Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (3): 377-388.doi: 10.1007/s11442-019-1604-3
• Research Articles • Previous Articles Next Articles
Jinxi SONG1,2(), Dandong CHENG1,3, Junlong ZHANG2,4, Yongqiang ZHANG5, Yongqing LONG2, Yan ZHANG2, Weibo SHEN1
Received:
2018-02-14
Accepted:
2018-06-10
Online:
2019-03-25
Published:
2019-03-20
About author:
Author: Song Jinxi (1971-), Professor, E-mail:
Supported by:
Jinxi SONG, Dandong CHENG, Junlong ZHANG, Yongqiang ZHANG, Yongqing LONG, Yan ZHANG, Weibo SHEN. Estimating spatial pattern of hyporheic water exchange in slack water pool[J].Journal of Geographical Sciences, 2019, 29(3): 377-388.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Properties for some micro-topographies"
Micro-topographic feature | Location in the HZ | HZ exchange patterns | Influencing factors | Analysis method | Reference |
---|---|---|---|---|---|
Hollows and hummocks | Floodplain | Frequent shifts | Runoff generation | Virtual modeling experiment | Frei et al. (2010) |
Bank hillslope | Stream margin/floodplain | Mainly discharge | Groundwater head, soil permeability | 3D geological model | Dochartaigh et al. (2012) |
Pool-riffle | Riverbed | Complex interactions | Bedform-induced advection | Laboratory experiments and pumping exchange model | Tonina and Buffington (2007) |
Riffle | Riverbed | Mixed a | Hydraulic conductivity, groundwater flux | MODFLOW, Numerical heat-transport model | Storey et al. (2003); Vogt et al. (2012) |
Dunes and eddies | Riverbed | Differ in depths | Pressure gradient | Governing equations for fluid, tracer method | Fox et al. (2014); Chen et al. (2015) |
Slack water pools | Stream margin/floodplain | Complex interaction | Flow velocity and shape | Thermal method | Present study |
[1] |
Anibas C, Buis K, Verhoeven Ret al., 2011. A simple thermal mapping method for seasonal spatial patterns of groundwater-surface water interaction.Journal of Hydrology, 397(1): 93-104.https://linkinghub.elsevier.com/retrieve/pii/S0022169410007328
doi: 10.1016/j.jhydrol.2010.11.036 |
[2] |
Anibas C, Fleckenstein J H, Volze Net al., 2009. Transient or steady-state? Using vertical temperature profiles to quantify groundwater-surface water exchange.Hydrological Processes, 23(15): 2165-2177.http://doi.wiley.com/10.1002/hyp.v23%3A15
doi: 10.1002/hyp.7289 |
[3] |
Baxter C, Hauer F R, Woessner W W, 2003. Measuring groundwater-stream water exchange: New techniques for installing minipiezometers and estimating hydraulic conductivity.Transactions of the American Fisheries Society, 132(3): 493-502.http://doi.wiley.com/10.1577/1548-8659(2003)132<0493:MGWENT>2.0.CO;2
doi: 10.1577/1548-8659(2003)132<0493:MGWENT>2.0.CO;2 |
[4] |
Bellin A, Tonina D, Marzadri A, 2015. Breakthrough curve moments scaling in hyporheic exchange.Water Resources Research, 51(2): 1112-1126.http://doi.wiley.com/10.1002/2014WR016623
doi: 10.1002/2014WR016623 |
[5] |
Boano F, Camporeale C, Revelli Ret al., 2006. Sinuosity-driven hyporheic exchange in meandering rivers.Geophysical Research Letters, 33(18): L18406.
