Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (1): 29-48.doi: 10.1007/s11442-019-1582-5
• Research Articles • Previous Articles Next Articles
Danyang MA1,2,3(), Haoyu DENG1,2, Yunhe YIN1,*(
), Shaohong WU1,2, Du ZHENG1,2
Received:
2018-07-20
Accepted:
2018-09-10
Online:
2019-01-25
Published:
2019-03-15
Contact:
Yunhe YIN
E-mail:mady.13s@igsnrr.ac.cn;yinyh@igsnrr.ac.cn
About author:
Author: Ma Danyang (1990-), PhD, E-mail:
Supported by:
Danyang MA, Haoyu DENG, Yunhe YIN, Shaohong WU, Du ZHENG. Sensitivity of arid/humid patterns in China to future climate change under a high-emissions scenario[J].Journal of Geographical Sciences, 2019, 29(1): 29-48.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Global climate models used in this study"
Model name | Original resolution (latitude × longitude) | Modeling center | Country |
---|---|---|---|
NorESM1-M | 1.875° × 2.5° | Norwegian Climate Centre | Norway |
MIROC-ESM-CHEM | 2.8°×2.8° | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | Japan |
IPSL-CM5A-LR | 1.875°×3.75° | Institut Pierre-Simon Laplace | France |
HadGEM2-ES | 1.25°×1.875° | Met Office Hadley Centre | UK |
GFDL-ESM2M | 2.0°×2.5° | Geophysical Fluid Dynamics Laboratory | USA |
Table 2
Criteria for demarcating the arid/humid climate regions of China according to aridity index (AI)"
Arid/humid climate region | Aridity index (AI = ETo/P) | Natural vegetation type |
---|---|---|
Humid | AI?<?1.0 | Forest |
Sub-humid | 1.0 ≤ AI?< 1.5 | Forest steppe (including meadow) |
Semi-arid | 1.5 ≤ AI?< 4.0 | Steppe (meadow steppe, and desert steppe) |
Arid | AI?≥ 4.0 | Desert |
Table 3
Percentage areas (%) of arid/humid climate regions (AHCRs) in China for the periods 2040-2069 and 2070-2099 under RCP8.5, and the amount of change (%) relative to the baseline period"
GCM | Period | Humid | Sub-humid | Semi-arid | Arid | ||||
---|---|---|---|---|---|---|---|---|---|
Area | Change | Area | Change | Area | Change | Area | Change | ||
1981-2010 | 35.76 | 13.94 | 24.61 | 25.69 | |||||
NorESM1-M | 2040-2069 | 32.78 | -8.33 | 15.27 | 9.54 | 26.65 | 8.29 | 25.29 | -1.56 |
2070-2099 | 31.47 | -12 | 16.26 | 16.64 | 26.04 | 5.81 | 26.23 | 2.1 | |
MIROC-ESM-CHEM | 2040-2069 | 32.13 | -10.15 | 16.24 | 16.5 | 27.62 | 12.23 | 24.01 | -6.54 |
2070-2099 | 32.75 | -8.42 | 17.02 | 22.09 | 26.8 | 8.9 | 23.43 | -8.8 | |
IPSL-CM5A-LR | 2040-2069 | 35.37 | -1.09 | 16.35 | 17.29 | 22.33 | -9.26 | 25.95 | 1.01 |
2070-2099 | 30.18 | -15.6 | 18.87 | 35.37 | 23.14 | -5.97 | 27.81 | 8.25 | |
HadGEM2-ES | 2040-2069 | 34.45 | -3.66 | 17.15 | 23.03 | 21.67 | -11.95 | 26.74 | 4.09 |
2070-2099 | 33.97 | -5.01 | 18.71 | 34.22 | 21.54 | -12.47 | 25.78 | 0.35 | |
GFDL-ESM2M | 2040-2069 | 34.15 | -4.5 | 17.14 | 22.96 | 26.15 | 6.26 | 22.56 | -12.18 |
2070-2099 | 30.26 | -15.38 | 20.03 | 43.69 | 26.13 | 6.18 | 23.57 | -8.25 | |
Multi-model mean | 2040-2069 | 33.64 | -5.93 | 16.21 | 16.28 | 24.95 | 1.38 | 25.19 | -1.95 |
2070-2099 | 31.25 | -12.61 | 17.94 | 28.69 | 24.98 | 1.5 | 25.83 | 0.54 |
Figure 6
