Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (2): 253-270.doi: 10.1007/s11442-019-1595-0
• Research Articles • Previous Articles Next Articles
Liang ZHOU1,2(), Chenghu ZHOU2, Fan YANG3, Lei CHE4, Bo WANG5, Dongqi SUN2,*(
)
Received:
2018-05-10
Accepted:
2018-10-22
Online:
2019-02-25
Published:
2019-02-25
Contact:
Dongqi SUN
E-mail:zhougeo@126.com;sundq@igsnrr.ac.cn
About author:
Author: Zhou Liang, PhD and Associate Professor, specialized in environmental geography, urban geography and regional development. E-mail:
Supported by:
Liang ZHOU, Chenghu ZHOU, Fan YANG, Lei CHE, Bo WANG, Dongqi SUN. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2015[J].Journal of Geographical Sciences, 2019, 29(2): 253-270.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Distribution chart of 16 types of time sequences of PM2.5 concentration evolution in China"
No. | Change type | Quantity | % | No. | Change type | Quantity | % |
---|---|---|---|---|---|---|---|
1 | D—D—D—D | 4 | 0.17 | 9 | R—D—D—D | 38 | 1.59 |
2 | D—D—D—R | 5 | 0.21 | 10 | R—D—D—R | 71 | 2.97 |
3 | D—D—R—D | 11 | 0.46 | 11 | R—D—R—D | 120 | 5.02 |
4 | D—D—R—R | 1 | 0.04 | 12 | R—D—R—R | 68 | 2.85 |
5 | D—R—D—D | 45 | 1.88 | 13 | R—R—D—D | 811 | 33.93 |
6 | D—R—D—R | 13 | 0.54 | 14 | R—R—D—R | 801 | 33.51 |
7 | D—R—R—D | 36 | 1.51 | 15 | R—R—R—D | 190 | 7.95 |
8 | D—R—R—R | 5 | 0.21 | 16 | R—R—R—R | 171 | 7.15 |
Table 2
Geographical detection results for PM2.5 in China for 2000, 2006, and 2011"
Detection indices | 2000 | 2006 | 2011 | |||
---|---|---|---|---|---|---|
P | Q | P | Q | P | Q | |
Natural geographical regionalization (X1) | 0.7047 | 0.0000 | 0.7447 | 0.0000 | 0.7196 | 0.0000 |
Per capita GDP (X2) | 0.0077 | 0.9191 | 0.0062 | 0.9079 | 0.0068 | 0.8659 |
Population density (X3) | 0.4320 | 0.0000 | 0.4372 | 0.0000 | 0.4120 | 0.0000 |
Proportion of the secondary industry (X4) | 0.0984 | 0.0000 | 0.0665 | 0.0031 | 0.0917 | 0.0000 |
Proportion of built-up areas (X5) | 0.0853 | 0.0030 | 0.0753 | 0.1033 | 0.1025 | 0.0282 |
Urban greening ratio (X6) | 0.0280 | 0.1503 | 0.0625 | 0.0319 | 0.0359 | 0.1083 |
Urban residents’ car ownership (X7) | 0.0259 | 0.8637 | 0.0913 | 0.0226 | 0.1074 | 0.0080 |
Sown area (X8) | 0.1396 | 0.0557 | 0.1487 | 0.0000 | 0.1046 | 0.0000 |
Industrial flue dust discharge (X9) | 0.0709 | 0.1537 | 0.0936 | 0.0000 | 0.0531 | 0.2766 |
Energy consumption intensity of lands (X10) | 0.3109 | 0.0000 | 0.4124 | 0.0000 | 0.4143 | 0.0000 |
Average iron and steel output of lands (X11) | 0.2869 | 0.0000 | 0.3373 | 0.0000 | 0.3217 | 0.0000 |
[1] |
Austin E, Coull B A, Zanobetti A et al., 2013. A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition.Environment International, 59(3): 244-254.
doi: 10.1016/j.envint.2013.06.003 pmid: 3878877 |
[2] |
Beckerman B S, Jerrett M, Serre M et al., 2013. A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States.Environmental Science & Technology, 47(13): 7233-7241.
doi: 10.1021/es400039u pmid: 23701364 |
[3] |
Bell M L, Dominici F, Ebisu K et al., 2007. Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies.Environmental Health Perspectives, 115(7): 989-995.
