Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (3): 417-431.doi: 10.1007/s11442-019-1607-0
• Research Articles • Previous Articles Next Articles
Zhenkui GU1,2(), Changxing SHI1,*(
), Jie PENG3
Received:
2017-10-25
Accepted:
2018-02-22
Online:
2019-03-25
Published:
2019-03-20
Contact:
Changxing SHI
E-mail:bygzk853@126.com;shicx@igsnrr.ac.cn
About author:
Author: Gu Zhenkui, PhD, specialized in fluvial geomorphology. E-mail:
Supported by:
Zhenkui GU, Changxing SHI, Jie PENG. Evolutionary dynamics of the main-stem longitudinal profiles of ten kongdui basins within Inner Mongolia, China[J].Journal of Geographical Sciences, 2019, 29(3): 417-431.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Kongdui landform elements and sediment yields"
Kongdui | Longitudinal profile length (km) | Altitude difference (m) | Drainage area (km2) | Sediment yield (104 t/yr)* |
---|---|---|---|---|
MBL | 101 | 501 | 1,261 | 439 |
BES | 74 | 545 | 545 | 205 |
HLG | 86 | 439 | 944 | 329 |
XLG | 101 | 394 | 1,194 | 482 |
HTC | 94 | 438 | 875 | 184 |
HQH | 50 | 242 | 213 | 41 |
HSL | 94 | 395 | 1,089 | 201 |
MHG | 72 | 366 | 407 | 72 |
DLG | 68 | 329 | 451 | 77 |
HST | 60 | 268 | 406 | 67 |
Table 2
The formulae used in this study to compute geomorphic parameters and corresponding threshold value interpretations"
Parameter | Formula | Threshold value interpretation |
---|---|---|
HI | HI = (Hmean - Hmin) / (Hmax - Hmin) Hmean, Hmax, and Hmin denote the mean, maximum, and minimum heights of a basin, respectively. | HI > 0.7, 0.5 ≤ HI ≤ 0.7, and HI < 0.5 equate to high, moderate, and low levels of tectonic activity, respectively (e.g., |
AF | AF = 100 × (Ar / At) Ar denotes the area of the basin on the right side of the trunk stream, while At refers to the total basin area. | |AF - 50| > 15, 7 ≤ |AF - 50| ≤ 15, and |AF - 50| < 7 equate to high, moderate, and low levels of tectonic activity, respectively (e.g., |
SL | SL = (ΔH / ΔL) × L ΔH denotes the difference in elevation between the ends of the river reach under consideration, while ΔL denotes the length of the reach, L is the distance between the measured reach and the drainage divide. | SL > 500, 300 ≤ SL ≤ 500, and SL < 300 equate to high, moderate, and low levels of tectonic activity, respectively (e.g., |
Bs | Bs = B1 / Bw B1 denotes the basin length measured from the headwater to the mouth, while Bw is the maximum basin width. | High, moderate, and low levels of tectonic activity have values of Bs > 3, 2-3, and < 2, respectively (e.g., |
Vf | Vf = 2Vfw / [(Eld - Esc) + (Erd - Esc)] Vfw denotes the width of the valley floor, while Eld and Erd refer to the elevations of the left and right valley divides, respectively, and Esc is the elevation of the valley floor. | Vf < 1, 1 ≤ Vf ≤ 3, and Vf > 3 equate to high, moderate, and low levels of tectonic activity, respectively (e.g., |
Figure 5
Longitudinal profile shapes (a) and CI values (b). Abbreviations: H/Ho, ratio between height at the point of measurement above the river mouth (H) and the total fall of the stream (Ho); L/Lo, ratio between stream length from the river mouth to the point of measurement (L) and total length (Lo)"
Table 3
Correlation coefficients between landform elements within the ten kongdui basins"
