Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (2): 271-286.doi: 10.1007/s11442-019-1596-z
• Research Articles • Previous Articles Next Articles
Huan WANG1,2(), Jiangbo GAO1,*(
), Wenjuan HOU1
Received:
2018-08-19
Accepted:
2018-10-20
Online:
2019-02-25
Published:
2019-02-25
Contact:
Jiangbo GAO
E-mail:wangh.16s@igsnrr.ac.cn;gaojiangbo@igsnrr.ac.cn
About author:
Author: Huan Wang (1993-), Master Candidate, specialized in the research of karst ecosystem services. E-mail:
Supported by:
Huan WANG, Jiangbo GAO, Wenjuan HOU. Quantitative attribution analysis of soil erosion in different geomorphological types in karst areas: Based on the geodetector method[J].Journal of Geographical Sciences, 2019, 29(2): 271-286.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Types of interaction between two covariates"
Description | Interaction |
---|---|
q(X1∩X2)<Min(q(X1), q(X2)) | Weakened, nonlinear |
Min(q(X1), q(X2))<q(X1∩X2)<Max(q(X1), q(X2)) | Weakened, single factor nonlinear |
q(X1∩X2)>Max(q(X1), q(X2)) | Enhanced, double factors |
q(X1∩X2)=q(X1) + q(X2) | Independent |
q(X1∩X2)>q(X1) + q(X2) | Enhanced, nonlinear |
Table 3
Soil erosion and geographic environmental factors in different geomorphological types"
Soil erosion (t ha-1 a-1) | Slope (°) | Rainfall (mm) | Elevation (m) | Area of dry land (km2) | Area of steep slopes (km2) | Total area (km2) | |
---|---|---|---|---|---|---|---|
Middle elevation plain | 8.32 | 4.80 | 1233.82 | 1256.51 | 17.54 | 0.06 | 98.30 |
Middle elevation terrace | 6.49 | 3.97 | 1172.98 | 1445.74 | 19.92 | 0.02 | 99.64 |
Middle elevation hill | 12.62 | 11.00 | 1199.28 | 1383.46 | 159.60 | 3.41 | 717.72 |
Small relief mountain | 11.87 | 14.91 | 1136.88 | 1482.15 | 656.15 | 51.67 | 3016.14 |
Middle relief mountain | 10.22 | 16.34 | 1096.33 | 1775.38 | 189.62 | 23.70 | 928.89 |
Table 4
The q values of influencing factors in different geomorphological types"
Land use | Slope | Rainfall | Lithology | VC | Elevation | |
---|---|---|---|---|---|---|
Middle elevation plain | 0.622 | 0.082 | 0.091 | - | - | 0.028 |
Middle elevation terrace | 0.685 | 0.086 | 0.037 | - | - | - |
Middle elevation hill | 0.513 | 0.126 | 0.010 | 0.031 | 0.059 | 0.010 |
Small relief mountain | 0.567 | 0.071 | 0.051 | 0.01 | 0.005 | 0.013 |
Middle relief mountain | 0.620 | 0.062 | 0.089 | 0.037 | 0.005 | 0.193 |
Table 5
The dominant interactions between two covariates in different geomorphological types"
Geomorphology | Middle elevation plain | Middle elevation terrace | Middle elevation hill | Small relief mountain | Middle relief mountain |
---|---|---|---|---|---|
Interaction 1 | Land use∩rainfall | Land use∩slope | Land use∩slope | Land use∩slope | Land use∩slope |
q | 0.710 | 0.764 | 0.726 | 0.707 | 0.742 |
Interaction 2 | Land use∩VC | Land use∩VC | Land use∩ elevation | Land use∩ rainfall | Land use∩ rainfall |
q | 0.695 | 0.720 | 0.567 | 0.648 | 0.679 |
Interaction 3 | Land use∩ lithology | Land use∩ rainfall | Land use∩ rainfall | Land use∩ lithology | Land use∩elevation |
q | 0.682 | 0.708 | 0.566 | 0.586 | 0.665 |
Table 6
High risk areas of soil erosion and its mean value (t ha?1 a?1) in different geomorphological types"
Middle elevation plain | Middle elevation terrace | Middle elevation hill | Small relief mountain | Middle relief mountain | |
