Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
 
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2019, Vol. 29 Issue (1) : 3-28     DOI: 10.1007/s11442-019-1581-6
Research Articles |
Tracking climate change in Central Asia through temperature and precipitation extremes
ZHANG Man1,2(),CHEN Yaning2,*(),SHEN Yanjun3,LI Baofu4
1. College of Resources and Environmental Science, Hebei Normal University, Shijiazhuang 050024, China
2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, China
3. Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, CAS, Shijiazhuang 050021, China
4. College of Geography and Tourism, Qufu Normal University, Rizhao 276826, Shandong, China
Download: PDF(2700 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Under the impacts of climate change and human activities, great uncertainties still exist in the response of climate extremes, especially in Central Asia (CA). In this study, we investigated spatial-temporal variation trends and abrupt changes in 17 indices of climate extremes, based on daily climate observations from 55 meteorological stations in CA during 1957-2005. We also speculated as to which atmospheric circulation factors had the greatest impacts on climate extremes. Our results indicated that the annual mean temperature (Tav), mean maximum and minimum temperature significantly increased at a rate of 0.32oC/10a, 0.24oC/10a and 0.41oC/10a, respectively, which was far higher than the increasing rates either globally or across the Northern Hemisphere. Other temperature extremes showed widespread significant warming trends, especially for those indices derived from daily minimum temperature. All temperature extremes exhibited spatially widespread rising trends. Compared to temperature changes, precipitation extremes showed higher spatial and temporal variabilities. The annual total precipitation significantly increased at a rate of 4.76 mm/10a, and all precipitation extremes showed rising trends except for annual maximum consecutive dry days (CDD), which significantly decreased at a rate of -3.17 days/10a. On the whole, precipitation extremes experienced slight wetter trends in the Tianshan Mountains, Kazakhskiy Melkosopochnik (Hill), the Kyzylkum Desert and most of Xinjiang. The results of Cumulative Deviation showed that Tav and Txav had a significant abrupt change around 1987, and all precipitation indices experienced abrupt changes in 1986. Spearman’s correlation analysis pointed to Siberian High and Tibetan Plateau Index_B as possibly being the most important atmospheric circulation factors affecting climate extremes in CA. A full quantitative understanding of these changes is crucial for the management and mitigation of natural hazards in this region.

Keywords abrupt change      atmospheric circulation      climate change      climate extremes      spatial-temporal variability      Central Asia     
Fund:National Natural Science Foundation of China, No.41630859;The CAS “Light of West China” Program, No.2015-XBQN-B-17
Corresponding Authors: CHEN Yaning     E-mail: zhangman14@mails.ucas.ac.cn;chenyn@ms.xjb.ac.cn
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Man
CHEN Yaning
SHEN Yanjun
LI Baofu
Cite this article:   
ZHANG Man,CHEN Yaning,SHEN Yanjun, et al. Tracking climate change in Central Asia through temperature and precipitation extremes[J]. Journal of Geographical Sciences, 2019, 29(1): 3-28.
URL:  
http://www.geogsci.com/EN/10.1007/s11442-019-1581-6     OR     http://www.geogsci.com/EN/Y2019/V29/I1/3
Figure 1  Location of Central Asia and the meteorological stations
Index Indicator name Definitions Units
Tav Mean Tmean Annual mean temperature oC
Txav Mean Tmax Annual average daily maximum temp oC
Tnav Mean Tmin Annual average daily minimum temp oC
FD0 Frost days Annual count when TN (daily minimum) < 0oC days
ID0 Ice days Annual count when TX (daily maximum) < 0oC days
SU25 Summer days Annual count when TX (daily maximum) > 25oC days
TXx Max Tmax Monthly maximum value of daily maximum temp oC
TNx Max Tmin Monthly maximum value of daily minimum temp oC
TXn Min Tmax Monthly minimum value of daily maximum temp oC
TNn Min Tmin Monthly minimum value of daily minimum temp oC