Shifts in arid/humid climate regions (AHCRs) across China and the rate of change with temperature anomaly relative to the baseline period under RCP8.5. (a) Percentage area change (%). (b) Rate of percentage area change (%°C-1). Before quadratic curve fitting, data were smoothed using an 11-year running mean. The original data points are shown as dots in (a)"
Table 4
Percentage change in the areas of humid, sub-humid, semi-arid, and arid regions over China for 2°C and 4°C warming under RCP8.5, relative to the baseline period"
GCM | 2°C | 4°C | |||||||
---|---|---|---|---|---|---|---|---|---|
Humid | Sub- humid | Semi- arid | Arid | Humid | Sub- humid | Semi- arid | Arid | ||
NorESM1-M | Expansion | 0.47 | 3.61 | 3.26 | 0.73 | 0.72 | 6.28 | 4.84 | 1.10 |
Contraction | 3.23 | 2.54 | 1.19 | 1.09 | 5.05 | 4.07 | 2.38 | 1.44 | |
Total changed | 8.06 | 12.93 | |||||||
MIROC-ESM-CHEM | Expansion | 0.87 | 8.05 | 4.24 | 0.13 | 1.64 | 8.33 | 4.92 | 0.54 |
Contraction | 6.61 | 2.84 | 1.68 | 2.17 | 6.15 | 4.06 | 2.64 | 2.57 | |
Total changed | 13.29 | 15.42 | |||||||
IPSL-CM5A-LR | Expansion | 1.59 | 3.75 | 2.25 | 2.55 | 3.17 | 7.00 | 2.63 | 1.61 |
Contraction | 2.50 | 2.89 | 3.85 | 0.90 | 2.95 | 3.63 | 5.74 | 2.10 | |
Total changed | 10.13 | 14.41 | |||||||
HadGEM2-ES | Expansion | 1.23 | 4.97 | 3.35 | 1.24 | 1.22 | 7.81 | 3.41 | 1.58 |
Contraction | 3.57 | 3.68 | 2.69 | 0.86 | 4.08 | 3.33 | 5.32 | 1.30 | |
Total changed | 10.79 | 14.03 | |||||||
GFDL-ESM2M | Expansion | 1.12 | 2.72 | 3.50 | 1.21 | 0.58 | 5.62 | 4.70 | 0.88 |
Contraction | 1.87 | 2.04 | 2.00 | 2.64 | 5.08 | 3.05 | 1.34 | 2.32 | |
Total changed | 8.55 | 11.78 | |||||||
Multi-model mean | Expansion | 1.06 | 4.62 | 3.32 | 1.17 | 1.47 | 7.01 | 4.10 | 1.14 |
Contraction | 3.56 | 2.80 | 2.28 | 1.53 | 4.66 | 3.63 | 3.48 | 1.94 | |
Total changed | 10.17 | 13.72 |
[1] |
Alessandri A, de Felice M, Zeng N et al., 2014. Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century.Scientific Reports, 4(3): 7211. doi: 10.1038/srep07211.
doi: 10.1038/srep07211 pmid: 4250915 |
[2] | Allen R G, Pereira L S, Raes D et al., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. United Nations Food and Agriculture Organization, Rome. |
[3] | Bailey R G, 2009. Ecosystem Geography: From Ecoregions to Sites. New York: Springer-Verlag. |
[4] |
Belda M, Holtanová E, Halenka T et al., 2015. Evaluation of CMIP5 present climate simulations using the Köppen-Trewartha climate classification.Climate Research, 64(3): 201-212.
doi: 10.3354/cr01316 |
[5] |
Belda M, Holtanová E, Kalvová J et al., 2016. Global warming-induced changes in climate zones based on CMIP5 projections.Climate Research, 71(1): 17-31.
doi: 10.3354/cr01418 |
[6] | Budyko M I, 1974. Climate and Life. New York: Academic Press. |
[7] |
Chan D, Wu Q G, 2015. Significant anthropogenic-induced changes of climate classes since 1950.Scientific Reports, 5: 13487. doi: 10.1038/srep13487.
doi: 10.1038/srep13487 pmid: 4551970 |
[8] |
Chan D, Wu Q G, Jiang G X et al., 2016. Projected shifts in Köppen climate zones over China and their temporal evolution in CMIP5 multi-model simulations.Advances in Atmospheric Sciences, 33(3): 283-293.
doi: 10.1007/s00376-015-5077-8 |
[9] |
Chen H P, Sun J Q, 2015. Changes in climate extreme events in China associated with warming.International Journal of Climatology, 35(10): 2735-2751.
