Journal of Geographical Sciences ›› 2019, Vol. 29 ›› Issue (1): 3-28.doi: 10.1007/s11442-019-1581-6
• Research Articles • Next Articles
Man ZHANG1,2(), Yaning CHEN2,*(
), Yanjun SHEN3, Baofu LI4
Received:
2018-02-07
Accepted:
2018-05-30
Online:
2019-01-25
Published:
2019-01-25
Contact:
Yaning CHEN
E-mail:zhangman14@mails.ucas.ac.cn;chenyn@ms.xjb.ac.cn
About author:
Author: Zhang Man, PhD, specialized in extreme climate events in arid areas. E-mail:
Supported by:
Man ZHANG, Yaning CHEN, Yanjun SHEN, Baofu LI. Tracking climate change in Central Asia through temperature and precipitation extremes[J].Journal of Geographical Sciences, 2019, 29(1): 3-28.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Definitions of 17 extreme climate indices chosen for this study"
Index | Indicator name | Definitions | Units |
---|---|---|---|
Tav | Mean Tmean | Annual mean temperature | oC |
Txav | Mean Tmax | Annual average daily maximum temp | oC |
Tnav | Mean Tmin | Annual average daily minimum temp | oC |
FD0 | Frost days | Annual count when TN (daily minimum) < 0oC | days |
ID0 | Ice days | Annual count when TX (daily maximum) < 0oC | days |
SU25 | Summer days | Annual count when TX (daily maximum) > 25oC | days |
TXx | Max Tmax | Monthly maximum value of daily maximum temp | oC |
TNx | Max Tmin | Monthly maximum value of daily minimum temp | oC |
TXn | Min Tmax | Monthly minimum value of daily maximum temp | oC |
TNn | Min Tmin | Monthly minimum value of daily minimum temp | oC |
Prcptot | Annual total wet-day precipitation | Annual total precipitation in wet days (RR ≥1mm) | mm |
CDD | Consecutive dry days | Annual maximum number of consecutive days with RR <1 mm | days |
CWD | Consecutive wet days | Annual maximum number of consecutive days with RR ≥1 mm | days |
R10mm | Number of heavy precipitation days | Annual count of days when RR ≥10 mm | days |
R20mm | Number of very heavy precipitation days | Annual count of days when RR ≥20 mm | days |
Rx1 day | Max 1-day precipitation amount | Monthly maximum 1-day precipitation | mm |
Rx5 day | Max 5-day precipitation amount | Monthly maximum consecutive 5-day precipitation | mm |
Table 2
Temporal variation trends of extreme temperature indices based on MK test during 1957-2005 in CA"
Index | MK test | Percentage of stations showing increasing trend | Percentage of stations showing significant increasing trend | Percentage of stations showing decreasing trend | Percentage of stations showing significant decreasing trend | |||
---|---|---|---|---|---|---|---|---|
Trend rate | Z-value | Trends | Significance level (p) | |||||
Tav | 0.032oC/a | 4.89 | ↑ | 0.01 | 98.18% | 94.55% | 1.82% | 0 |
Txav | 0.024oC/a | 3.39 | ↑ | 0.01 | 100% | 70.91% | 0 | 0 |
Tnav | 0.041oC/a | 5.78 | ↑ | 0.01 | 98.18% | 94.55% | 1.82% | 1.82% |
FD0 | -0.323 days/a | -4.71 | ↓ | 0.01 | 3.64% | 0 | 96.36% | 80.00% |
ID0 | -0.187 days/a | -2.31 | ↓ | 0.05 | 3.64% | 0 | 96.36% | 25.45% |
SU25 | 0.206 days/a | 3.18 | ↑ | 0.01 | 96.36% | 45.45% | 3.64% | 1.82% |
TXx | 0.020oC/a | 2.67 | ↑ | 0.01 | 81.82% | 29.09% | 18.18% | 1.82% |
TNx | 0.030oC/a | 5.14 | ↑ | 0.01 | 87.27% | 58.18% | 12.73% | 1.82% |
TXn | 0.059oC/a | 2.38 | ↑ | 0.05 | 96.36% | 34.55% | 3.64% | 0 |
TNn | 0.088oC/a | 3.86 | ↑ | 0.01 | 100% | 70.91% | 0 | 0 |
Figure 2
Spatial-temporal variation trends of the extreme temperature indices of Tav, Txav and Tnav during 1957-2005 in Central Asia. (a)-(c): Spatial variation trends of (a) Tav, (b) Txav and (c) Tnav (The red filled triangle denotes significant rising trend (P<0.05); the unfilled triangle denotes rising trend but not significant; the black filled inverted-triangle denotes significant falling trend (P<0.05); the unfilled inverted-triangle denotes falling trend but not significant). (d)-(f): Regional annual anomaly series of (d) Tav, (e) Txav and (f) Tnav (The blue column denotes the annual anomaly series and the red dash line represents the linear regression)"
Figure 3
Temporal variation trends of extreme temperature indices during 1957-2005 in CA. (a) Tav, (b) Txav, (c) Tnav, (d) TXx, (e) TNx, (f) SU25, (g) FD0, (h) ID0, (i) TXn and (j) TNn. Red dotted line denotes the mean value of each extreme temperature index before and after abrupt change; Black and blue solid lines represent time series variations and 20-year overlapping averages for each precipitation indices, respectively."