---|---|---|---|---|---|
Slope (°) | 20-25 | 15-20 | 30-35 | >35 | 25-30 |
Mean value | 19.9 | 19.02 | 24.38 | 22.28 | 14.41 |
Land use | Dry land | Dry land | Dry land | Dry land | Dry land |
Mean value | 22.6 | 15.36 | 23.43 | 24.36 | 21.9 |
VC | 0.5-0.6 | <0.3 | 0.8-0.9 | 0.9-1 | 0.5-0.6 |
Mean value | 9.35 | 10.02 | 14.5 | 14.17 | 10.7 |
Lithology | Interbedded limestone and clastic rocks | Limestone with clastic rocks | Clastic rocks | Dolomite with clastic rocks | Dolomite |
Mean value | 13.93 | 9.49 | 19.52 | 15.59 | 20.07 |
Elevation (m) | 1087-1235 | 1531-1679 | 1383-1531 | 1383-1531 | 1235-1383 |
Mean value | 11.1 | 13.13 | 12.15 | 12.44 | 15.84 |
Table 7
The percentage of stratification combinations with significant difference in each influencing factor (%)"
Middle elevation plain | Middle elevation terrace | Middle elevation hill | Small relief mountain | Middle relief mountain | |
---|---|---|---|---|---|
Land use | 90.91 | 100.00 | 92.86 | 100.00 | 93.33 |
Slope | 40.00 | 16.67 | 78.57 | 92.86 | 85.71 |
Rainfall | 100.00 | 33.33 | 33.33 | 91.67 | 78.57 |
Elevation | 100.00 | 0.00 | 42.86 | 69.44 | 75.00 |
Lithology | 0.00 | 0.00 | 60.00 | 64.44 | 55.56 |
VC | 33.33 | 35.71 | 75.00 | 60.71 | 60.71 |
[1] | Arnoldus H M J, 1980. An approximation of the rainfall factor in the universal soil loss equation. In: De Boodt M, Gabriels D. Assessment of Erosion. Chichester UK: Wiley, 127-132. |
[2] |
Bai X, Zhang X, Long Y et al., 2013. Use of 137Cs and 210Pbex measurements on deposits in a karst depression to study the erosional response of a small karst catchment in southwest China to land-use change.Hydrological Processes, 27(6): 822-829.
doi: 10.1002/hyp.v27.6 |
[3] | Cai Y, Wan J, Wang Y et al., 2015. Study on Land Change in Guizhou Karst Plateau Mountain Area. Beijing: Science Press, 61-62. (in Chinese) |
[4] | Chen S, Yang X, Xiao L et al., 2014. Study of soil erosion in the southern hillside area of China based on RUSLE model.Resources Science, 36(6): 1288-1297. (in Chinese) |
[5] | Dai Q, Peng X, Wang P et al., 2018. Surface erosion and underground leakage of yellow soil on slopes in karst regions of southwest China.Land Degradation & Development, 29(8): 2438-2448. |
[6] |
Febles-Gonzalez J M, Vega-Carreno M B, Tolon-Becerra Aet al., 2012. Assessment of soil erosion in karst regions of Havana, Cuba.Land Degradation & Development, 23(5): 465-474.
doi: 10.1002/ldr.1089 |
[7] |
Feng T, Chen H, Polyakov V O et al., 2016. Soil erosion rates in two karst peak-cluster depression basins of northwest Guangxi, China: Comparison of the RUSLE model with 137Cs measurements.Geomorphology, 253: 217-224.
doi: 10.1016/j.geomorph.2015.10.013 |
[8] |
Gutierrez F, Parise M, De Waele J et al., 2014. A review on natural and human-induced geohazards and impacts in karst.Earth-Science Reviews, 138: 61-88.
doi: 10.1016/j.earscirev.2014.08.002 |
[9] |
Hou W, Gao J, Peng T et al., 2016. Review of ecosystem vulnerability studies in the karst region of southwest China based on a structure-function-habitat framework.Progress in Geography, 35(3): 320-330. (in Chinese)
doi: 10.18306/dlkxjz.2016.03.006 |
[10] |
Hu Y, Wang J, Li X et al., 2011. Geographical detector-based risk assessment of the under-five mortality in the 2008 Wenchuan earthquake, China. Plos One, 6(6): e21427.