doi: 10.1029/2006GL027630 |
[6] | Boano F, Revelli R, Ridolfi L, 2008. Reduction of the hyporheic zone volume due to the stream-aquifer interaction.Geophysical Research Letters, 35(9): L09401. |
[7] |
Boano F, Revelli R, Ridolfi L, 2010. Effect of streamflow stochasticity on bedform-driven hyporheic exchange.Advances in Water Resources, 33(11): 1367-1374.https://linkinghub.elsevier.com/retrieve/pii/S0309170810000461
doi: 10.1016/j.advwatres.2010.03.005 |
[8] |
Boulton A J, Datry T, Kasahara Tet al., 2010. Ecology and management of the hyporheic zone: Stream-groundwater interactions of running waters and their floodplains.Journal of the North American Benthological Society, 29(1): 26-40.https://www.journals.uchicago.edu/doi/10.1899/08-017.1
doi: 10.1899/08-017.1 |
[9] | Cardenas M B, Wilson J, Zlotnik V A, 2004. Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange.Water Resources Research, 40(8): W08307. |
[10] |
Caruso A, Ridolfi L, Boano F, 2016. Impact of watershed topography on hyporheic exchange.Advances in Water Resources, 94: 400-411.https://linkinghub.elsevier.com/retrieve/pii/S0309170816301671
doi: 10.1016/j.advwatres.2016.06.005 |
[11] |
Chen X, Dong W, Ou Get al., 2013. Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns.Hydrology and Earth System Sciences, 17(7): 2569-2579.https://www.hydrol-earth-syst-sci.net/17/2569/2013/
doi: 10.5194/hess-17-2569-2013 |
[12] |
Chen X B, Cardenas M B, Chen L, 2015. Three-dimensional versus two-dimensional bed form-induced hyporheic exchange.Water Resources Research, 51(4): 2923-2936.http://doi.wiley.com/10.1002/2014WR016848
doi: 10.1002/2014WR016848 |
[13] |
Cheng D H, Chen X H, Huo A Det al., 2013. Influence of bedding orientation on the anisotropy of hydraulic conductivity in a well-sorted fluvial sediment.International Journal of Sediment Research, 28(1): 118-125.https://linkinghub.elsevier.com/retrieve/pii/S1001627913600244
doi: 10.1016/S1001-6279(13)60024-4 |
[14] |
Conant B, 2004. Delineating and quantifying ground water discharge zones using streambed temperatures.Groundwater, 42(2): 243-257.http://www.blackwell-synergy.com/toc/gwat/42/2
doi: 10.1111/j.1745-6584.2004.tb02671.x pmid: 15035588 |
[15] |
Conant Jr B, Cherry J A, Gillham R W, 2004. A PCE groundwater plume discharging to a river: Influence of the streambed and near-river zone on contaminant distributions.Journal of Contaminant Hydrology, 73(1): 249-279.https://linkinghub.elsevier.com/retrieve/pii/S0169772204000555
doi: 10.1016/j.jconhyd.2004.04.001 pmid: 15336797 |
[16] |
Darracq A, Destouni G, Persson Ket al., 2009. Quantification of advective solute travel times and mass transport through hydrological catchments.Environmental Fluid Mechanics, 10(1/2): 103-120.http://link.springer.com/article/10.1007/s10652-009-9147-2
doi: 10.1007/s10652-009-9147-2 |
[17] |
Doble R, Brunner P, McCallum Jet al., 2012. An analysis of river bank slope and unsaturated flow effects on bank storage.Groundwater, 50(1): 77-86.http://doi.wiley.com/10.1111/gwat.2012.50.issue-1
doi: 10.1111/j.1745-6584.2011.00821.x pmid: 21517832 |
[18] | Dochartaigh B, MacDonald A, Archer N et al., 2012. Groundwater-surface water interaction in an upland hillslope-floodplain environment, Eddleston, Scotland, BHS 11th National Symposium, Hydrology for a Changing World, Dundee,Scotland, pp. 2012. |
[19] |
Dudley-Southern M, Binley A, 2015. Temporal responses of groundwater-surface water exchange to successive storm events.Water Resources Research, 51(2): 1112-1126.http://doi.wiley.com/10.1002/2014WR016623
doi: 10.1002/2014WR016623 |
[20] | Dunster K, 2011. Dictionary of Natural Resource Management. UBC Press.http://www.cabdirect.org/abstracts/19971901708.html |
[21] |
Fischer H, Kloep F, Wilzcek Set al., 2005. A river's liver-microbial processes within the hyporheic zone of a large lowland river.Biogeochemistry, 76(2): 349-371.http://link.springer.com/10.1007/s10533-005-6896-y
doi: 10.1007/s10533-005-6896-y |