Table 3
Abrupt change of extreme temperature indices based on the test results of cumulative deviation and student’s t test during 1957-2005 in CA"
Index | Cumulative deviation | Period | Student’s t test | ||
---|---|---|---|---|---|
Q/Sqrt(n) | Year of change | Mean value | P value | ||
Tav | 2.02* | 1987 | 1957-1986 | 8.25oC/a | -2.87* |
1987-2005 | 9.09oC/a | ||||
Txav | 1.58* | 1987 | 1957-1986 | 14.69oC/a | -2.10* |
1987-2005 | 15.31oC/a | ||||
Tnav | 2.36* | 1977 | 1957-1976 | 1.58oC/a | -3.71* |
1977-2005 | 2.66oC/a | ||||
FD0 | 1.97* | 1976 | 1957-1975 | 154.59 days/a | 3.50* |
1976-2005 | 147.41 days/a | ||||
ID0 | 1.37* | 1986 | 1957-1985 | 70.43 days/a | 2.69* |
1986-2005 | 64.17 days/a | ||||
SU25 | 1.55* | 1973 | 1957-1972 | 109.55 days/a | -3.24* |
1973-2005 | 115.47 days/a | ||||
TXx | 1.80* | 1972 | 1957-1971 | 37.21oC/a | -2.53* |
1972-2005 | 37.99oC/a | ||||
TNx | 2.17* | 1973 | 1957-1972 | 22.72oC/a | -2.81* |
1973-2005 | 23.58oC/a | ||||
TXn | 1.85* | 1978 | 1957-1977 | -15.67oC/a | -3.71* |
1978-2005 | -13.53oC/a | ||||
TNn | 2.35* | 1978 | 1957-1977 | -26.48oC/a | -4.89* |
1978-2005 | -23.65oC/a |
Figure 5
Spatial variation trends of the extreme temperature indices (a) TXx, (b) TNx, (c) SU25, (d) FD0, (e) ID0, (f) TXn and (g) TNn. The red filled triangle denotes significant rising trend (P<0.05); the unfilled triangle denotes rising trend but not significant; the black filled inverted-triangle denotes significant falling trend (p<0.05); the unfilled inverted-triangle denotes falling trend but not significant."
Table 4
Temporal variation trend of extreme precipitation indices based on the results of MK test during 1957-2005 in CA"
Index | MK test | Percentage of stations showing increasing trend (%) | Percentage of stations showing significant increasing trend (%) | Percentage of stations showing decreasing trend (%) | Percentage of stations showing significant decreasing trend (%) | |||
---|---|---|---|---|---|---|---|---|
Trend rate | Z-value | Trends | Significance level (p) | |||||
Prcptot | 0.476 mm/a | 2.11 | ↑ | 0.05 | 81.82 | 25.45 | 18.18 | 1.82 |
CDD | -0.317 days/a | -2.26 | ↓ | 0.05 | 21.82 | 1.82 | 78.18 | 5.45 |
CWD | 0.001 days/a | 0.28 | ↑ | NS | 49.09 | 3.64 | 50.91 | 0 |
R10mm | 0.016 days/a | 2.19 | ↑ | 0.05 | 76.36 | 12.73 | 23.64 | 1.82 |
R20mm | 0.004 days/a | 1.94 | ↑ | 0.1 | 69.09 | 5.45 | 30.91 | 0 |
Rx1 day | 0.040 mm/a | 2.14 | ↑ | 0.05 | 69.09 | 9.09 | 30.91 | 1.82 |
Rx5 day | 0.055 mm/a | 1.50 | ↑ | NS | 65.45 | 10.91 | 34.55 | 3.64 |
Figure 6
Spatial-temporal variation trends of the extreme precipitation indices of Prcptot, CDD and CWD during 1957-2005 in Central Asia. (a)-(c): Spatial variation trends of (a) Prcptot, (b) CDD and (c) CWD. (The red filled triangle denotes significant rising trend (P<0.05); the unfilled triangle denotes rising trend but not significant; the black filled inverted-triangle denotes significant falling trend (P<0.05); the unfilled inverted-triangle denotes falling trend but not significant). (d)-(f): Regional annual anomaly series of (d) Prcptot, (e) CDD and (f) CWD (The blue column denotes the annual anomaly series and the red dash line represents the linear regression)."
Figure 7
Temporal variation trends of extreme precipitation indices during 1957-2005 in CA. (a) Prcptot, (b) CDD, (c) CWD, (d) R10mm, (e) R20mm, (f) Rx1 day and (g) Rx5 day. Red dotted line denotes the mean value of each extreme temperature indices before and after abrupt change; Black and blue solid lines represent time series variations and 20-year overlapping averages for each precipitation indices, respectively."