doi: 10.1002/joc.4168 |
[10] | Cheng Z G, Zhang Y M, Xu Y, 2015. Projection of climate zone shifts in the 21st century in China based on CMIP5 models data.Climate Change Research, 11(2): 93-101. (in Chinese) |
[11] | Ci L J, Yang X H, Chen Z X, 2002. The potential impacts of climate change scenarios on desertification in China.Earth Science Frontiers, 9(2): 287-294. (in Chinese) |
[12] |
Cook B I, Smerdon J E, Seager R et al., 2014. Global warming and 21st century drying.Climate Dynamics, 43(9/10): 2607-2627.
doi: 10.1007/s00382-014-2075-y |
[13] | Crosbie R S, Pollock D W, Mpelasoka F S et al., 2012. Changes in Köppen-Geiger climate types under a future climate for Australia: Hydrological implications.Hydrology & Earth System Sciences, 16(9): 3341-3349. |
[14] |
Dai A, 2013. Increasing drought under global warming in observations and models.Nature Climate Change, 3(1): 52-58.
doi: 10.1038/NCLIMATE1633 |
[15] |
Elguindi N, Grundstein A, Bernardes S et al., 2014. Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification.Climatic Change, 122(4): 523-538.
doi: 10.1007/s10584-013-1020-0 |
[16] |
Engelbrecht C J, Engelbrecht F A, 2016. Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global temperature goals.Theoretical & Applied Climatology, 123(1/2): 247-261.
doi: 10.1007/s00704-014-1354-1 |
[17] |
Feng S, Ho C H, Hu Q et al., 2012. Evaluating observed and projected future climate changes for the Arctic using the Köppen-Trewartha climate classification.Climate Dynamics, 38(7/8): 1359-1373.
doi: 10.1007/s00382-011-1020-6 |
[18] |
Feng S, Hu Q, Huang W et al., 2014. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations.Global & Planetary Change, 112(1): 41-52.
doi: 10.1016/j.gloplacha.2013.11.002 |
[19] |
Fu C, 1992. Transitional Climate Zones and Biome Boundaries: A Case Study from China. New York: Springer.
doi: 10.1007/978-1-4612-2804-2_20 |
[20] |
Fu Y H, Zhao H, Piao S et al., 2015. Declining global warming effects on the phenology of spring leaf unfolding.Nature, 526(7571): 104. doi: 10.1038/nature15402.
doi: 10.1038/nature15402 pmid: 26416746 |
[21] |
Gao X J, Giorgi F, 2008. Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model.Global & Planetary Change, 62(3): 195-209.
doi: 10.1016/j.gloplacha.2008.02.002 |
[22] |
Gerstengarbe F W, Werner P C, 2009. A short update on Koeppen climate shifts in Europe between 1901 and 2003.Climatic Change, 92(1/2): 99-107.
doi: 10.1007/s10584-008-9430-0 |
[23] |
Gnanadesikan A, Stouffer R J, 2006. Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification.Geophysical Research Letters, 33(22): 2832-2849.
doi: 10.1029/2006GL028098 |
[24] |
Greve P, Seneviratne S I, 2015. Assessment of future changes in water availability and aridity.Geophysical Research Letters, 42(13): 5493-5499.
doi: 10.1002/2015GL064127 pmid: 4810427 |
[25] |
Grundstein A, 2008. Assessing climate change in the contiguous United States using a modified Thornthwaite climate classification scheme.Professional Geographer, 60(3): 398-412.
doi: 10.1080/00330120802046695 |
[26] |
Hanf F, Körper J, Spangehl T et al., 2012. Shifts of climate zones in multi-model climate change experiments using the Köppen climate classification.Meteorologische Zeitschrift, 21(2): 111-123.
doi: 10.1127/0941-2948/2012/0344 |
[27] |
Hempel S, Frieler K, Warszawski L et al., 2013. A trend-preserving bias correction- The ISI-MIP approach.Earth System Dynamics, 4(2): 219-236.
doi: 10.5194/esd-4-219-2013 |
[28] |
Huang J P, Ji M X, Xie Y K et al., 2016a. Global semi-arid climate change over last 60 years.Climate Dynamics, 46(3/4): 1131-1150.
doi: 10.1007/s00382-015-2636-8 |
[29] |
Huang J P, Yu H P, Guan X D et al., 2016b. Accelerated dryland expansion under climate change.Nature Climate Change, 6(2): 166-171.