[22] |
Fox A, Boano F, Arnon S, 2014. Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms.Water Resources Research, 50(3): 1895-1907.http://doi.wiley.com/10.1002/2013WR014668
doi: 10.1002/2013WR014668 |
[23] |
Frei S, Lischeid G, Fleckenstein J H, 2010. Effects of micro-topography on surface-subsurface exchange and runoff generation in a virtual riparian wetland: A modeling study.Advances in Water Resources, 33(11): 1388-1401.https://linkinghub.elsevier.com/retrieve/pii/S0309170810001417
doi: 10.1016/j.advwatres.2010.07.006 |
[24] |
Gerecht K E, Cardenas M B, Guswa A Jet al., 2011. Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river.Water Resources Research, 47: W03524.http://onlinelibrary.wiley.com/doi/10.1029/2010WR009794/pdf
doi: 10.1029/2010WR009794 |
[25] |
Gualtieri C, Filizola Jr N, Oliveira Met al., 2017. A field study of the confluence between Negro and Solimões rivers. Part 1: Hydrodynamics and sediment transport.Comptes Rendus Geoscience, 350(1/2): 31-42.http://www.sciencedirect.com/science/article/pii/S1631071317301220
doi: 10.1016/j.crte.2017.09.015 |
[26] |
Ianniruberto M, Trevethan M, Pinheiro Aet al., 2017. A field study of the confluence between Negro and Solimões rivers. Part 2: Bed morphology and stratigraphy.Comptes Rendus Geoscience, 350(1/2): 43-54.http://www.sciencedirect.com/science/article/pii/S1631071317301608
doi: 10.1016/j.crte.2017.10.005 |
[27] |
Irvine D J, Lautz L K, Briggs M Aet al., 2015. Experimental evaluation of the applicability of phase, amplitude, and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2.Journal of Hydrology, 531: 728-737.https://linkinghub.elsevier.com/retrieve/pii/S0022169415008252
doi: 10.1016/j.jhydrol.2015.10.054 |
[28] |
Isiorho S A, Meyer J H, 1999. The effects of bag type and meter size on seepage meter measurements.Groundwater, 37(3): 411-413.http://www.blackwell-synergy.com/toc/gwat/37/3
doi: 10.1111/j.1745-6584.1999.tb01119.x |
[29] |
Jiang W, Song J, Zhang Jet al., 2015. Spatial variability of streambed vertical hydraulic conductivity and its relation to distinctive stream morphologies in the Beiluo River, Shaanxi Province, China.Hydrogeology Journal, 23(7): 1617-1626.http://link.springer.com/10.1007/s10040-015-1288-4
doi: 10.1007/s10040-015-1288-4 |
[30] |
Josset L, Ginsbourger D, Lunati I, 2015. Functional error modeling for uncertainty quantification in hydrogeology.Water Resources Research, 51(2): 1050-1068.http://doi.wiley.com/10.1002/2014WR016028
doi: 10.1002/2014WR016028 |
[31] |
Kalbus E, Reinstorf F, Schirmer M, 2006. Measuring methods for groundwater-surface water interactions: A review.Hydrology and Earth System Sciences, 10(6): 873-887.http://www.hydrol-earth-syst-sci.net/10/873/2006/
doi: 10.5194/hess-10-873-2006 |
[32] |
Kasahara T, Wondzell S M, 2003. Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resources Research, 39(1): SBH 3-1-SBH 3-14.http://onlinelibrary.wiley.com/doi/10.1029/2002WR001386/full
doi: 10.1029/2002WR001386 |
[33] |
Koch J, Nowak W, 2015. Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high-resolution stochastic simulation.Water Resources Research, 51: 806-831.http://doi.wiley.com/10.1002/2014WR015478
doi: 10.1002/2014WR015478 |
[34] |
Korbel K L, Hose G C, 2015. Habitat, water quality, seasonality, or site? Identifying environmental correlates of the distribution of groundwater biota.Freshwater Science, 34(1): 329-343.https://www.journals.uchicago.edu/doi/10.1086/680038
doi: 10.1086/680038 |
[35] |
Kuhlman KL, Malama B, Heath J E, 2015. Multiporosity flow in fractured low-permeability rocks.Water Resources Research, 51(2): 848-860.http://doi.wiley.com/10.1002/2014WR016502
doi: 10.1002/2014WR016502 |
[36] |
Kumar K N, Entekhabi D, Molini A, 2015. Hydrological extremes in hyperarid regions: A diagnostic characterization of intense precipitation over the Central Arabian Peninsula.Journal of Geophysical Research: Atmospheres, 120: 1637-1650.