Table 5
Abrupt change of extreme precipitation indices based on the test results of cumulative deviation and student’s t test for extreme precipitation indices during 1957-2005 in CA"
Index | Cumulative deviation | Periods | Student’s t test | ||
---|---|---|---|---|---|
Q/Sqrt(n) | Year of change | Mean value | P value | ||
Prcptot | 1.44* | 1986 | 1957-1985 | 147.25 mm/a | -2.64* |
1986-2005 | 164.88 mm/a | ||||
CDD | 1.58* | 1986 | 1957-1985 | 113.49 days/a | 2.75* |
1986-2005 | 103.10 days/a | ||||
CWD | 0.81 | 1986 | 1957-1985 | 2.99 days/a | -∞* |
1986-2005 | 3.09 days/a | ||||
R10mm | 1.41* | 1986 | 1957-1985 | 3.24 days/a | -1.94 |
1986-2005 | 3.80 days/a | ||||
R20mm | 1.39* | 1986 | 1957-1985 | 0.67 days/a | -∞* |
1986-2005 | 0.82 days/a | ||||
Rx1 day | 1.60* | 1986 | 1957-1985 | 17.80 mm/a | -2.57* |
1986-2005 | 19.29 mm/a | ||||
Rx5 day | 1.52* | 1986 | 1957-1985 | 25.79 mm/a | -2.84* |
1986-2005 | 28.27 mm/a |
Figure 9
Spatial variation trends of the extreme precipitation indices (a) R10mm, (b) R20mm, (c) Rx1 day, (d) Rx5 day. The red filled triangle denotes significant rising trend (P<0.05); the unfilled triangle denotes rising trend but not significant; the black filled inverted-triangle denotes significant falling trend (P<0.05); the unfilled inverted-triangle denotes falling trend but not significant."
Table 6
The correlation coefficient values between temperature extremes in CA and atmospheric circulations"
Circulation index | Indices | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tav | Txav | Tnav | FD0 | ID0 | SU25 | TXx | TNx | TXn | TNn | |
AAO | 0.153 | 0.216 | 0.139 | -0.049 | -0.144 | 0.078 | -0.074 | 0.153 | 0.179 | 0.182 |
AO | 0.247 | 0.194 | 0.272 | -0.145 | -0.157 | 0.112 | 0.092 | 0.028 | 0.336* | 0.271 |
NAO | -0.053 | -0.062 | 0.003 | 0.079 | 0.070 | 0.089 | -0.059 | -0.104 | 0.158 | 0.099 |
NOI | -0.166 | -0.046 | -0.260 | 0.264 | 0.143 | 0.125 | 0.054 | 0.055 | -0.119 | -0.228 |
PDO | 0.085 | -0.101 | 0.217 | -0.150 | 0.013 | -0.002 | 0.089 | 0.235 | 0.160 | 0.310* |
PNA | 0.171 | 0.085 | 0.248 | -0.230 | -0.143 | 0.038 | 0.098 | 0.137 | 0.088 | 0.214 |
SH | -0.415** | -0.331* | -0.457** | 0.320* | 0.507** | 0.066 | 0.004 | -0.005 | -0.350* | -0.365* |
SOI | -0.172 | -0.071 | -0.254 | 0.317* | 0.058 | -0.061 | 0.074 | 0.057 | 0.010 | -0.094 |
TPI_B | 0.312* | 0.281 | 0.326* | -0.254 | -0.377** | 0.028 | -0.129 | 0.073 | 0.022 | 0.120 |
WCI_DJFc | 0.402** | 0.277 | 0.485** | -0.382* | -0.265 | 0.266 | -0.042 | 0.300 | 0.347* | 0.394** |
Table 7
The correlation coefficient values between precipitation extremes in CA and atmospheric circulations"
Circulation index | Indices | ||||||
---|---|---|---|---|---|---|---|
Prcptot | CDD | CWD | R10mm | R20mm | Rx1 day | Rx5 day | |
AAO | -0.039 | 0.024 | -0.102 | -0.115 | 0.115 | -0.112 | -0.149 |
AO | -0.048 | -0.139 | 0.045 | -0.038 | -0.113 | -0.045 | -0.077 |
NAO | -0.115 | -0.012 | -0.089 | -0.099 | -0.245 | -0.119 | -0.185 |
NOI | -0.218 | 0.097 | -0.127 | -0.261 | -0.143 | -0.218 | -0.059 |
PDO | 0.252 | -0.246 | 0.056 | 0.243 | 0.094 | 0.226 | 0.146 |
PNA | 0.359* | -0.312* | 0.039 | 0.324* | 0.300* | 0.342* | 0.315* |
SH | -0.313* | 0.170 | -0.204 | -0.265 | -0.232 | -0.199 | -0.131 |
SOI | -0.191 | 0.063 | -0.123 | -0.191 | -0.126 | -0.170 | -0.070 |
TPI-B | 0.531** | -0.422** | 0.311* | 0.516** | 0.568** | 0.344* | 0.451** |
WCI_DJF | 0.117 | -0.269 | 0.195 | 0.082 | 0.015 | 0.212 | 0.258 |
Table 8
Trends of extreme temperature indices from this study and other works"
Index | CA (five countries and Xinjiang of China (1957-2005) | Northwestern China (1960-2003) | Middle East (1950-2003) | Eastern and central Tibetan Plateau (1961-2005) | Southwestern China (1961-2008) | China (1961-2003) | Global (1951-2003) |