doi: 10.1038/nclimate2837 |
[30] | IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press. |
[31] | Jiang J, Jiang D B, Lin Y H, 2017. Changes and projection of dry/wet areas over China.Chinese Journal of Atmospheric Sciences, 41(1): 43-56. (in Chinese) |
[32] |
Joshi M, Hawkins E, Sutton R et al., 2011. Projections of when temperature change will exceed 2°C above pre-industrial levels.Nature Climate Change, 1(8): 407-412.
doi: 10.1038/nclimate1261 |
[33] |
Knutti R, Furrer R, Tebaldi C et al., 2010. Challenges in combining projections from multiple climate models.Journal of Climate, 23(10): 2739-2758.
doi: 10.1175/2009JCLI3361.1 |
[34] |
Leng G Y, Tang Q H, Rayburg S, 2015. Climate change impacts on meteorological, agricultural and hydrological droughts in China.Global & Planetary Change, 126: 23-34.
doi: 10.1016/j.gloplacha.2015.01.003 |
[35] |
Li M X, Ma Z G, 2013. Soil moisture-based study of the variability of dry-wet climate and climate zones in China.Chinese Science Bulletin, 58(Suppl.1): 531-544.
doi: 10.1007/s11434-012-5428-0 |
[36] |
Lohmann R, 1993. The Koppen climate classification as a diagnostic tool for general circulation models.Climate Research, 3(3): 177-193.
doi: 10.2514/6.1995-214 |
[37] |
Ma Z G, Fu C B, Dan L, 2005. Decadal variations of arid and semi-arid boundary in China.Chinese Journal of Geophysics, 48(3): 519-525. (in Chinese)
doi: 10.1002/cjg2.690 |
[38] |
Mahlstein I, Daniel J S, Solomon S, 2013. Pace of shifts in climate regions increases with global temperature.Nature Climate Change, 3(8): 739-743.
doi: 10.1038/nclimate1876 |
[39] |
Mcevoy D J, Huntington J L, Mejia J F et al., 2016. Improved seasonal drought forecasts using reference evapotranspiration anomalies.Geophysical Research Letters, 43(1): 377-385.
doi: 10.1002/2015GL067009 |
[40] |
Moral F J, Paniagua L L, Rebollo F J et al., 2016. Spatial analysis of the annual and seasonal aridity trends in Extremadura, southwestern Spain.Theoretical & Applied Climatology, 130(3/4): 917-932.
doi: 10.1007/s00704-016-1939-y |
[41] |
Moss R H, Edmonds J A, Hibbard K A et al., 2010. The next generation of scenarios for climate change research and assessment.Nature, 463(7282): 747-756.
doi: 10.1038/nature08823 |
[42] |
Pierce D W, Barnett T P, Santer B D et al., 2009. Selecting global climate models for regional climate change studies.Proceedings of the National Academy of Sciences, 106(21): 8441-8446.
doi: 10.1073/pnas.0900094106 |
[43] |
Piontek F, Müller C, Pugh T A et al., 2014. Multisectoral climate impact hotspots in a warming world.Proceedings of the National Academy of Sciences, 111(9): 3233-3238.
doi: 10.1073/pnas.1222471110 pmid: 24344270 |
[44] |
Qian W H, Ding T, Hu H R et al., 2009. An overview of dry-wet climate variability among monsoon-westerly regions and the monsoon northernmost marginal active zone in China.Advances in Atmospheric Sciences, 26(4): 630-641.
doi: 10.1007/s00376-009-8213-5 |
[45] |
Reid P C, Hari R E, Beaugrand G et al., 2015. Global impacts of the 1980s regime shift.Global Change Biology, 22(2): 682-703.
doi: 10.1111/gcb.13106 pmid: 26598217 |
[46] |
Rohli R V, Joyner T A, Reynolds S J et al., 2015. Globally extended Kӧppen-Geiger climate classification and temporal shifts in terrestrial climatic types.Physical Geography, 36(2): 142-157.
doi: 10.1080/02723646.2015.1016382 |
[47] |
Roudier P, Andersson J C M, Donnelly C et al., 2016. Projections of future floods and hydrological droughts in Europe under a +2°C global warming.Climatic Change, 135(2): 341-355.
doi: 10.1007/s10584-015-1570-4 |
[48] |
Schlaepfer D R, Bradford J B, Lauenroth W K et al., 2017. Climate change reduces extent of temperate drylands and intensifies drought in deep soils.Nature Communications, 8: 14196. doi: 10.1038/ncomms14196.