Profile length | Altitude difference | Average altitude | Drainage area | Concavity | Sediment yield | |
---|---|---|---|---|---|---|
Profile length | 1 | 0.674* | 0.730* | 0.964** | ?0.844** | 0.854** |
Altitude difference | 1 | 0.961* | 0.592 | ?0.869** | 0.366 | |
Average altitude | 1 | 0.701* | ?0.887** | 0.437 | ||
Drainage area | 1 | ?0.781** | 0.897** | |||
Concavity | 1 | ?0.639* | ||||
Sediment yield | 1 |
Table 4
Geomorphic indexes and values for the intensity of tectonic activity within the ten kongdui basins evaluated in this study"
Basins | HI | AF | SL | Bs | Vf | IRAT | Geomorphic index class | IRAT class | Intensity | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HI | AF | SL | Bs | Vf | |||||||||
MBL | 0.55 | 61.76 | 245.56 | 3.77 | 6.49 | 2.2 | 2 | 2 | 3 | 1 | 3 | 3 | Moderate |
BES | 0.51 | 21.92 | 286.97 | 2.73 | 6.51 | 2.2 | 2 | 1 | 3 | 2 | 3 | 3 | Moderate |
HLG | 0.54 | 45.52 | 250.92 | 3.08 | 8.37 | 2.4 | 2 | 3 | 3 | 1 | 3 | 3 | Moderate |
XLG | 0.60 | 63.58 | 222.36 | 2.70 | 6.57 | 2.4 | 2 | 2 | 3 | 2 | 3 | 3 | Moderate |
HTC | 0.63 | 56.70 | 224.94 | 3.50 | 5.67 | 2.4 | 2 | 3 | 3 | 1 | 3 | 3 | Moderate |
HQH | 0.31 | 55.54 | 100.96 | 1.75 | 4.85 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | Weak |
HSL | 0.52 | 47.89 | 177.22 | 2.60 | 5.77 | 2.8 | 2 | 3 | 3 | 3 | 3 | 4 | Weak |
MHG | 0.41 | 48.94 | 153.84 | 4.23 | 6.15 | 2.6 | 3 | 3 | 3 | 1 | 3 | 4 | Weak |
DLG | 0.41 | 54.59 | 128.57 | 3.28 | 7.09 | 2.6 | 3 | 3 | 3 | 1 | 3 | 4 | Weak |
HST | 0.50 | 38.83 | 119.75 | 1.24 | 5.30 | 2.6 | 2 | 2 | 3 | 3 | 3 | 4 | Weak |
Table 5
Relations between profile concavity and internal-external forces"
Extreme case | Natural conditions | Regression model | Factor P-value | Equation P-value | R2 |
---|---|---|---|---|---|
$e=0$ | Elevation of the stream source is constant and water discharge has remained the same. | $CI=-1.38\times \mathop{I}_{\text{at}}-0.07\times \mathop{SP}_{\text{mean}}+2.51$ | $Iat$: 0.0226 | 0.0333 | 0.62 |
$\mathop{SP}_{mean}$: 0.8980 | |||||
$e=Spl$ | The difference in height between the stream source and the estuary is zero. | $CI=-1.26\times \mathop{I}_{\text{at}}-0.30\times \mathop{SP}_{\text{mean}}+2.53$ | $I\text{at}$: 0.0344 | 0.0288 | 0.64 |
$\mathop{SP}_{mean}$: 0.5930 |
[1] |
Altın T B, 2012. Geomorphic signatures of active tectonic in drainage basins in the southern Bolkar Mountains, Turkey.Journal of the Indian Society of Remote Sensing, 40(2): 271-285.http://link.springer.com/10.1007/s12524-011-0145-8
doi: 10.1007/s12524-011-0145-8 |
[2] |
Ambili V, Narayana A C, 2014. Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries, southwest India. Geomorphology, 217(2): 37-47.https://linkinghub.elsevier.com/retrieve/pii/S0169555X14001986
doi: 10.1016/j.geomorph.2014.04.013 |
[3] |
Bergonse R, Reis E, 2015. Reconstructing pre-erosion topography using spatial interpolation techniques: A validation-based approach.Journal of Geographical Sciences, 25(2): 196-210.http://link.springer.com/10.1007/s11442-015-1162-2
doi: 10.1007/s11442-015-1162-2 |
[4] |
Brookfield M E, 2008. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining north from the Pamir syntaxis.Geomorphology, 22(3/4): 285-312.http://www.sciencedirect.com/science/article/pii/S0169555X0800007X