---|---|---|---|---|---|---|---|
Tav | 4.89* | 5.45* | |||||
Txav | 3.39* | 3.96* | |||||
Tnav | 5.78* | 6.77* | |||||
FD0 | -4.71* | -3.24* | -0.6 | -4.32* | -0.29* | -3.73* | |
ID0 | -2.31* | -2.75* | -2.46* | -0.09 | |||
SU25 | 3.18* | 1 | |||||
TXx | 2.67* | 0.17 | 0.07 | 0.28* | 0.11* | 0.07 | 0.21* |
TNx | 5.14* | 0.32* | 0.23* | 0.25* | 0.17* | 0.21* | 0.30* |
TXn | 2.38* | 0.61* | 0.2 | 0.30* | 0.13* | 0.35* | 0.37 |
TNn | 3.86* | 0.85* | 0.28* | 0.69* | 0.29* | 0.63* | 0.71* |
Data Source | This study | Wang et al. (2013b) and Chen et al (2014) | Zhang et al. (2005) | You et al. (2008) | Li et al. (2012) | You et al. (2011) | Alexander et al. (2006) |
Table 9
Trends of extreme precipitation indices from this study and other works"
Index | CA (five countries and Xinjiang of China) (1957- 2005) | CA (five countries)(1938- 2005) | Northwestern China (1960-2003) | Middle East (1950- 2003) | Eastern and central Tibetan Plateau (1961- 2005) | Southwestern China (1961- 2008) | China (1961- 2003) | Global (1951- 2003) |
---|---|---|---|---|---|---|---|---|
Prcptot | 2.11* | 3.60* | 6.82* | -0.3 | 6.66 | 0.03 | 3.21 | 10.59* |
CDD | -2.26* | -2.68* | -4.85* | -5.0* | -4.64* | -0.05 | -1.22 | -0.05 |
CWD | 0.28 | 1.70 | 0.047* | -0.07 | -0.08* | |||
R10mm | 2.19* | 2.67* | 0.22* | -0.03 | 0.23 | 0 | ||
R20mm | 1.94 | 2.97* | 0 | |||||
Rx1 day | 2.14* | 0.77 | 0.63* | 0 | 0.27 | 0.05* | 1.37 | 0.85* |
Rx5 day | 1.50 | 1.85* | 0.98* | 0 | -0.08 | 0.03 | 1.90 | 0.55 |
Data Source | This study | Zhang et al. (2017) | Wang et al. (2013a) | Zhang et al. (2005) | You et al. (2008) | Li et al. (2012) | You et al. (2011) | Alexander et al. (2006) |
[1] |
Aizen V B, Kuzmichenok V A, Surazakov A B et al., 2006. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data.Annals of Glaciology, 43(1): 202-213. doi: 10.3189/172756406781812465.
doi: 10.3189/172756406781812465 |
[2] |
Alexander L V, 2016. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond.Weather and Climate Extremes, 11: 4-16. doi: 10.1016/j.wace.2015.10.007.
doi: 10.1016/j.wace.2015.10.007 |
[3] |
Alexander L V, Arblaster J M, 2009. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections.International Journal of Climatology, 29: 417-435. doi: 10.1002/joc.1730.
doi: 10.1002/joc.1730 |
[4] |
Alexander L V, Zhang X, Peterson, T C et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation.Journal of Geophysical Research, 111: D5. doi: 10.1029/2005jd006290.
doi: 10.1029/2005JD006290 |
[5] |
Bothe O, Fraedrich K, Zhu X H, 2012. Precipitation climate of Central Asia and the large-scale atmospheric circulation.Theoretical and Applied Climatology, 108: 345-354. doi: 10.1007/s00704-011-0537-2.
doi: 10.1007/s00704-011-0537-2 |
[6] |
Buishand T A, 1982. Some methods for testing the homogeneity of rainfall records.Journal of Hydrology, 58: 11-27. doi: 10.1016/0022-1694(82)90066-X.
doi: 10.1016/0022-1694(82)90066-X |
[7] |
Chen F H, Wang J S, Jin L Y et al., 2009. Rapid warming in mid-latitude Central Asia for the past 100 years.Frontiers of Earth Science in China, 3: 42-50. doi: 10.1007/s11707-009-0013-9.
doi: 10.1007/s11707-009-0013-9 |
[8] |
Chen F H, Yu Z, Yang M et al., 2008. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history.Quaternary Science Reviews, 27: 351-364. doi: 10.1016/j.quascirev.2007.10.017.
doi: 10.1016/j.quascirev.2007.10.017 |
[9] |
Chen H P, Sun, J Q, 2017. Anthropogenic warming has caused hot droughts more frequently in China.Journal of Hydrology, 544: 306-318. doi: 10.1016/j.jhydrol.2016.11.044.