Prcptot Annual total wet-day precipitation Annual total precipitation in wet days (RR ≥1mm) mm
CDD Consecutive dry days Annual maximum number of consecutive days with RR <1 mm days
CWD Consecutive wet days Annual maximum number of consecutive days with RR ≥1 mm days
R10mm Number of heavy precipitation days Annual count of days when RR ≥10 mm days
R20mm Number of very heavy precipitation days Annual count of days when RR ≥20 mm days
Rx1 day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm
Rx5 day Max 5-day precipitation amount Monthly maximum consecutive 5-day precipitation mm
Table 1  Definitions of 17 extreme climate indices chosen for this study
Index MK test Percentage of stations
showing increasing trend
Percentage of stations showing
significant increasing trend
Percentage of stations
showing decreasing trend
Percentage of stations
showing significant decreasing trend
Trend rate Z-value Trends Significance
level (p)
Tav 0.032oC/a 4.89 0.01 98.18% 94.55% 1.82% 0
Txav 0.024oC/a 3.39 0.01 100% 70.91% 0 0
Tnav 0.041oC/a 5.78 0.01 98.18% 94.55% 1.82% 1.82%
FD0 -0.323 days/a -4.71 0.01 3.64% 0 96.36% 80.00%
ID0 -0.187 days/a -2.31 0.05 3.64% 0 96.36% 25.45%
SU25 0.206 days/a 3.18 0.01 96.36% 45.45% 3.64% 1.82%
TXx 0.020oC/a 2.67 0.01 81.82% 29.09% 18.18% 1.82%
TNx 0.030oC/a 5.14 0.01 87.27% 58.18% 12.73% 1.82%
TXn 0.059oC/a 2.38 0.05 96.36% 34.55% 3.64% 0
TNn 0.088oC/a 3.86 0.01 100% 70.91% 0 0
Table 2  Temporal variation trends of extreme temperature indices based on MK test during 1957-2005 in CA
Figure 2  Spatial-temporal variation trends of the extreme temperature indices of Tav, Txav and Tnav during 1957-2005 in Central Asia. (a)-(c): Spatial variation trends of (a) Tav, (b) Txav and (c) Tnav (The red filled triangle denotes significant rising trend (P<0.05); the unfilled triangle denotes rising trend but not significant; the black filled inverted-triangle denotes significant falling trend (P<0.05); the unfilled inverted-triangle denotes falling trend but not significant). (d)-(f): Regional annual anomaly series of (d) Tav, (e) Txav and (f) Tnav (The blue column denotes the annual anomaly series and the red dash line represents the linear regression)
Figure 3  Temporal variation trends of extreme temperature indices during 1957-2005 in CA. (a) Tav, (b) Txav, (c) Tnav, (d) TXx, (e) TNx, (f) SU25, (g) FD0, (h) ID0, (i) TXn and (j) TNn. Red dotted line denotes the mean value of each extreme temperature index before and after abrupt change; Black and blue solid lines represent time series variations and 20-year overlapping averages for each precipitation indices, respectively.
Index Cumulative deviation Period Student’s t test
Q/Sqrt(n) Year of change Mean value P value
Tav 2.02* 1987 1957-1986 8.25oC/a -2.87*
1987-2005 9.09oC/a
Txav 1.58* 1987 1957-1986 14.69oC/a -2.10*
1987-2005 15.31oC/a
Tnav 2.36* 1977 1957-1976 1.58oC/a -3.71*
1977-2005 2.66oC/a
FD0 1.97* 1976 1957-1975 154.59 days/a 3.50*
1976-2005 147.41 days/a
ID0 1.37* 1986 1957-1985 70.43 days/a 2.69*
1986-2005 64.17 days/a
SU25 1.55* 1973 1957-1972 109.55 days/a -3.24*
1973-2005 115.47 days/a
TXx 1.80* 1972 1957-1971 37.21oC/a -2.53*
1972-2005 37.99oC/a
TNx 2.17* 1973 1957-1972 22.72oC/a -2.81*
1973-2005 23.58oC/a
TXn 1.85* 1978 1957-1977 -15.67oC/a -3.71*
1978-2005 -13.53oC/a
TNn 2.35* 1978 1957-1977 -26.48oC/a -4.89*
1978-2005 -23.65oC/a
Table 3  Abrupt change of extreme temperature indices based on the test results of cumulative deviation and student’s t test during 1957-2005 in CA
Figure 4  Regional annual anomaly series for each extreme temperature indices. The blue column denotes the annual anomaly series and the red dash line represents the linear regression. (a) TXx, (b) TNx, (c) SU25, (d) FD0, (e) ID0, (f) TXn and (g) TNn.
Figure 5  Spatial variation trends of the extreme temperature indices (a) TXx, (b) TNx, (c) SU25, (d) FD0, (e) ID0, (f) TXn and (g) TNn. The red filled triangle denotes significant rising trend (P<0.05); the unfilled triangle denotes rising trend but not significant; the black filled inverted-triangle denotes significant falling trend (p<0.05); the unfilled inverted-triangle denotes falling trend but not significant.