doi: 10.1016/j.geomorph.2008.01.003 |
[5] |
Chen Y C, Sung Q C, Cheng K Y, 2003. Along strike variations of morphotectonic features in the western foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis.Geomorphology, 22(1/2): 109-137.http://www.onacademic.com/detail/journal_1000035492964810_a49b.html
doi: 10.1016/s0169-555x(03)00059-x |
[6] | Deng Q D, Cheng S P, Min Wet al., 1999. Discussion on Cenozoic tectonics and dynamics of the Ordos Block.Journal of Geomechanics, 5(3): 13-19. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX199903002.htm |
[7] |
Dušan B, Ján B, Daniel Ket al., 2017. Morphometric and geological conditions for sediment accumulation in the Udava River, Outer Carpathians, Slovakia.Journal of Geographical Sciences, 27(8): 981-998.http://link.springer.com/10.1007/s11442-017-1416-2
doi: 10.1007/s11442-017-1416-2 |
[8] |
Font M, Amorese D, Lagarde J L, 2010. DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France).Geomorphology, 119(3):172-180.https://linkinghub.elsevier.com/retrieve/pii/S0169555X10001248
doi: 10.1016/j.geomorph.2010.03.017 |
[9] |
Gallen S F, Wegmann K W, 2017. River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece.Earth Surface Dynamics, 5(1): 1-47.https://www.earth-surf-dynam.net/5/1/2017/
doi: 10.5194/esurf-5-1-2017 |
[10] |
Gao M, Zeilinger G, Xu X et al., 2016. Active tectonics evaluation from geomorphic indices for the central and the southern Longmenshan range on the Eastern Tibetan Plateau, China.Tectonics, 35: 1812-1826.http://doi.wiley.com/10.1002/tect.v35.8
doi: 10.1002/2015TC004080 |
[11] | Hack J T, 1973. Stream-profile analysis and stream-gradient index.Journal of Research of the U.S. Geological Survey, 1: 421-429. |
[12] |
Hamdouni R E, Irigaray C, Fernández T et al., 2008. Assessment of relative active tectonics, southwest border of Sierra Nevada (Southern Spain).Geomorphology, 96: 150-173.https://linkinghub.elsevier.com/retrieve/pii/S0169555X07003893
doi: 10.1016/j.geomorph.2007.08.004 |
[13] |
Hu X F, Pan B T, Kirby E et al., 2010. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau.Chinese Science Bulletin, 55(27/28): 3205-3214.http://link.springer.com/10.1007/s11434-010-4024-4
doi: 10.1007/s11434-010-4024-4 |
[14] |
Hu X F, Pan B T, Li Q, 2014. Principles of the stream power erosion model and the latest progress in research.Journal of Lanzhou University (Natural Sciences), 50(6): 824-831. (in Chinese)http://www.en.cnki.com.cn/Article_en/CJFDTotal-LDZK201406009.htm
doi: 10.1017/S0022377800004694 |
[15] | Jiang Z X, 1987. Model of development and rule of evolution of the longitudinal profiles of the valley of the Three Rivers in the northwestern part of Yunnan Province.Acta Geographica Sinica, 42(1): 16-26. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB198701001.htm |
[16] | Langbein W B, 1964. Profiles of rivers of uniform discharge.United States Geological Survey Professional Paper, 501B: 119-122. |
[17] | Lin X Z, Guo Y, Hou S Z, 2014. Estimation of sediment discharge of ten tributaries of the Yellow River in Inner Mongolia.Journal of Sediment Research, 2: 15-20. (in Chinese) |
[18] |
Mahmood S A, Gloaguen R, 2012. Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis.Geoscience Frontiers, 3(4): 407.https://linkinghub.elsevier.com/retrieve/pii/S1674987111001265