doi: 10.1016/j.jhydrol.2016.11.044 |
[10] |
Chen Y N, Deng H J, Li B F et al., 2014. Abrupt change of temperature and precipitation extremes in the arid region of Northwest China.Quaternary International, 336: 35-43. doi: 10.1016/j.quaint.2013.12.057.
doi: 10.1016/j.quaint.2013.12.057 |
[11] |
Chen Y N, Li Z, Fan Y T et al., 2015. Progress and prospects of climate change impacts on hydrology in the arid region of Northwest China.Environmental Research, 139: 11-19. doi: 10.1016/j.envres.2014.12.029.
doi: 10.1016/j.envres.2014.12.029 pmid: 25682220 |
[12] |
Chen Y N, Li Z, Li W H et al., 2016. Water and ecological security: Dealing with hydroclimatic challenges at the heart of China’s Silk Road.Environmental Earth Sciences, 75: 881. doi: 10.1007/s12665-016-5385-z.
doi: 10.1007/s12665-016-5385-z |
[13] |
Cheng H, Spötl C, Breitenbach S F M et al., 2016. Climate variations of Central Asia on orbital to millennial timescales.Scientific Reports, 6: 36975. doi: 10.1038/srep36975.
doi: 10.1038/srep36975 pmid: 27833133 |
[14] |
Cohen J, Saito K, Entekhabi D, 2001. The role of the Siberian High in Northern Hemisphere climate variability.Geophysical Research Letters, 28: 299-302. doi: 10.1029/2000GL011927.
doi: 10.1029/2000GL011927 |
[15] |
Deng H J, Chen Y N, Shi X et al., 2014. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of Northwest China.Atmospheric Research, 138: 346-355. doi: 10.1016/j.atmosres.2013.12.001.
doi: 10.1016/j.atmosres.2013.12.001 |
[16] |
Diffenbaugh N S, Singh D, Mankin J S et al., 2017. Quantifying the influence of global warming on unprecedented extreme climate events.Proceedings of the National Academy of Sciences, 114: 4881-4886. doi: 10.1073/pnas.1618082114.
doi: 10.1073/pnas.1618082114 pmid: 28439005 |
[17] |
Donat M G, Lowry A L, Alexander L V et al., 2016. More extreme precipitation in the world’s dry and wet regions.Nature Climate Change, 6: 508-513. doi: 10.1038/NCLIMATE2941.
doi: 10.1038/nclimate2941 |
[18] |
Donat M G, Peterson T C, Brunet M et al., 2014. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO.International Journal of Climatology, 34: 581-592. doi: 10.1002/joc.3707.
doi: 10.1002/joc.3707 |
[19] |
Dugmore A J, Borthwick D M, Church M J et al., 2007. The role of climate in settlement and landscape change in the North Atlantic Islands: An assessment of cumulative deviations in high-resolution proxy climate records.Human Ecology, 35: 169-178. doi: 10.1007/s10745-006-9051-z.
doi: 10.1007/s10745-006-9051-z |
[20] |
Easterling D R, Meehl G A, Parmesan C et al., 2000. Climate extremes: Observations, modeling, and impacts.Science, 289, 2068-2074. doi: 10.1126/science.289.5487.2068.
doi: 10.1126/science.289.5487.2068 pmid: 11000103 |
[21] |
Frachetti M D, Smith C E, Traub C M et al., 2017. Nomadic ecology shaped the highland geography of Asia’s Silk Roads.Nature, 543: 193-198. doi: 10.1038/nature21696.
doi: 10.1038/nature21696 pmid: 28277506 |
[22] |
Gong D Y, Ho C H, 2002. The Siberian High and climate change over middle to high latitude Asia.Theoretical and applied climatology, 72(1): 1-9. doi: 10.1007/s007040200008.
doi: 10.1007/s007040200008 |
[23] |
Greve P, Orlowsky B, Mueller B et al., 2014. Global assessment of trends in wetting and drying over land.Nature Geoscience, 7: 716-721. doi: 10.1038/NGEO2247.
doi: 10.1038/ngeo2247 |
[24] | Hansen J, Ruedy R, Sato M et al., 2010. Global surface temperature change. Reviews of Geophysics, 48: RG4004. doi: 10.1029/2010RG000345. |
[25] |
Harris I P D J, Jones P D, Osborn T J et al., 2014. Updated high-resolution grids of monthly climatic observations: The CRU TS3. 10 Dataset.International Journal of Climatology, 34(3): 623-642. doi: 10.1002/joc.3711.
doi: 10.1002/joc.3711 |
[26] |
Herold N, Behrangi A, Alexander L V, 2017. Large uncertainties in observed daily precipitation extremes over land.Journal of Geophysical Research: Atmospheres, 122: 668-681. doi: 10.1002/2016JD025842.
doi: 10.1002/2016JD025842 |
[27] |
Howard K W F, Howard K K, 2016. The new “Silk Road Economic Belt” as a threat to the sustainable management of Central Asia’s transboundary water resources.Environmental Earth Sciences, 75: 976. doi: 10.1007/s12665-016-5752-9.