doi: 10.1289/ehp.9621 pmid: 17637911 |
[4] |
Cao G L, Zhang X Y, Gong S L et al., 2011. Emission inventories of primary particles and pollutant gases for China.Atmospheric Environment, 45(37): 6802-6811. (in Chinese)
doi: 10.1016/j.atmosenv.2011.03.068 |
[5] | Charron A, Harrison R M, 2005. Fine (PM2.5) and coarse (PM2.5-10) particulate matter on a heavily trafficked London highway: Sources and processes.Environmental Science & Technology, 39(20): 7768-7776. |
[6] |
Cheng S, Yang L X, Zhou X et al., 2011. Evaluating PM2.5 ionic components and source apportionment in Jinan, China from 2004 to 2008 using trajectory statistical methods.Journal of Environmental Monitoring, 13(6): 1662-1671.
doi: 10.1039/c0em00756k |
[7] |
Chow J C, Chen L W, Watson J G et al., 2006. PM2.5 chemical composition and spatiotemporal variability during the California regional PM10/PM2.5 air quality study (CRPAQS).Journal of Geophysical Research Atmospheres, 111(D10): 1-17.
doi: 10.1029/2005JD006457 |
[8] |
Chu H J, Huang B, Lin C Y, 2015. Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship.Atmospheric Environment, 102(2): 176-182.
doi: 10.1016/j.atmosenv.2014.11.062 |
[9] |
Delfino R J, Sioutas C, Malik S, 2005. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health.Environmental Health Perspectives, 113(8): 934-946.
doi: 10.1289/ehp.7938 pmid: 16079061 |
[10] | Dockery D W, Pope CA, Xu X et al., 1994. An association between air pollution and mortality in six US cities.New England Journal of Medicine, 329(24): 1753-1759. |
[11] |
Franklin M, Koutrakis P, Schwartz P, 2008. The role of particle composition on the association between PM2.5 and mortality.Epidemiology, 19(5): 680-689.
doi: 10.1097/EDE.0b013e3181812bb7 pmid: 3755878 |
[12] |
Gao M, Cao J, Seto E. A, 2015. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China.Environmental Pollution, 199(4): 56-65.
doi: 10.1016/j.envpol.2015.01.013 pmid: 25618367 |
[13] |
Gelencsér A, May B, Simpson D et al., 2007. Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin.Journal of Geophysical Research Atmospheres, 112(D23): 1-12.
doi: 10.1029/2006JD008094 |
[14] |
Gramsch E, Cereceda-Balic F, Oyola P et al., 2006. Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and ozone data.Atmospheric Environment, 40(28): 5464-5475.
doi: 10.1016/j.atmosenv.2006.03.062 |
[15] |
Guo J P, Zhang X Y, Wu Y R et al., 2011. Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980-2008. Atmospheric Environment, 45(37): 6802-6811.
doi: 10.1016/j.atmosenv.2011.03.068 |
[16] | Henderson S B, Beckerman B, Jerrett M et al., 2007. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter.Environmental Science & Technology, 41(7): 2422-2428. |
[17] |
Hoek G, Brunekreef B, Goldbohm S et al., 2002. Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study.The Lancet, 360(9341): 1203-1209.
doi: 10.1016/S0140-6736(02)11280-3 pmid: 12401246 |
[18] |
Huang, Y, Yan Q, Zhang C, 2018. Spatial-temporal distribution characteristics of PM2.5 in China in 2016,Journal of Geovisualization and Spatial Analysis, 2(2): 1-12.
doi: 10.1007/s41651-017-0008-0 |
[19] |
Hueglin C, Gehrig R, Baltensperger U et al., 2005. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland.Atmospheric Environment, 39(4): 637-651.
doi: 10.1016/j.atmosenv.2004.10.027 |
[20] |
Jiang Y A, Chen Y, Zhao Y Z et al., 2013. Analysis on changes of basic climatic elements and extreme events in Xinjiang, China during 1961-2010.Advances in Climate Change Research, 4(1): 20-29.
doi: 10.3724/SP.J.1248.2013.020 |
[21] |
Kioumourtzoglou M A, Schwartz J, Weisskopf M et al., 2016. Long-term PM2.5 exposure and neurological hospital admissions in the Northeastern United States.Environmental Health Perspectives, 124(1): 23-29.
doi: 10.1289/ehp.1408973 pmid: 25978701 |
[22] |
Kloog I, Nordio F, Coull B et al., 2012. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states.Environmental Science & Technology, 46(21): 11913-11921.