doi: 10.1371/journal.pone.0021427 pmid: 3124508 |
[11] | Hutchinson M F, 2002. Anusplin Version 4.2 User Guide. Centre for resource and environment studies. Canberra: Austrilian National University. |
[12] |
Li J, Lu D, Xu C et al., 2017. Spatial heterogeneity and its changes of population on the two sides of Hu Line.Acta Geographica Sinica, 72(1): 148-160. (in Chinese)
doi: 10.11821/dlxb201701012 |
[13] | Li Z, Cao W, Liu B et al., 2008. Current status and developing trend of soil erosion in China.Science of Soil & Water Conservation, 6(1): 57-62. (in Chinese) |
[14] |
Luo W, Jasiewicz J, Stepinski T et al., 2016. Spatial association between dissection density and environmental factors over the entire conterminous United States. Geophysical Research Letters, 43(2): 692-700.
doi: 10.1002/2015GL066941 |
[15] |
McCool D K, Brown L C, Foster G Ret al., 1987. Revised slope steepness factor for the universal soil loss equation.Transactions of the Asae, 30(5): 1387-1396.
doi: 10.13031/2013.30576 |
[16] |
McCool D K, Foster G R, Mutchler C Ket al., 1989. Revised slope length factor for the universal soil loss equation.Transactions of the ASAE, 32(5): 1571-1576.
doi: 10.13031/2013.30576 |
[17] |
Peng T, Wang S, 2012. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena, 90(1): 53-62.
doi: 10.1016/j.catena.2011.11.001 |
[18] |
Peng X, Dai Q, Li C et al., 2018. Role of underground fissure flow in near-surface rainfall-runoff process on a rock mantled slope in the karst rocky desertification area.Engineering Geology, 243: 10-17.
doi: 10.1016/j.enggeo.2018.06.007 |
[19] | Renard K G, Foster G R, Weesies G A et al., 1997. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture handbook. USDA, Washington, DC. |
[20] |
Tong L, Xu X, Fu Y et al., 2014. Impact of environmental factors on snail distribution using geographical detector model.Progress in Geography, 33(5): 625-635. (in Chinese)
doi: 10.11820/dlkxjz.2014.05.004 |
[21] |
Wang J, Li X, Christakos G et al., 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China.International Journal of Geographical Information Science, 24(1): 107-127.
doi: 10.1080/13658810802443457 |
[22] |
Wang J, Xu C, 2017. Geodetector: Principle and prospective.Acta Geographica Sinica, 72(1): 116-134. (in Chinese)
doi: 10.11821/dlxb201701010 |
[23] | Wang S, Liu Q, Zhang D, 2004. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation.Land Degradation & Development, 15(2): 115-121. |
[24] | Wang Y, Cai Y, Pan M, 2013. Analysis on the relationship between soil erosion and land use in Wujiang River Basin in Guizhou province.Research of Soil and Water Conservation, 20(3): 11-18. (in Chinese) |
[25] |
Williams J, Jones C A, Kiniry J R et al., 1989. The EPIC crop growth-model. Transactions of the ASAE, 32(2): 497-511.
doi: 10.13031/2013.31032 |
[26] |
Xiong K, Li J, Long M, 2012. Features of soil and water loss and key issues in demonstration areas for combating karst rocky desertification.Acta Geographica Sinica, 67(7): 878-888. (in Chinese)
doi: 10.11821/xb201207002 |
[27] | Xu Y, Shao X, 2006. Estimation of soil erosion supported by GIS and RUSLE: A case study of Maotiaohe watershed, Guizhou province.Journal of Beijing Forestry University, 28(4): 67-71. (in Chinese) |
[28] |
Yan Y, Dai Q, Yuan Y et al., 2018. Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China. Geoderma, 330: 30-40.
doi: 10.1016/j.geoderma.2018.05.026 |
[29] |
Zeng C, Wang S, Bai X et al., 2017. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS.Solid Earth, 8(4): 1-26.
doi: 10.5194/se-8-1-2017 |
[30] |
Zhan D, Zhang W, Yu J et al., 2015. Analysis of influencing mechanism of residents’ livability satisfaction in Beijing using geographical detector.Progress in Geography, 34(8): 966-975. (in Chinese)
doi: 10.18306/dlkxjz.2015.08.004 |
[31] |
Zhang H, Yang Q, Li R et al., 2013a. Extension of a GIS procedure for calculating the RUSLE equationLS factor. Computers & Geosciences, 52: 177-188.