doi: 10.1007/s12665-016-5752-9 |
[28] |
Hu Z, Hu Q, Zhang C et al., 2016. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in Central Asia.Journal of Geophysical Research: Atmospheres, 121: 5648-5663. doi: 10.1002/2016JD024781.
doi: 10.1002/2016JD024781 |
[29] |
Hu Z Y, Zhang C, Hu Q et al., 2014. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets.Journal of Climate, 27: 1143-1167.
doi: 10.1175/JCLI-D-13-00064.1 |
[30] | IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field C B, Barros V, Stocker T F et al. A Special Report Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, NY, USA: Cambridge University Press, 109-290. |
[31] | IPCC, 2013: Summary for policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T F, Qin D, Plattner G-Ket al. eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. |
[32] |
Jeong J-H, Ou T, Linderholm H W et al., 2011. Recent recovery of the Siberian High intensity.Journal of Geophysical Research: Atmospheres, 116: D23102. doi: 10.1029/2011JD015904.
doi: 10.1029/2011JD015904 |
[33] |
Jones P D, Lister D H, Osborn T J et al., 2012. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010.Journal of Geophysical Research: Atmospheres, 117: D05127.
doi: 10.1029/2011JD017139 |
[34] |
Karl T R, Easterling D R, 1999. Climate extremes: Selected review and future research directions.Climatic Change, 42: 309-325. doi: 10.1007/978-94-015-9265-9_17.
doi: 10.1023/A:1005436904097 |
[35] | Kendall M G, 1975. Rank Correlation Measures. London: Charles Griffin, 202. |
[36] |
Kim Y H, Min S K, Zhang X et al., 2016. Attribution of extreme temperature changes during 1951-2010.Climate Dynamics, 46(5/6): 1769-1782. doi: 10.1007/s00382-015-2674-2.
doi: 10.1007/s00382-015-2674-2 |
[37] |
King A D, Alexander L V, Donat M G, 2013. The efficacy of using gridded data to examine extreme rainfall characteristics: A case study for Australia.International Journal of Climatology, 33: 2376-2387. doi: 10.1002/joc.3588.
doi: 10.1002/joc.3588 |
[38] |
Klein Tank A M G, Peterson T C, Quadir D A et al., 2006. Changes in daily temperature and precipitation extremes in Central and South Asia.Journal of Geophysical Research, 111: D16105. doi: 10.1029/2005JD006316.
doi: 10.1029/2005JD006316 |
[39] |
Li B F, Chen Y N, Chen Z S et al., 2016a. Why does precipitation in Northwest China show a significant increasing trend from 1960 to 2010?Atmospheric Research, 167: 275-284. doi: 10.1016/j.atmosres.2015.08.017.
doi: 10.1016/j.atmosres.2015.08.017 |
[40] | Li B F, Chen Y N, Shi X, 2012. Why does the temperature rise faster in the arid region of Northwest China?Journal of Geophysical Research: Atmospheres, 117: D16115. doi: 10.1029/2012JD017953. |
[41] |
Li P Y, Qian H, Howard K W F et al., 2015a. Building a new and sustainable “Silk Road Economic Belt”.Environmental Earth Sciences, 74: 7267. doi: 10.1007/s12665-015-4739-2.
doi: 10.1007/s12665-015-4739-2 |
[42] |
Li P Y, Qian H, Zhou W, 2017. Finding harmony between the environment and humanity: An introduction to the thematic issue of the Silk Road.Environmental Earth Sciences, 76: 105. doi: 10.1007/s12665-017-6428-9.
doi: 10.1007/s12665-017-6428-9 |
[43] |
Li Z, Chen Y N, Li W H et al., 2015b. Potential impacts of climate change on vegetation dynamics in Central Asia.Journal of Geophysical Research: Atmospheres, 120: 12345-12356. doi: 10.1002/2015JD023618.
doi: 10.1002/2015JD023618 |
[44] |
Li Z, Chen Y N, Wang Y et al., 2016b. Drought promoted the disappearance of civilizations along the ancient Silk Road.Environmental Earth Sciences, 75: 1116. doi: 10.1007/s12665-016-5925-6.
doi: 10.1007/s12665-016-5925-6 |
[45] |
Lioubimtseva E, Cole R, Adams J M et al., 2005. Impacts of climate and land-cover changes in arid lands of Central Asia.Journal of Arid Environments, 62: 285-308. doi: 10.1016/j.jaridenv.2004.11.005.
doi: 10.1016/j.jaridenv.2004.11.005 |
[46] |
Lioubimtseva E, Henebry G M, 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations.Journal of Arid Environments, 73: 963-977. doi: 10.1016/j.jaridenv.2009.04.022.
doi: 10.1016/j.jaridenv.2009.04.022 |
[47] |
Liu M X, Xu X L, Sun A Y et al., 2014. Is southwestern China experiencing more frequent precipitation extremes?Environmental Research Letters, 9: 064002. doi: 10.1088/1748-9326/9/6/064002.