doi: 10.1038/ncomms14196 pmid: 5290328 |
[49] |
Schleussner C F, Lissner T K, Fischer E M et al., 2016. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5°C and 2°C.Earth System Dynamics, 7(2): 327-351.
doi: 10.5194/esd-7-327-2016 |
[50] |
Sherwood S, Fu Q, 2014. A drier future?Science, 343(6172): 737-739.
doi: 10.1126/science.1247620 |
[51] | Shi Z T, 1996. Regional characters of natural disaster in marginal monsoon belt of China.Journal of Arid Land Resources & Environment, 10(4): 1-7. (in Chinese) |
[52] |
Swain S, Hayhoe K, 2015. CMIP5 projected changes in spring and summer drought and wet conditions over North America.Climate Dynamics, 44(9/10): 2737-2750.
doi: 10.1007/s00382-014-2255-9 |
[53] |
Sylla M B, Elguindi N, Giorgi F et al., 2015. Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century.Climatic Change, 134(1/2): 1-13.
doi: 10.1007/s10584-015-1522-z |
[54] |
Taylor K E, Stouffer R J, Meehl G A, 2012. An overview of CMIP5 and the experiment design.Bulletin of the American Meteorological Society, 93(4): 485-498.
doi: 10.1175/BAMS-D-11-00094.1 |
[55] |
Trenberth K E, Dai A, van derSchrier G et al., 2013. Global warming and changes in drought.Nature Climate Change, 4(1): 17-22.
doi: 10.1038/nclimate2067 |
[56] | Vautard R, Gobiet A, Sobolowski S et al., 2014. The European climate under a 2°C global warming.Booklist, 9(3): 034006. doi: 10.1088/1748-9326/9/3/034006. |
[57] |
Wang L, Chen W, 2014. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China.International Journal of Climatology, 34(6): 2059-2078.
doi: 10.1002/joc.3822 |
[58] |
Wang L, Chen W, Huang G et al., 2016. Changes of the transitional climate zone in East Asia: past and future.Climate Dynamics, 49(4): 1463-1477.
doi: 10.1007/s00382-016-3400-4 |
[59] |
Warszawski L, Frieler K, Huber V et al., 2014. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework.Proceedings of the National Academy of Sciences, 111(9): 3228-3232.
doi: 10.1073/pnas.1312330110 |
[60] |
Wu S H, Yin Y H, Zheng D et al., 2005. Aridity/humidity status of land surface in China during the last three decades.Science in China Ser D Earth Sciences, 48(9): 1510-1518.
doi: 10.1360/04yd0009 |
[61] |
Wu S H, Yin Y H, Zheng D et al., 2010. Moisture conditions and climate trends in China during the period 1971-2000.International Journal of Climatology, 26(2): 193-206.
doi: 10.1002/joc.1245 |
[62] |
Wu S H, Yin Y H, Zheng D et al., 2016. Advances in terrestrial system research in China.Journal of Geographical Sciences, 26(7): 791-802.
doi: 10.1007/s11442-016-1299-7 |
[63] |
Yang J P, Ding Y J, Chen R S et al., 2002. The interdecadal fluctuation of dry and wet climate boundaries in China in recent 50 years.Acta Geographica Sinica, 57(6): 655-661. (in Chinese)
doi: 10.1007/BF02837476 |
[64] |
Yin Y H, Ma D Y, Wu S H et al., 2015. Projections of aridity and its regional variability over China in the mid-21st century.International Journal of Climatology, 35(14): 4387-4398.
doi: 10.1002/joc.4295 |
[65] |
Yin Y H, Wu S H, Zhao D S, 2013. Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau.Journal of Geophysical Research: Atmospheres, 118(19): 10850-10860.
doi: 10.1002/jgrd.50858 |
[66] |
Yin Y H, Wu S H, Zheng D et al., 2008. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China.Agricultural Water Management, 95(1): 77-84.
doi: 10.1016/j.agwat.2007.09.002 |
[67] |
Zeng N, Yoon J H, 2009. Expansion of the world's deserts due to vegetation-albedo feedback under global warming.Geophysical Research Letters, 36(17): L17401.
doi: 10.1029/2009GL039699 |
[68] |
Zhang X L, Yan X D, 2016. Deficiencies in the simulation of the geographic distribution of climate types by global climate models.Climate Dynamics, 46(9/10): 2749-2757.
doi: 10.1007/s00382-015-2727-6 |
[69] |
Zhao T B, Chen L, Ma Z G, 2014. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models.Science Bulletin, 59(4): 412-429.