doi: 10.1016/j.cageo.2012.09.027 |
[32] | Zhang X, Wang S, Bai X et al., 2013b. Relationships between the spatial distribution of karst land desertification and geomorphology, lithology, precipitation, and population density in Guizhou province.Earth & Environment, 41(1): 1-6. (in Chinese) |
[33] |
Zhang X, Wang S, He Xet al., 2007. Soil creeping in weathering crusts of carbonate rocks and underground soil losses on karst slopes. Earth & Environment, 35(3): 202-206. (in Chinese)
doi: 10.1631/jzus.2007.A1858 |
[34] |
Zhou C, Cheng W, Qian Jet al., 2009. Research on the classification system of digital land geomorphology of 1:1000000 in China.Journal of Geo-information Science, 11(6): 707-724. (in Chinese)
doi: 10.1016/S1874-8651(10)60080-4 |
[1] | CAI Jianming, MA Enpu, LIN Jing, LIAO Liuwen, HAN Yan. Exploring global food security pattern from the perspective of spatio-temporal evolution [J]. Journal of Geographical Sciences, 2020, 30(2): 179-196. |
[2] | YUAN Lihua, CHEN Xiaoqiang, WANG Xiangyu, XIONG Zhe, SONG Changqing. Spatial associations between NDVI and environmental factors in the Heihe River Basin [J]. Journal of Geographical Sciences, 2019, 29(9): 1548-1564. |
[3] | Wenjuan HOU, Jiangbo GAO. Simulating runoff generation and its spatial correlation with environmental factors in Sancha River Basin: The southern source of the Wujiang River [J]. Journal of Geographical Sciences, 2019, 29(3): 432-448. |
[4] | Shaojian WANG, Jieyu WANG, Yang WANG. Effect of land prices on the spatial differentiation of housing prices: Evidence from cross-county analyses in China [J]. Journal of Geographical Sciences, 2018, 28(6): 725-740. |
[5] | Xueyan ZHAO, Weijun WANG, Wenyu WAN. Regional differences in the health status of Chinese residents: 2003-2013 [J]. Journal of Geographical Sciences, 2018, 28(6): 741-758. |
[6] | Jiawen FANG. An analysis of the differentiation rules and influencing factors of venture capital in Beijing-Tianjin-Hebei urban agglomeration [J]. Journal of Geographical Sciences, 2018, 28(4): 514-528. |
[7] | Ying WANG, Qigen LIN, Peijun SHI. Spatial pattern and influencing factors of landslide casualty events [J]. Journal of Geographical Sciences, 2018, 28(3): 259-374. |
[8] | Shuqin SHI, Yu HAN, Wentao YU, Yuqing CAO, Weimin CAI, Peng YANG, Wenbin WU, Qiangyi YU. Spatio-temporal differences and factors influencing intensive cropland use in the Huang-Huai-Hai Plain [J]. Journal of Geographical Sciences, 2018, 28(11): 1626-1640. |
[9] | Xiangli WU, Shan MAN. Air transportation in China: Temporal and spatial evolution and development forecasts [J]. Journal of Geographical Sciences, 2018, 28(10): 1485-1499. |
[10] | Xianwei SONG, Yang GAO, Xuefa WEN, Dali GUO, Guirui YU, Nianpeng HE, Jinzhong ZHANG. Carbon sequestration potential and its eco-service function in the karst area, China [J]. Journal of Geographical Sciences, 2017, 27(8): 967-980. |
[11] | Zhongfa ZHOU, Shaoyun ZHANG, Kangning XIONG, Bo LI, Zhonghui TIAN, Quan CHEN, Lihui YAN, Shizhen XIAO. The spatial distribution and factors affecting karst cave development in Guizhou Province [J]. Journal of Geographical Sciences, 2017, 27(8): 1011-1024. |
[12] | Changjian WANG, Fei WANG, Xiaolei ZHANG, Hongou ZHANG. Influencing mechanism of energy-related carbon emissions in Xinjiang based on the input-output and structural decomposition analysis [J]. Journal of Geographical Sciences, 2017, 27(3): 365-384. |
[13] | Guogang WANG, Guogang WANG, Jimin WANG, Chun YANG, Yufeng LIU. Characteristics and influencing factors of grass-feeding livestock breeding in China: An economic geographical perspective [J]. Journal of Geographical Sciences, 2016, 26(4): 501-512. |
[14] | Jing’an SHAO, Shichao ZHANG, Xiubin LI. Farmland marginalization in the mountainous areas: Characteristics, influencing factors and policy implications [J]. Journal of Geographical Sciences, 2015, 25(6): 701-722. |
[15] | Lu WANG, Zhiming FENG, Yanzhao YANG. The change in population density from 2000 to 2010 and its influencing factors in China at the county scale [J]. Journal of Geographical Sciences, 2015, 25(4): 485-496. |
|