doi: 10.1002/2014JD022341 |
[37] |
Larkin R G, Sharp J M, 1992. On the relationship between river-basin geomorphology, aquifer hydraulics, and ground-water flow direction in alluvial aquifers.Geological Society of America Bulletin, 104(12): 1608-1620.https://pubs.geoscienceworld.org/gsabulletin/article/104/12/1608-1620/182633
doi: 10.1130/0016-7606(1992)1042.3.CO;2 |
[38] |
Lautz L K, Siegel D I, 2006. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D.Advances in Water Resources, 29(11): 1618-1633.https://linkinghub.elsevier.com/retrieve/pii/S0309170805002939
doi: 10.1016/j.advwatres.2005.12.003 |
[39] |
Li Q, Song J X, Wei Aet al., 2013. Changes in major factors affecting the ecosystem health of the Weihe River in Shaanxi Province, China.Frontiers of Environmental Science & Engineering, 7(6): 875-885.http://link.springer.com/article/10.1007/s11783-013-0568-2
doi: 10.1007/s11783-013-0568-2 |
[40] |
Malard F, Tockner K, Dole-Olivier M Jet al., 2002. A landscape perspective of surface-subsurface hydrological exchanges in river corridors.Freshwater Biology, 47(4): 621-640.http://doi.wiley.com/10.1046/j.1365-2427.2002.00906.x
doi: 10.1046/j.1365-2427.2002.00906.x |
[41] |
Malcolm I A, Soulsby C, Youngson A F, 2006. High-frequency logging technologies reveal state-dependent hyporheic process dynamics: Implications for hydroecological studies.Hydrological Processes, 20(3): 615-622.http://doi.wiley.com/10.1002/%28ISSN%291099-1085
doi: 10.1002/(ISSN)1099-1085 |
[42] |
Marzadri A, Tonina D, McKean J Aet al., 2014. Multi-scale streambed topographic and discharge effects on hyporheic exchange at the stream network scale in confined streams.Journal of Hydrology, 519: 1997-2011.https://linkinghub.elsevier.com/retrieve/pii/S0022169414007689
doi: 10.1016/j.jhydrol.2014.09.076 |
[43] |
Mendoza-Lera C, Datry T, 2017. Relating hydraulic conductivity and hyporheic zone biogeochemical processing to conserve and restore river ecosystem services.Science of the Total Environment, 579: 1815-1821.https://linkinghub.elsevier.com/retrieve/pii/S0048969716326316
doi: 10.1016/j.scitotenv.2016.11.166 pmid: 27932213 |
[44] |
Min L L, Yu J J, Liu C Met al., 2013. The spatial variability of streambed vertical hydraulic conductivity in an intermittent river, northwestern China.Environmental Earth Sciences, 69(3): 873-883.http://link.springer.com/10.1007/s12665-012-1973-8
doi: 10.1007/s12665-012-1973-8 |
[45] |
Naiman R J, Latterell J J, 2005. Principles for linking fish habitat to fisheries management and conservation.Journal of Fish Biology, 67: 166-185.http://blackwell-synergy.com/doi/abs/10.1111/jfb.2005.67.issue-sB
doi: 10.1111/jfb.2005.67.issue-sB |
[46] |
Nazemi A, Wheater H S, 2014. How can the uncertainty in the natural inflow regime propagate into the assessment of water resource systems?Advances in Water Resources, 63: 131-142.https://linkinghub.elsevier.com/retrieve/pii/S0309170813002406
doi: 10.1016/j.advwatres.2013.11.009 |
[47] |
Peralta-Maraver I, Reiss J, Robertson A L, 2018. Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone.Science of the Total Environment, 610/611: 267-275.https://linkinghub.elsevier.com/retrieve/pii/S004896971732034X
doi: 10.1016/j.scitotenv.2017.08.036 pmid: 28803202 |
[48] |
Pozdniakov S P, Wang P, Lekhov M V, 2016. A semi-analytical generalized Hvorslev formula for estimating riverbed hydraulic conductivity with an open-ended standpipe permeameter.Journal of Hydrology, 540: 736-743.https://linkinghub.elsevier.com/retrieve/pii/S0022169416304231
doi: 10.1016/j.jhydrol.2016.06.061 |
[49] |
Prancevic J P, Lamb M P, 2015. Particle friction angles in steep mountain channels.Journal of Geophysical Research: Earth Surface, 120(2): 242-259.http://onlinelibrary.wiley.com/doi/10.1002/2014JF003286/pdf
doi: 10.1002/2014JF003286 |
[50] |