doi: 10.1016/j.gsf.2011.12.002 |
[19] |
Marple R T, Talwani P, 1993. Evidence of possible tectonic unwarping along the South Carolina coastal plain from an examination of river morphology and elevation data.Geology, 21(7): 651-654.https://pubs.geoscienceworld.org/geology/article/21/7/651-654/191235
doi: 10.1130/0091-7613(1993)0212.3.CO;2 |
[20] | Merritts D, Vincent K R, 1989. Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Mendocino triple junction region, northern California.Geological Society of America Bulletin, 110(11): 1373-1388. |
[21] |
Miller S R, Sak P B, Kirby E et al., 2013. Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates.Earth & Planetary Sciences Letters, 369(3): 1-12.http://www.sciencedirect.com/science/article/pii/S0012821X1300188X
doi: 10.1016/j.epsl.2013.04.007 |
[22] |
Ohmori H, 1991. Change in the mathematical function type describing the longitudinal profile of a river through an evolutionary process.Journal of Geology, 99: 97-110.https://www.journals.uchicago.edu/doi/10.1086/629476
doi: 10.1086/629476 |
[23] |
Owono F M, Ntamak-Nida M J, Dauteuil Oet al., 2016. Morphology and long-term landscape evolution of the South African plateau in South Namibia.Catena, 142: 47-65.https://linkinghub.elsevier.com/retrieve/pii/S0341816216300571
doi: 10.1016/j.catena.2016.02.012 |
[24] |
Pan B T, Li Q, Hu X Fet al., 2015. Bedrock channels response to differential rock uplift in eastern Qilian Mountain along the northeastern margin of the Tibetan Plateau.Journal of Asian Earth Sciences, 100: 1-19.https://linkinghub.elsevier.com/retrieve/pii/S1367912015000048
doi: 10.1016/j.jseaes.2014.12.009 |
[25] |
Pérez-Peña J V, Azañón J M, Azor Aet al., 2010. Spatial analysis of stream power using GIS: SLk anomaly maps.Earth Surface Processes & Landforms, 34(1): 16-25.http://onlinelibrary.wiley.com/doi/10.1002/esp.1684/pdf
doi: 10.1002/esp.1684 |
[26] |
Phillips J D, Lutz J D, 2008. Profile convexities in bedrock and alluvial streams.Geomorphology, 102(3): 554-566.https://linkinghub.elsevier.com/retrieve/pii/S0169555X08002560
doi: 10.1016/j.geomorph.2008.05.042 |
[27] |
Pipaud I, Loibl D, Lehmkuhl F, 2015. Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments: A case study from SE Tibet, China.Geomorphology, 246: 232-254.https://linkinghub.elsevier.com/retrieve/pii/S0169555X15300428
doi: 10.1016/j.geomorph.2015.06.025 |
[28] |
Rãdoane M, Rãdoane N, Dan D, 2003. Geomorphological evolution of longitudinal river profiles in the Carpathians.Geomorphology, 50(4): 293-306.http://linkinghub.elsevier.com/retrieve/pii/S0169555X02001940
doi: 10.1016/S0169-555X(02)00194-0 |
[29] |
Rhea S, 1989. Evidence of uplift near Charleston, South Carolina.Geology, 17(4): 311-315.https://pubs.geoscienceworld.org/geology/article/17/4/311-315/187740
doi: 10.1130/0091-7613(1989)0172.3.CO;2 |
[30] |
Snow R S, Slingerland R L, 1987. Mathematical modeling of graded river profiles.Journal of Geology, 95(1): 15-33.https://www.journals.uchicago.edu/doi/10.1086/629104
doi: 10.1086/629104 |
[31] | Summerfield M A, 1991. Global Geomorphology. Longman:Singapore. |
[32] | Wang H Z, 1985. Atlas of the Palaeo-Geography of China. Beijing: Sinomap Press. (in Chinese) |
