Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (3): 351-362.doi: 10.1007/s11442-019-1602-5
• Research Articles • Previous Articles Next Articles
Yujie LIU1,3,*(), Ya QIN1,2, Quansheng GE1,3
Received:
2018-01-15
Accepted:
2018-07-12
Online:
2019-03-25
Published:
2019-03-20
Contact:
Yujie LIU
E-mail:liuyujie@igsnrr.ac.cn
About author:
Author: Zhu Guofeng (1983-), PhD and Associate Professor, specialized in hydrology and water resources.E-mail:
Supported by:
Yujie LIU, Ya QIN, Quansheng GE. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010[J].Journal of Geographical Sciences, 2019, 29(3): 351-362.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Changing trends of climate factors during the entire growth period of maize in different regions"
Growing zones | Average air temperature (℃/a) | Precipitation (mm/a) | Sunshine duration (h/a) | GDD (℃ d/a) |
---|---|---|---|---|
Nationwide | 0.03** | ?0.16 | ?2.07** | 4.92** |
Northwest maize zone | 0.05** | 0.14 | ?0.99 | 5.26** |
Northern spring maize zone | 0.04** | ?2.26** | 0.51 | 7.01** |
Huang-Huai spring-summer maize zone | 0.02** | 2.61** | ?7.30** | 0.87 |
Southwest maize zone | ?0.001 | 1.53 | ?1.15 | 5.81** |
Table 2
Changing trend of major phenological/growing stages length of maize in different regions from 1981 to 2010 (d/yr)"
Growing zones | Planting type | Sowing date | Seedling date | Three-leaf date | Seven-leaf date | Jointing date | Tasseling date | Milk-ripe date | Ripening date | Vegetative growth stage | Reproductive growth stage | Entire growth stage |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Northwest maize zone | Spring maize | ?0.05 | ?0.20** | ?0.16* | ?0.24** | ?0.18** | 0.02 | 0.12 | 0.06 | 0.02* | 0.03 | 0.10 |
Summer maize | 0.87** | 0.66** | 0.64** | 0.73** | 0.21 | 0.46** | 0.39** | 0.22* | ?0.46 | ?0.24** | ?0.65** | |
Northern spring maize zone | Spring maize | 0.18** | 0.04 | 0.01 | ?0.14** | 0.10** | 0.05* | 0.23** | 0.30** | ?0.12 | 0.25** | 0.11** |
Huang-Huai spring-summer maize zone | Spring maize | ?0.52** | ?0.53** | ?0.45** | ?0.32** | ?0.24* | ?0.24* | ?0.13 | ?0.18 | 0.35** | 0.10 | 0.41** |
Southwest maize zone | Summer maize | 0.20** | 0.17** | 0.22** | 0.15** | 0.09* | 0.09* | 0.25** | 0..35** | ?0.11* | 0.26** | 0.14** |
Spring-summer maize | 0.96** | 0.17** | 0.13 | 0.18* | 0.12* | 0.23** | 0.22** | 0.37** | ?0.83 | 0.14* | ?0.60** |
[1] |
Cui L L, Shi J, Ma Yet al., 2018. Variations of the thermal growing season during the period 1961-2015 in northern China.Journal of Arid Land, 10(2): 264-276.http://link.springer.com/10.1007/s40333-018-0001-6
doi: 10.1007/s40333-018-0001-6 |
[2] | Fu G, Zhong Z M, 2016. Initial response of phenology and aboveground biomass to experimental warming in a maize system of the Tibet.Ecology and Environmental Sciences, 25(7): 1093-1097. (in Chinese)http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ201607001.htm |
[3] | Guo J P, 2015. Advances in impacts of climate change on agricultural production in China.Journal of Applied Meteorological Science, 26(1): 1-11. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTotal-YYQX201501001.htm |
[4] |
He L, Asseng S, Zhao Get al., 2015. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China.Agricultural and Forest Meteorology, 200: 135-143.https://linkinghub.elsevier.com/retrieve/pii/S0168192314002226
doi: 10.1016/j.agrformet.2014.09.011 |
[5] |
Hou P, Liu Y E, Xie R Zet al., 2014. Temporal and spatial variation in accumulated temperature requirements of maize.Field Crops Research, 158: 55-64.https://linkinghub.elsevier.com/retrieve/pii/S0378429013004358
doi: 10.1016/j.fcr.2013.12.021 |
[6] | IPCC, 2014. Climate change 2014: The physical science basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 5-7. |
[7] |
Ji R P, Zhang Y S, Jiang L Xet al., 2012. Effect of climate change on maize production in Northeast China.Geographical Research, 31(2): 290-298. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201202009.htm
doi: 10.11821/yj2012020009 |
