0088
doi: 10.1002/(ISSN)1097-0088 |
[70] |
Wood E F, Roundy J K, Troy T Jet al., 2011. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water.Water Resources Research, 47(5): W05301.http://onlinelibrary.wiley.com/doi/10.1029/2010WR010090/full
doi: 10.1029/2010WR010090 |
[71] |
Xu Y, Gao X, Zhu Qet al., 2015. Coupling a regional climate model and a distributed hydrological model to assess future water resources in Jinhua River Basin, East China.Journal of Hydrologic Engineering, 20(4): 04014054.http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0001007
doi: 10.1061/(ASCE)HE.1943-5584.0001007 |
[72] | Yang C, Lin Z, Hao Zet al., 2007. Revview of coupling atmospheric and hydrologic models.Advances in Earth Science, 22(8): 810-817. (in Chinese) |
[73] |
Yong B, Ren L, Chen Xet al., 2009. Development of a large-scale hydrological model TOPX and its coupling with regional integrated environment modeling system RIEMS. Chinese Journal of Geophysics, 52(8): 1954-1965. (in Chinese)http://onlinelibrary.wiley.com/doi/10.1002/cjg2.1399/full
doi: 10.1002/cjg2.1399 |
[74] |
Yong B, Zhang W, Liu C, 2006. Advances in the coupling study of hydrological models and land-surface models. Journal of Glaciology and Geocryology, 28(6): 961-970. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCDT200606023.htm
doi: 10.1016/S1003-6326(06)60040-X |
[75] | Yu F, Cao Y, 2008. Research progress summarization of the impacts of global climate change to the regional water resources.Journal of Water Resources and Water Engineering, 19(4): 92-97. (in Chinese) |
[76] |
Yu Z B, Pollard D, Cheng L, 2006. On continental-scale hydrologic simulations with a coupled hydrologic model.Journal of Hydrology, 331(1/2): 110-124.https://linkinghub.elsevier.com/retrieve/pii/S0022169406002678
doi: 10.1016/j.jhydrol.2006.05.021 |
[77] |
Zeng X M, Zhao M, Su B Ket al., 2003. Simulations of a hydrological model as coupled to a regional climate model.Advances in Atmospheric Sciences, 20(2): 227-236.http://link.springer.com/10.1007/s00376-003-0008-5
doi: 10.1007/s00376-003-0008-5 |
[78] |
Zou J, Xie Z H, Yu Yet al., 2014. Climatic responses to anthropogenic groundwater exploitation: A case study of the Haihe River Basin, Northern China.Climate Dynamics, 42(7/8): 2125-2145.http://link.springer.com/10.1007/s00382-013-1995-2
doi: 10.1007/s00382-013-1995-2 |
[1] | CHEN Mingxing,LONG Hualou,WANG Chengjin,HUANG Jinchuan,NIU Fangqu. Review of and prospects for China’s human and economic geography [J]. Journal of Geographical Sciences, 2017, 27(12): 1556-1576. |
[2] | WANG Xiqin, ZHANG Yuan, LIU Changming. Water quantity-quality combined evaluation method for rivers&rsquo|water requirements of the instream environment in dualistic water cycle: A case study of Liaohe River Basin [J]. Journal of Geographical Sciences, 2007, 17(3): 304-316. |
[3] | JIA Shao-feng, WANG Guo, ZHANG Shi-feng, YU Gui-rui,WANG Jin-xia, XIA Jun. Research progress of socio-economic water cycle in China [J]. Journal of Geographical Sciences, 2002, 12(1): 114-120. |
[4] | WANG Guo, JIA Shao-feng, YU Gui-rui, XU Juan, WANG Jin-xia,WANG Qiu-feng, GE Quan-sheng, HUANG Ji-kun, XIA Jun,LI Li-juan, JIN De-sheng, DONG Suo-cheng, WANG Jin-feng,HE Fan-neng, ZHANG Xue-qin. New progress of research on water cycle in atmosphere in China [J]. Journal of Geographical Sciences, 2001, 11(4): 480-489. |
[5] | HUANG Ming-bin, HE Fu-hong, YANG Xin-min, LI Yu-shan. Effect of apple production base on regional water cycle in Weibei upland of the Loess Plateau [J]. Journal of Geographical Sciences, 2001, 11(2): 239-243. |
|