doi: 10.1021/es302673e pmid: 4780577 |
[23] |
Laden F, Neas L M, Dockery D W et al., 2000. Association of fine particulate matter from different sources with daily mortality in six US cities.Environmental Health Perspectives, 108(10): 941-947.
doi: 10.1289/ehp.00108941 |
[24] |
Laden F, Schwartz J, Speizer F E et al., 2006. Reduction in fine particulate air pollution and mortality.American Journal of Respiratory and Critical Care Medicine, 173(6): 667-672.
doi: 10.1164/rccm.200503-443OC |
[25] |
Lindner A, Pitombo C S, 2018. A conjoint approach of spatial statistics and a traditional method for travel mode choice issues.Journal of Geovisualization and Spatial Analysis, 2(1): 1-13.
doi: 10.1007/s41651-017-0008-0 |
[26] |
Lin G, Fu J, Jiang D et al., 2013. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China.International Journal of Environmental Research and Public Health, 11(1): 173-186.
doi: 10.3390/ijerph110100173 pmid: 3924439 |
[27] |
Liu Y, Paciorek C J, Koutrakis P et al., 2009. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information.Environmental Health Perspectives, 117(6): 886-892.
doi: 10.1289/ehp.0800123 |
[28] |
Liu Y, Sarnat JA, Kilaru V et al., 2005. Estimating ground-level PM2.5 in the eastern using satellite remote sensing.Environmental Science & Technology, 39(9): 3269-3278.
doi: 10.1021/es049352m pmid: 15926578 |
[29] |
Liu Y S, Yang R, 2012. The spatial characteristics and formation mechanism of the county urbanization in China.Acta Geographica Sinica, 67(8): 1011-1020. (in Chinese)
doi: 10.11821/xb201208001 |
[30] |
Lu B, Kong S F, Han Bin, 2011. Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007.China Environmental Science, 31(2): 186-194. (in Chinese)
doi: 10.3724/SP.J.1077.2011.00311 |
[31] |
Merbitz H, Buttstädt M, Michael Set al., 2012. GIS-based identification of spatial variables enhancing heat and poor air quality in urban areas. Applied Geography, 2012, 33(4): 94-106.
doi: 10.1016/j.apgeog.2011.06.008 |
[32] |
Pope C A, 2000. Review: Epidemiological basis for particulate air pollution health standards.Aerosol Science & Technology, 32(1): 4-14.
doi: 10.1080/027868200303885 |
[33] |
Pope C A, Burnett R T, Thun M J et al., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.Jama, 287(9): 1132-1141.
doi: 10.1001/jama.287.9.1132 pmid: 11879110 |
[34] |
Pope C A, Dockery D W, Schwartz J, 1995. Review of epidemiological evidence of health effects of particulate air pollution.Inhalation Toxicology, 7(1): 1-18.
doi: 10.3109/08958379509014267 |
[35] |
Samet J M, Dominici F, Curriero F C et al., 2000. Fine particulate air pollution and mortality in 20 U.S cities, 1987-1994. New England Journal of Medicine, 343:(24): 1742-1749.
doi: 10.1056/NEJM200012143432401 pmid: 11114312 |
[36] |
Stone B, 2008. Urban sprawl and air quality in large US cities.Journal of Environmental Management, 86(4): 688-698.
doi: 10.1016/j.jenvman.2006.12.034 pmid: 17368703 |
[37] |
Wang H, Dwyer-Lindgren L, Lofgren K T et al., 2012. Age specific and sex-specific mortality in 187 countries, 1970-2010: A systematic analysis for the global burden of disease study 2010.The Lancet, 380(9859): 2071-2094.
doi: 10.1016/S0140-6736(12)61719-X pmid: 23245603 |
[38] |
Wang J, Christopher S A, 2003. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies.Geophysical Research Letters, 30(21): 1-4.
doi: 10.1029/2003GL018174 |
[39] |
Wang J F, Li X H, George Christakos et al., 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China.International Journal of Geographical Information Science, 24(1): 107-127.
doi: 10.1080/13658810802443457 |
[40] |
Wang Z B, Fang C L, Xu G et al., 2015. Spatial-temporal characteristics of the PM2.5 in China in 2014.Acta Geographica Sinica, 70(11): 1720-1734. (in Chinese)
doi: 10.11821/dlxb201511003 |
[41] | Wu D, 2012. Hazy weather research in China in the last decade: A review.Acta Scientiae Circumstantiae, 32(2): 257-269. |
[42] |
Xu W, He F, Li H et al., 2014. Spatial and temporal variations of PM2.5 in the Pearl River Delta.Research of Environmental Sciences, 27(9): 951-957.