[8] | Li R P, Zhou G S, Shi K Qet al., 2009. Phenological characteristics of maize and their response to the climate from 1980 to 2005.Journal of Anhui Agricultural Science, 37(31): 15197-15199, 15267. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHNY200931047.htm |
[9] |
Li Z G, Yang P, Tang H Jet al., 2013. Trends of spring maize phenophases and spatio-temporal responses to temperature in three provinces of Northeast China during the past 20 years.Acta Ecologica Sinica, 33(18): 5818-5827. (in Chinese)http://www.ecologica.cn/
doi: 10.5846/stxb |
[10] |
Liu Y, Wang E L, Yang X Get al., 2010. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s.Global Change Biology, 16(8): 2287-2299.http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2009.02077.x/pdf
doi: 10.1111/j.1365-2486.2009.02077.x |
[11] |
Liu Y J, Chen Q M, Ge Q Set al., 2018a. Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China.Agricultural and Forest Meteorology, 248: 518-526.https://linkinghub.elsevier.com/retrieve/pii/S0168192317303039
doi: 10.1016/j.agrformet.2017.09.008 |
[12] |
Liu Y J, Chen Q M, Ge Q Set al., 2018b. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010.Science China-Earth Sciences, 61: 1088-1097.http://www.cnki.com.cn/Article/CJFDTotal-JDXG201808008.htm
doi: 10.1007/s11430-017-9149-0 |
[13] |
Liu Y J, Qin Y, Ge Q Set al., 2017. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China.Journal of Geographical Sciences, 27(9): 1072-1084.http://link.springer.com/10.1007/s11442-017-1422-4
doi: 10.1007/s11442-017-1422-4 |
[14] |
Liu Z J, Hubbard Kenneth G, Lin X Met al., 2013. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China.Global Change Biology, 19(11): 3481-3492.http://europepmc.org/abstract/MED/23857749
doi: 10.1111/gcb.12324 pmid: 23857749 |
[15] |
McMaster G S, Wilhelm W W, 1997. Growing degree-days: One equation, two interpretations.Agricultural and Forest Meteorology, 87(4): 291-300.http://linkinghub.elsevier.com/retrieve/pii/S0168192397000270
doi: 10.1016/S0168-1923(97)00027-0 |
[16] | Meng L, Liu X J, Wu D Ret al., 2015. Responses of summer maize main phenology to climate change in the North China Plain.Chinese Journal of Agrometeorology, 36(4): 375-382. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGNY201504001.htm |
[17] |
Sacks William J, Kucharik Christopher J, 2011. Crop management and phenology trends in the US Corn Belt: Impacts on yields, evapotranspiration and energy balance.Agricultural and Forest Meteorology, 151(7): 882-894.https://linkinghub.elsevier.com/retrieve/pii/S0168192311000761
doi: 10.1016/j.agrformet.2011.02.010 |
[18] |
Tao F L, Zhang S, Zhang Zet al., 2014. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift.Global Change Biology, 20(12): 3686-3699.http://doi.wiley.com/10.1111/gcb.12684
doi: 10.1111/gcb.12684 pmid: 25044728 |
[19] | Tong P Y, 1992. Maize planting regionalization in China. Beijing: Press of Chinese Agriculture Science and Technology, 6-24. (in Chinese) |
[20] |
Vitasse Y, Francois C, Delpierre Net al., 2011. Assessing the effects of climate change on the phenology of European temperate trees.Agricultural and Forest Meteorology, 151(7): 969-980.https://linkinghub.elsevier.com/retrieve/pii/S0168192311000840
doi: 10.1016/j.agrformet.2011.03.003 |
[21] | Wang L X, Chen H L, Li Qet al., 2010 Research advances in plant phenology and climate.Acta Ecologica Sinica, 30(2): 447-454. (in Chinese) |
[22] |
Wang N, Wang J, Wang E Let al., 2015. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming.European Journal of Agronomy, 71: 19-33.https://linkinghub.elsevier.com/retrieve/pii/S1161030115300204
doi: 10.1016/j.eja.2015.08.005 |
[23] | Xiao D P, 2015. Changes of crop phenology in Inner Mongolia under the background of climate warming.Chinese Agricultural Science Bulletin, 31(26): 216-221. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201526036.htm |
[24] |