doi: 10.1088/1748-9326/9/6/064002 |
[48] |
Mann H B, 1945. Non-parametric tests against trend.Econometrica, 13: 245-259.
doi: 10.2307/1907187 |
[49] |
Mannig B, Müller M, Starke E et al., 2013. Dynamical downscaling of climate change in Central Asia.Global and Planetary Change, 110: 26-39. doi: 10.1016/j.gloplacha.2013.05.008.
doi: 10.1016/j.gloplacha.2013.05.008 |
[50] | Markov K V, 1951. Is Middle and Central Asia getting drier?Geografgiz, 24: 98-116. |
[51] |
Menne M J, Durre I, Vose R S et al., 2012. An overview of the Global Historical Climatology Network-Daily Database.Journal of Atmospheric and Oceanic Technology, 29: 897-910.
doi: 10.1175/JTECH-D-11-00103.1 |
[52] |
Morice C P, Kennedy J J, Rayner N A et al., 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set.Journal of Geophysical Research: Atmospheres, 117: D08101. doi: 10.1029/2011JD017187.
doi: 10.1029/2011JD017187 |
[53] |
Nunes A N, Lourenço L, 2015. Precipitation variability in Portugal from 1960 to 2011.Journal of Geographical Sciences, 25(7): 784-800.
doi: 10.1007/s11442-015-1202-y |
[54] |
Omondi P A, Awange J L, Forootan E et al., 2014. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010.International Journal of Climatology, 34(4): 1262-1277. doi: 10.1002/joc.3763.
doi: 10.1002/joc.3756 |
[55] |
Peterson T C, Heim R R, Hirsch R et al., 2013. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge.Bulletin of the American Meteorological Society, 94(6): 821-834. doi: 10.1175/BAMS-D-12-00066.1.
doi: 10.1175/BAMS-D-12-00066.1 |
[56] |
Pritchard H D, 2017. Asia’s glaciers are a regionally important buffer against drought.Nature, 545: 169-174. doi: 10.1038/nature22062.
doi: 10.1038/nature22062 |
[57] |
Schiemann R, Lüthi D, Vidale P L et al., 2008. The precipitation climate of Central Asia: Intercomparison of observational and numerical data sources in a remote semiarid region.International Journal of Climatology, 28: 295-314. doi: 10.1002/joc.1532.
doi: 10.1002/joc.1606 |
[58] |
Skansi M d l M, Brunet M, Sigró J et al., 2013. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America.Global and Planetary Change, 100: 295-307. doi: 10.1016/j.gloplacha.2012.11.004.
doi: 10.1016/j.gloplacha.2012.11.004 |
[59] |
Stott P A, 2016. How climate change affects extreme weather events.Science, 352: 1517-1518. doi: 10.1126/science.aaf7271.
doi: 10.1126/science.aaf7271 |
[60] |
Stott P A, Christidis N, Otto F E Let al., 2016. Attribution of extreme weather and climate-related events.Wiley Interdisciplinary Reviews: Climate Change, 7(1): 23-41. doi: 10.1002/wcc.380.
doi: 10.1002/wcc.380 pmid: 26877771 |
[61] |
Trenberth K E, Fasullo J T, Shepherd T G, 2015. Attribution of climate extreme events.Nature Climate Change, 5: 725-730. doi: 10.1038/nclimate2657.
doi: 10.1038/nclimate2657 |
[62] |
Wang H J, Chen Y N, Chen Z S, 2013a. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960-2010.Hydrological Processes, 27: 1807-1818. doi: 10.1002/hyp.9339.
doi: 10.1002/hyp.9339 |
[63] |
Wang H J, Chen Y N, Shi X et al., 2013b. Changes in daily climate extremes in the arid area of northwestern China.Theoretical and Applied Climatology, 112: 15-28. doi: 10.1007/s00704-012-0698-7.
doi: 10.1007/s00704-012-0698-7 |
[64] |
Wei W, Zhang R H, Wen Met al., 2017. Relationship between the Asian westerly jet stream and summer rainfall over Central Asia and North China: Roles of the Indian Monsoon and the South Asian High.Journal of Climate, 30: 537-552. doi: 10.1175/JCLI-D-15-0814.1.
doi: 10.1175/JCLI-D-15-0814.1 |
[65] |
Westra S, Alexander L V, Zwiers F W, 2013. Global increasing trends in annual maximum daily precipitation.Journal of Climate, 26: 3904-3918. doi: 10.1175/JCLI-D-12-00502.1.
doi: 10.1175/JCLI-D-12-00502.1 |
[66] |
Yatagai A, Kamiguchi K, Arakawa O et al., 2012. Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges.Bulletin of the American Meteorological Society, 93: 1401-1415. doi: 10.1175/BAMS-D-11-00122.1.
doi: 10.1175/BAMS-D-11-00122.1 |
[67] |
You Q L, Kang S C, Aguilar E et al., 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005.Journal of Geophysical Research: Atmospheres, 113: D07101. doi: 10.1029/2007jd009389.