doi: 10.1007/s11434-013-0003-x |
[70] |
Zheng J Y, Bian J J, Ge Q S et al., 2013. The climate regionalization in China for 1981-2010.Chinese Science Bulletin, 58(30): 3088-3099. (in Chinese)
doi: 10.1007/s11434-013-5948-2 |
[71] | Zhu G R, Li Y, 2015. Types and changes of Chinese climate zones from 1961 to 2013 based on Köppen climate classification.Arid Land Geography, 38(6): 1121-1132. (in Chinese) |
[1] | Martha Elizabeth APPLE, Macy Kara RICKETTS, Alice Caroline MARTIN. Plant functional traits and microbes vary with position on striped periglacial patterned ground at Glacier National Park, Montana [J]. Journal of Geographical Sciences, 2019, 29(7): 1127-1141. |
[2] | Jie ZHANG, Fubao SUN, Wenbin LIU, Jiahong LIU, Hong WANG. Spatio-temporal patterns of drought evolution over the Beijing-Tianjin-Hebei region, China [J]. Journal of Geographical Sciences, 2019, 29(6): 863-876. |
[3] | Leilei MIN, Yongqing QI, Yanjun SHEN, Ping WANG, Shiqin WANG, Meiying LIU. Groundwater recharge under irrigated agro-ecosystems in the North China Plain: From a critical zone perspective [J]. Journal of Geographical Sciences, 2019, 29(6): 877-890. |
[4] | Xifang WU, Yongqing QI, Yanjun SHEN, Wei YANG, Yucui ZHANG, Akihiko KONDOH. Change of winter wheat planting area and its impacts on groundwater depletion in the North China Plain [J]. Journal of Geographical Sciences, 2019, 29(6): 891-908. |
[5] | Yucui ZHANG, Yongqing QI, Yanjun SHEN, Hongying WANG, Xuepeng PAN. Mapping the agricultural land use of the North China Plain in 2002 and 2012 [J]. Journal of Geographical Sciences, 2019, 29(6): 909-921. |
[6] |
MARTINSEN Grith, Suxia LIU, Xingguo MO, Peter BAUER-GOTTWEIN.
Optimizing water resources allocation in the Haihe River basin under groundwater sustainability constraints [J]. Journal of Geographical Sciences, 2019, 29(6): 935-958. |
[7] | Wenlan GAO, Keqin DUAN, Shuangshuang LI. Spatial-temporal variations in cold surge events in northern China during the period 1960-2016 [J]. Journal of Geographical Sciences, 2019, 29(6): 971-983. |
[8] | Yuan ZHANG, Shuying ZANG, Li SUN, Binghe YAN, Tianpeng YANG, Wenjia YAN, E Michael MEADOWS, Cuizhen WANG, Jiaguo QI. Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 658-674. |
[9] | M. ROBINSON Guy, Bingjie SONG. Rural transformation: Cherry growing on the Guanzhong Plain, China and the Adelaide Hills, South Australia [J]. Journal of Geographical Sciences, 2019, 29(5): 675-701. |
[10] | Liying GUO, Liping DI, Qing TIAN. Detecting spatio-temporal changes of arable land and construction land in the Beijing-Tianjin corridor during 2000-2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 702-718. |
[11] | Yifan WU, Weilun FENG, Yang ZHOU. Practice of barren hilly land consolidation and its impact: A typical case study from Fuping County, Hebei Province of China [J]. Journal of Geographical Sciences, 2019, 29(5): 762-778. |
[12] | Qinqin DU, Mingjun ZHANG, Shengjie WANG, Cunwei CHE, Rong MA, Zhuanzhuan MA. Changes in air temperature over China in response to the recent global warming hiatus [J]. Journal of Geographical Sciences, 2019, 29(4): 496-516. |
[13] | Shengfa LI, Xiubin LI. The mechanism of farmland marginalization in Chinese mountainous areas: Evidence from cost and return changes [J]. Journal of Geographical Sciences, 2019, 29(4): 531-548. |
[14] | Yujie LIU, Ya QIN, Quansheng GE. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010 [J]. Journal of Geographical Sciences, 2019, 29(3): 351-362. |
[15] | Xiaoyu GAO, Weiming CHENG, Nan WANG, Qiangyi LIU, Ting MA, Yinjun CHEN, Chenghu ZHOU. Spatio-temporal distribution and transformation of cropland in geomorphologic regions of China during 1990-2015 [J]. Journal of Geographical Sciences, 2019, 29(2): 180-196. |
|