Yin X G, Wang M, Kong Q Xet al., 2015. Impacts of high temperature on maize production and adaptation measures in Northeast China.Chinese Journal of Applied Ecology, 26(1): 186-198. (in Chinese)http://www.ncbi.nlm.nih.gov/pubmed/25985670
doi: 10.1016/j.fuel.2015.04.032 pmid: 25985670 |
[25] |
Zhao J, Yang X G, Dai S Wet al., 2015. Increased utilization of lengthening growing season and warming temperatures by adjusting sowing dates and cultivar selection for spring maize in Northeast China.European Journal of Agronomy, 67: 12-19.https://linkinghub.elsevier.com/retrieve/pii/S1161030115000416
doi: 10.1016/j.eja.2015.03.006 |
[26] |
Zhang T Y, Huang Y, Yang X G, 2013. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice.Global Change Biology, 19(2): 563-570.http://doi.wiley.com/10.1111/gcb.2012.19.issue-2
doi: 10.1111/gcb.12057 pmid: 23504793 |
[27] | Zhang W X, Liu P X, Feng Q Ret al., 2018. The spatiotemporal responses ofPopulus euphratica to global warming in Chinese oases between 1960 and 2015. Journal of Geographical Sciences, 28(5): 579-594. |
[28] |
Zheng J Y, Ge Q S, Hao Z X, 2002. Impacts of climate warming on plants phenophases in China for the last 40 years.Chinese Science Bulletin, 47(21): 1826-1831.http://www.scichina.com/ky/0221/ky1826.stm
doi: 10.1360/02tb9399 |
[29] |
Zheng J Y, Ge Q S, Hao Z Xet al., 2012. Changes of spring phenodate in Yangtze River Delta region in the past 150 years.Acta Geographica Sinica, 67(1): 45-52. (in Chinese)http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXB201201007.htm
doi: 10.1007/s11442-013-0991-0 |
[1] | WEI Wei, GUO Zecheng, SHI Peiji, ZHOU Liang, WANG Xufeng, LI Zhenya, PANG Sufei, XIE Binbin. Spatiotemporal changes of land desertification sensitivity in northwest China from 2000 to 2017 [J]. Journal of Geographical Sciences, 2021, 31(1): 46-68. |
[2] | MA Bin, ZHANG Bo, JIA Lige. Spatio-temporal variation in China’s climatic seasons from 1951 to 2017 [J]. Journal of Geographical Sciences, 2020, 30(9): 1387-1400. |
[3] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[4] | WU Li, SUN Xiaoling, SUN Wei, ZHU Cheng, ZHU Tongxin, LU Shuguang, ZHOU Hui, GUO Qingchun, GUAN Houchun, XIE Wei, KE Rui, LIN Guiping. Evolution of Neolithic site distribution (9.0-4.0 ka BP) in Anhui, East China [J]. Journal of Geographical Sciences, 2020, 30(9): 1451-1466. |
[5] | ZHANG Chi, WU Shaohong, LENG Guoyong. Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2 [J]. Journal of Geographical Sciences, 2020, 30(8): 1219-1232. |
[6] | YE Chao, LI Simeng, ZHANG Zhao, ZHU Xiaodan. A comparison and case analysis between domestic and overseas industrial parks of China since the Belt and Road Initiative [J]. Journal of Geographical Sciences, 2020, 30(8): 1266-1282. |
[7] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[8] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[9] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
[10] | FANG Chuanglin, WANG Zhenbo, LIU Haimeng. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application [J]. Journal of Geographical Sciences, 2020, 30(5): 691-704. |
[11] | CHEN Mingxing, LIANG Longwu, WANG Zhenbo, ZHANG Wenzhong, YU Jianhui, LIANG Yi. Geographical thoughts on the relationship between ‘Beautiful China’ and land spatial planning [J]. Journal of Geographical Sciences, 2020, 30(5): 705-723. |
[12] | TANG Zhipeng, MEI Ziao, LIU Weidong, XIA Yan. Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm [J]. Journal of Geographical Sciences, 2020, 30(5): 743-756. |
[13] | WANG Shaojian, GAO Shuang, HUANG Yongyuan, SHI Chenyi. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends [J]. Journal of Geographical Sciences, 2020, 30(5): 757-774. |
[14] | SONG Zhouying, ZHU Qiaoling. Spatio-temporal pattern and driving forces of urbanization in China’s border areas [J]. Journal of Geographical Sciences, 2020, 30(5): 775-793. |
[15] | ZHAO Ting, BAI Hongying, YUAN Yuan, DENG Chenhui, QI Guizeng, ZHAI Danping. Spatio-temporal differentiation of climate warming (1959-2016) in the middle Qinling Mountains of China [J]. Journal of Geographical Sciences, 2020, 30(4): 657-668. |
|