Ramirez J A, Baird A J, Coulthard T Jet al., 2015. Testing a simple model of gas bubble dynamics in porous media.Water Resources Research, 51(2): 1036-1049.http://doi.wiley.com/10.1002/2014WR015898
doi: 10.1002/2014WR015898 |
[51] |
Rau G C, Andersen M S, McCallum A Met al., 2014. Heat as a tracer to quantify water flow in near-surface sediments.Earth-Science Reviews, 129: 40-58.https://linkinghub.elsevier.com/retrieve/pii/S0012825213001876
doi: 10.1016/j.earscirev.2013.10.015 |
[52] |
Rivett M O, Buss S R, Morgan Pet al., 2008. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes.Water Research, 42(16): 4215-4232.https://linkinghub.elsevier.com/retrieve/pii/S0043135408002984
doi: 10.1016/j.watres.2008.07.020 pmid: 18721996 |
[53] |
Sapriza-Azuri G, Jódar J, Navarro Vet al., 2015. Impacts of rainfall spatial variability on hydrogeological response.Water Resources Research, 51(2): 1112-1126.http://doi.wiley.com/10.1002/2014WR016623
doi: 10.1002/2014WR016623 |
[54] |
Schmeeckle M W, Nelson J M, Shreve R L, 2007. Forces on stationary particles in near-bed turbulent flows.Journal of Geophysical Research, 112(F2): F02003.http://onlinelibrary.wiley.com/doi/10.1029/2006JF000536/full
doi: 10.1029/2006JF000536 |
[55] |
Schmidt C, Conant Jr B, Bayer-Raich Met al., 2007. Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures.Journal of Hydrology, 347(3): 292-307.https://linkinghub.elsevier.com/retrieve/pii/S0022169407004787
doi: 10.1016/j.jhydrol.2007.08.022 |
[56] |
Somogyvári M, Bayer P, Brauchler R, 2016. Travel-time-based thermal tracer tomography.Hydrology and Earth System Sciences, 20(5): 1885-1901.https://www.hydrol-earth-syst-sci.net/20/1885/2016/
doi: 10.5194/hess-20-1885-2016 |
[57] | Song J X, Zhang G T, Wang W Zet al., 2017. Variability in the vertical hyporheic water exchange effected by hydraulic conductivity and river morphology at a natural confluent meander bend. Hydrological Processes, 31(19): 3407-3420. |
[58] |
Stegen J C, Johnson T, Fredrickson J Ket al., 2018. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology.Nat. Commun., 9(1): 585.http://www.nature.com/articles/s41467-018-02922-9
doi: 10.1038/s41467-018-02922-9 pmid: 29422537 |
[59] | Storey R G, Howard K W F, Williams D D, 2003. Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three-dimensional groundwater flow model.Water Resources Research, 39(2): 1034. |
[60] |
Stubbington R, 2012. The hyporheic zone as an invertebrate refuge: A review of variability in space, time, taxa and behaviour.Marine and Freshwater Research, 63(4): 293-311.http://www.publish.csiro.au/?paper=MF11196
doi: 10.1071/MF11196 |
[61] |
Suzuki S, 1960. Percolation measurements based on heat flow through soil with special reference to paddy fields.Journal of Geophysical Research, 65(9): 2883-2885.http://doi.wiley.com/10.1029/JZ065i009p02883
doi: 10.1029/JZ065i009p02883 |
[62] |
Tonina D, Buffington J M, 2007. Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling.Water Resources Research, 43(1): W01421.http://www.fs.usda.gov/treesearch/pubs/download/26785.pdf
doi: 10.1029/2005WR004328 |
[63] |
Trauth N, Fleckenstein J H, 2017. Single discharge events increase reactive efficiency of the hyporheic zone.Water Resources Research, 53(1): 779-798.http://doi.wiley.com/10.1002/2016WR019488
doi: 10.1002/2016WR019488 |
[64] |
Vogt T, Schirmer M, Cirpka O A, 2012. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution.Hydrology and Earth System Sciences, 16(2): 473-487.https://www.hydrol-earth-syst-sci.net/16/473/2012/
doi: 10.5194/hess-16-473-2012 |
[65] |
Wang P, Pozdniakov S P, Vasilevskiy P Y, 2017. Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations.Journal of Hydrology, 555: 68-79.https://linkinghub.elsevier.com/retrieve/pii/S0022169417306686
doi: 10.1016/j.jhydrol.2017.10.004 |
[66] |