doi: 10.1029/2007JD009389 |
[68] |
You Q L, Kang S C, Aguilar E et al., 2011. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003.Climate Dynamics, 36: 2399-2417. doi: 10.1007/s00382-009-0735-0.
doi: 10.1007/s00382-009-0735-0 |
[69] | Zhang C J, Xie J N, Li D L et al., 2002. Effect of East-Asian monsoon on drought climate of Northwest China.Plateau Meteorology, 21(2): 193-198. (in Chinese) |
[70] |
Zhang M, Chen Y N, Shen Y J et al., 2017. Changes of precipitation extremes in arid Central Asia.Quaternary International, 436: 16-27. doi: 10.1016/j.quaint.2016.12.024.
doi: 10.1016/j.quaint.2016.12.024 |
[71] |
Zhang X B, Aguilar E, Sensoy S et al., 2005. Trends in Middle East climate extreme indices from 1950 to 2003.Journal of Geophysical Research: Atmospheres, 110: D22. doi: 10.1029/2005JD006181.
doi: 10.1029/2005JD006181 |
[72] | Zhang X B, Feng Y, 2004. R ClimDex (1.0). User Manual. Climate research branch environment Canada Downsview, Ontario Canada. |
[73] |
Zhang X B, Wan H, Zwiers F W et al., 2013. Attributing intensification of precipitation extremes to human influence.Geophysical Research Letters, 40: 5252-5257. doi: 10.1002/grl.51010.
doi: 10.1002/grl.51010 |
[1] | ZHANG Chi, WU Shaohong, LENG Guoyong. Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2 [J]. Journal of Geographical Sciences, 2020, 30(8): 1219-1232. |
[2] | LIU Haimeng, FANG Chuanglin, FANG Kai. Coupled Human and Natural Cube: A novel framework for analyzing the multiple interactions between humans and nature [J]. Journal of Geographical Sciences, 2020, 30(3): 355-377. |
[3] | ZHANG Xinhuan, XU Wenqiang, XIANG Xinyi, ZHANG Zhiping, CUI Mingjie. Mechanism of interaction between urbanization and resource environment in Central Asia [J]. Journal of Geographical Sciences, 2020, 30(11): 1723-1738. |
[4] | WANG Yun, LIU Yi. Central Asian geo-relation networks: Evolution and driving forces [J]. Journal of Geographical Sciences, 2020, 30(11): 1739-1760. |
[5] | MA Haitao, SUN Zhan. Comprehensive urbanization level and its dynamic factors for five Central Asian countries [J]. Journal of Geographical Sciences, 2020, 30(11): 1761-1780. |
[6] | KANG Lei, LIU Yi. Characteristics of industrial structure evolution and isomorphism in Central Asia [J]. Journal of Geographical Sciences, 2020, 30(11): 1781-1801. |
[7] | ZHOU Yannan, YANG Yu, SONG Zhouying, HE Ze, XIA Siyou, REN Yawen. Dynamic transition mechanism analysis of the impact of energy development on urbanization in Central Asia [J]. Journal of Geographical Sciences, 2020, 30(11): 1825-1848. |
[8] | HE Ze, CHONG Zhaohui, YANG Yu, ZHOU Yannan, LIU Yi. Evolutionary investment network and the emerging energy power in Central Asia: From the perspective of cross-border mergers and acquisitions [J]. Journal of Geographical Sciences, 2020, 30(11): 1849-1870. |
[9] | ZHOU Qiang, HE Ze, YANG Yu. Energy geopolitics in Central Asia: China’s involvement and responses [J]. Journal of Geographical Sciences, 2020, 30(11): 1871-1895. |
[10] | WANG Guogang, ZHANG Lin, SUN Yuzhu, YANG Yantao, HAN Chengji. Evaluation on the allocative efficiency of agricultural factors in the five Central Asian countries [J]. Journal of Geographical Sciences, 2020, 30(11): 1896-1908. |
[11] | YAN Ziyan, TAN Minghong. Changes in agricultural virtual water in Central Asia, 1992-2016 [J]. Journal of Geographical Sciences, 2020, 30(11): 1909-1920. |
[12] | LIU Juan, YAO Xiaojun, LIU Shiyin, GUO Wanqin, XU Junli. Glacial changes in the Gangdisê Mountains from 1970 to 2016 [J]. Journal of Geographical Sciences, 2020, 30(1): 131-144. |
[13] | BA Wulong, DU Pengfei, LIU Tie, BAO Anming, CHEN Xi, LIU Jiao, QIN Chengxin. Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China [J]. Journal of Geographical Sciences, 2020, 30(1): 164-176. |
[14] | FAN Zemeng, BAI Ruyu, YUE Tianxiang. Scenarios of land cover in Eurasia under climate change [J]. Journal of Geographical Sciences, 2020, 30(1): 3-17. |
[15] | CHEN Qihui, CHEN Hua, ZHANG Jun, HOU Yukun, SHEN Mingxi, CHEN Jie, XU Chongyu. Impacts of climate change and LULC change on runoff in the Jinsha River Basin [J]. Journal of Geographical Sciences, 2020, 30(1): 85-102. |
|