[33] | Wang Q S, Teng J W, An Y Let al., 2010. Gravity field and deep crustal structures of the Yinshan Orogen and the northern Ordos Basin.Progress in Geophysics, 25(5): 1590-1598. (in Chinese) |
[34] |
Whipple K X, Hancock G S, Anderson R S, 2000. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation.Geological Society of America Bulletin, 112(3): 490-503.https://pubs.geoscienceworld.org/gsabulletin/article/112/3/490-503/183620
doi: 10.1130/0016-7606(2000)1122.0.CO;2 |
[35] |
Whipple K X, Tucker G E, 1999. Dynamics of the stream power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs.Journal of Geophysical Research, 104(B8): 17661-17674.http://doi.wiley.com/10.1029/1999JB900120
doi: 10.1029/1999JB900120 |
[36] | Xu J X, 2013. Erosion and sediment yield of ten small tributaries joining Inner Mongolia reach of upper Yellow River in relation to coupled wind-water processes and hyper-concentrated flows.Journal of Sediment Research, (6): 27-36. (in Chinese) |
[37] | Xu J X, 2014. Temporal and spatial variations in erosion and sediment yield and the cause in the ten small tributaries to the Inner Mongolia Reach of the Yellow River.Journal of Desert Research, 34(6): 1641-1649. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTotal-ZGSS201406028.htm |
[38] |
Yang M, Li L, Zhou J et al., 2015. Mesozoic structural evolution of the Hangjinqi area in the northern Ordos Basin, North China.Marine and Petroleum Geology, 66: 695-710.https://linkinghub.elsevier.com/retrieve/pii/S0264817215300350
doi: 10.1016/j.marpetgeo.2015.07.014 |
[39] |
Yao H, Shi C, Shao W, 2016. Changes and influencing factors of the sediment load in the Xiliugou basin of the upper Yellow River, China.Catena, 142: 1-10.https://linkinghub.elsevier.com/retrieve/pii/S0341816216300534
doi: 10.1016/j.catena.2016.02.007 |
[40] | Yu H Y, Luo L, Ma H Het al., 2017. Application appraisal in catchment hydrological analysis based on SRTM 1 Arc-second DEM.Remote Sensing for Land & Resources, 29(2): 138-143. (in Chinese)http://www.en.cnki.com.cn/Article_en/CJFDTotal-GTYG201702020.htm |
[41] |
Yue L P, Li J X, Zheng G Z et al. , 2007. Evolution of the Ordos Plateau and environmental effects.Science in China (Series D: Earth Sciences), 50(Suppl.2): 19-26.http://link.springer.com/10.1007/s11430-007-6013-2
doi: 10.1007/s11430-007-6013-2 |
[42] |
Zhang Y Q, Teng J W, Wang F Yet al., 2011. Structure of the seismic wave property and lithology deduction of the upper crust beneath the Yinshan orogenic belt and the northern Ordos Block.Chinese Journal of Geophysics, 54(1): 87-97. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201101009.htm
doi: 10.3969/j.issn.0001-5733.2011.01.010 |
[43] | Zhao G H, Li Y, Yan Z Ket al., 2014. Tectonic geomorphology analysis of piedmont rivers in the middle MT. Longmenshan based on Hack profile and hypsometric integral.Quaternary Sciences, 34(2): 302-310. (in Chinese)http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ201402004.htm |
[44] | Zheng M L, Jin Z J, Wang Y et al., 2006. Structural characteristics and evolution of the North Ordos Basin in Late Mesozoic and Cenozoic.Journal of Earth Sciences and Environment, 28(3): 31-36. (in Chinese) |
No related articles found! |
|