doi: 10.13198/j.issn.1001-6929.2014.09.02 |
[43] |
Xue W, Wu W, Fu F et al., 2015. Satellite retrieval of a heavy pollution process in January 2013 in China. Environmental Science, 36, (3): 794-800. (in Chinese)
doi: 10.13227/j.hjkx.2015.03.006 pmid: 25929043 |
[44] | Xue W B, Fu F, Wang J N et al., 2014. Numerical study on the characteristics of regional transport of PM2.5 in China.China Environmental Science, 34(6): 1361-1368. (in Chinese) |
[45] |
Yi H, Hao J, Tang X L et al., 2007. Atmospheric environmental protection in China: Current status, developmental.Energy Policy, 35(2): 907-915.
doi: 10.1016/j.enpol.2006.01.019 |
[46] |
Zhang Y, Cao F, 2015. Fine particulate matter (PM2.5) in China at a city level.Scientific Reports, 5: 1-11.
doi: 10.9734/JSRR |
[47] | Zhang Y, Zhang W, Wang J et al., 2015. Establishment and application of pollutant inventory-chemical mass balance (I-CMB) model for source apportionment of PM2.5.Transactions of Atmospheric Sciences, 38(2): 279-284. (in Chinese) |
[1] | WEI Wei, GUO Zecheng, SHI Peiji, ZHOU Liang, WANG Xufeng, LI Zhenya, PANG Sufei, XIE Binbin. Spatiotemporal changes of land desertification sensitivity in northwest China from 2000 to 2017 [J]. Journal of Geographical Sciences, 2021, 31(1): 46-68. |
[2] | MA Bin, ZHANG Bo, JIA Lige. Spatio-temporal variation in China’s climatic seasons from 1951 to 2017 [J]. Journal of Geographical Sciences, 2020, 30(9): 1387-1400. |
[3] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[4] | WU Li, SUN Xiaoling, SUN Wei, ZHU Cheng, ZHU Tongxin, LU Shuguang, ZHOU Hui, GUO Qingchun, GUAN Houchun, XIE Wei, KE Rui, LIN Guiping. Evolution of Neolithic site distribution (9.0-4.0 ka BP) in Anhui, East China [J]. Journal of Geographical Sciences, 2020, 30(9): 1451-1466. |
[5] | YE Chao, LI Simeng, ZHANG Zhao, ZHU Xiaodan. A comparison and case analysis between domestic and overseas industrial parks of China since the Belt and Road Initiative [J]. Journal of Geographical Sciences, 2020, 30(8): 1266-1282. |
[6] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[7] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[8] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
[9] | FANG Chuanglin, WANG Zhenbo, LIU Haimeng. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application [J]. Journal of Geographical Sciences, 2020, 30(5): 691-704. |
[10] | CHEN Mingxing, LIANG Longwu, WANG Zhenbo, ZHANG Wenzhong, YU Jianhui, LIANG Yi. Geographical thoughts on the relationship between ‘Beautiful China’ and land spatial planning [J]. Journal of Geographical Sciences, 2020, 30(5): 705-723. |
[11] | TANG Zhipeng, MEI Ziao, LIU Weidong, XIA Yan. Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm [J]. Journal of Geographical Sciences, 2020, 30(5): 743-756. |
[12] | WANG Shaojian, GAO Shuang, HUANG Yongyuan, SHI Chenyi. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends [J]. Journal of Geographical Sciences, 2020, 30(5): 757-774. |
[13] | SONG Zhouying, ZHU Qiaoling. Spatio-temporal pattern and driving forces of urbanization in China’s border areas [J]. Journal of Geographical Sciences, 2020, 30(5): 775-793. |
[14] | ZHAO Ting, BAI Hongying, YUAN Yuan, DENG Chenhui, QI Guizeng, ZHAI Danping. Spatio-temporal differentiation of climate warming (1959-2016) in the middle Qinling Mountains of China [J]. Journal of Geographical Sciences, 2020, 30(4): 657-668. |
[15] | WANG Jiayue, XIN Liangjie, WANG Yahui. How farmers’ non-agricultural employment affects rural land circulation in China? [J]. Journal of Geographical Sciences, 2020, 30(3): 378-400. |
|