Wang W Z, Song J X, Zhang G Tet al., 2018. The influence of hyporheic upwelling fluxes on inorganic nitrogen concentrations in the pore water of the Weihe River.Ecological Engineering, 112: 105-115.https://linkinghub.elsevier.com/retrieve/pii/S0925857417306456
doi: 10.1016/j.ecoleng.2017.12.012 |
[67] |
Westhoff M C, Gooseff M N, Bogaard T Aet al., 2011. Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first-order stream.Water Resources Research, 47(10): W10508.http://onlinelibrary.wiley.com/doi/10.1029/2010WR009767/full
doi: 10.1029/2010WR009767 |
[68] |
Wroblicky G J, Campana M E, Valett H Met al., 1998. Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems.Water Resources Research, 34(3): 317-328.http://doi.wiley.com/10.1029/97WR03285
doi: 10.1029/97WR03285 |
[69] |
Zhang G T, Song J X, Wen Met al., 2017. Effect of bank curvatures on hyporheic water exchange at meter scale.Hydrology Research, 48(2): 355-369.https://iwaponline.com/hr/article/48/2/355-369/1915
doi: 10.2166/nh.2016.046 |
[1] | SUN Zhaohua, FAN Jiewei, YAN Xin, XIE Cuisong. Analysis of critical river discharge for saltwater intrusion control in the upper South Branch of the Yangtze River Estuary [J]. Journal of Geographical Sciences, 2020, 30(5): 823-842. |
[2] | Leilei MIN, Yongqing QI, Yanjun SHEN, Ping WANG, Shiqin WANG, Meiying LIU. Groundwater recharge under irrigated agro-ecosystems in the North China Plain: From a critical zone perspective [J]. Journal of Geographical Sciences, 2019, 29(6): 877-890. |
[3] | Xue DAI, Guishan YANG, Rongrong WAN, Yanyan LI. The effect of the Changjiang River on water regimes of its tributary Lake East Dongting [J]. Journal of Geographical Sciences, 2018, 28(8): 1072-1084. |
[4] | Yunping YANG, Jinyun DENG, Mingjin ZHANG, Yitian LI, Wanli LIU. The synchronicity and difference in the change of suspended sediment concentration in the Yangtze River Estuary [J]. Journal of Geographical Sciences, 2015, 25(4): 399-416. |
[5] | Huiru REN, Guosheng LI, Linlin CUI, Lei HE. Multi-scale variability of water discharge and sediment load into the Bohai Sea from 1950 to 2011 [J]. Journal of Geographical Sciences, 2015, 25(1): 85-100. |
[6] | Suiji WANG, Ling LI, Weiming CHENG. Variations of bank shift rates along the Yinchuan Plain reach of the Yellow River and their influencing factors [J]. Journal of Geographical Sciences, 2014, 24(4): 703-716. |
[7] | Yam Prasad DHITAL, TANG Qiuhong, SHI Jiancheng. Hydroclimatological changes in the Bagmati River Basin, Nepal [J]. , 2013, 23(4): 612-626. |
[8] | LIU Feng, CHEN Shenliang, DONG Ping, PENG Jun. Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years [J]. Journal of Geographical Sciences, 2012, 22(6): 1013-1033. |
[9] | LIU Feng, CHEN Shenliang, PENG Jun, CHEN Guangquan. Temporal variability of water discharge and sediment load of the Yellow River into the sea during 1950-2008 [J]. Journal of Geographical Sciences, 2011, 21(6): 1047-1061. |
[10] | LEITE Mariangela Garcia Pra?a, FUJACO Maria Augusta Gon?alves. A long-term annual water balance analysis of the Araçuaí|River Basin, Brazil [J]. Journal of Geographical Sciences, 2010, 20(6): 938-946. |
[11] | CHANG Jiang, LI Jingbao, LU Dianqing, ZHU Xiang, LU Chengzhi, ZHOU Yueyun, DENG Chuxiong. The hydrological effect between Jingjiang River and Dongting Lake during the initial period of Three Gorges Project operation [J]. Journal of Geographical Sciences, 2010, 20(5): 771-786. |
[12] | PENG Jun, CHEN Shenliang. Response of delta sedimentary system to variation of water and sediment in the Yellow River over past six decades [J]. Journal of Geographical Sciences, 2010, 20(4): 613-627. |
[13] | LIU Xiaoyan, ZHANG Yuanfeng, ZHANG Jianzhong. Healthy Yellow River’s essence and indicators [J]. Journal of Geographical Sciences, 2006, 16(3): 259-270. |
[14] | ZHANG Erfeng, CHEN Xiqing, WANG Xiaoli. Water discharge changes of the Changjiang River downstream Datong during dry season [J]. Journal of Geographical Sciences, 2003, 13(3): 355-362. |
|