Index MK test Percentage of stations
showing increasing trend (%)
Percentage of stations showing
significant increasing trend (%)
Percentage of stations
showing decreasing trend (%)
Percentage of stations
showing significant decreasing trend (%)
Trend rate Z-value Trends Significance
level (p)
Prcptot 0.476 mm/a 2.11 0.05 81.82 25.45 18.18 1.82
CDD -0.317 days/a -2.26 0.05 21.82 1.82 78.18 5.45
CWD 0.001 days/a 0.28 NS 49.09 3.64 50.91 0
R10mm 0.016 days/a 2.19 0.05 76.36 12.73 23.64 1.82
R20mm 0.004 days/a 1.94 0.1 69.09 5.45 30.91 0
Rx1 day 0.040 mm/a 2.14 0.05 69.09 9.09 30.91 1.82
Rx5 day 0.055 mm/a 1.50 NS 65.45 10.91 34.55 3.64
Table 4  Temporal variation trend of extreme precipitation indices based on the results of MK test during 1957-2005 in CA
Figure 6  Spatial-temporal variation trends of the extreme precipitation indices of Prcptot, CDD and CWD during 1957-2005 in Central Asia. (a)-(c): Spatial variation trends of (a) Prcptot, (b) CDD and (c) CWD. (The red filled triangle denotes significant rising trend (P<0.05); the unfilled triangle denotes rising trend but not significant; the black filled inverted-triangle denotes significant falling trend (P<0.05); the unfilled inverted-triangle denotes falling trend but not significant). (d)-(f): Regional annual anomaly series of (d) Prcptot, (e) CDD and (f) CWD (The blue column denotes the annual anomaly series and the red dash line represents the linear regression).
Figure 7  Temporal variation trends of extreme precipitation indices during 1957-2005 in CA. (a) Prcptot, (b) CDD, (c) CWD, (d) R10mm, (e) R20mm, (f) Rx1 day and (g) Rx5 day. Red dotted line denotes the mean value of each extreme temperature indices before and after abrupt change; Black and blue solid lines represent time series variations and 20-year overlapping averages for each precipitation indices, respectively.
Index Cumulative deviation Periods Student’s t test
Q/Sqrt(n) Year of change Mean value P value
Prcptot 1.44* 1986 1957-1985 147.25 mm/a -2.64*
1986-2005 164.88 mm/a
CDD 1.58* 1986 1957-1985 113.49 days/a 2.75*
1986-2005 103.10 days/a
CWD 0.81 1986 1957-1985 2.99 days/a -∞*
1986-2005 3.09 days/a
R10mm 1.41* 1986 1957-1985 3.24 days/a -1.94
1986-2005 3.80 days/a
R20mm 1.39* 1986 1957-1985 0.67 days/a -∞*
1986-2005 0.82 days/a
Rx1 day 1.60* 1986 1957-1985 17.80 mm/a -2.57*
1986-2005 19.29 mm/a
Rx5 day 1.52* 1986 1957-1985 25.79 mm/a -2.84*
1986-2005 28.27 mm/a
Table 5  Abrupt change of extreme precipitation indices based on the test results of cumulative deviation and student’s t test for extreme precipitation indices during 1957-2005 in CA
Figure 8  Regional annual anomaly series for each extreme precipitation indices. The blue column denotes the annual anomaly series and the red dash line represents the linear regression. (a) R10mm, (b) R20mm, (c) Rx1 day and (d) Rx5 day.
Figure 9  Spatial variation trends of the extreme precipitation indices (a) R10mm, (b) R20mm, (c) Rx1 day, (d) Rx5 day. The red filled triangle denotes significant rising trend (P<0.05); the unfilled triangle denotes rising trend but not significant; the black filled inverted-triangle denotes significant falling trend (P<0.05); the unfilled inverted-triangle denotes falling trend but not significant.
Circulation index Indices
Tav Txav Tnav FD0 ID0 SU25 TXx TNx TXn TNn
AAO 0.153 0.216 0.139 -0.049 -0.144 0.078 -0.074 0.153 0.179 0.182
AO 0.247 0.194 0.272 -0.145 -0.157 0.112 0.092 0.028 0.336* 0.271
NAO -0.053 -0.062 0.003 0.079 0.070 0.089 -0.059 -0.104 0.158 0.099
NOI -0.166 -0.046 -0.260 0.264 0.143 0.125 0.054 0.055 -0.119 -0.228
PDO 0.085 -0.101 0.217 -0.150 0.013 -0.002 0.089 0.235 0.160 0.310*
PNA 0.171 0.085 0.248 -0.230 -0.143 0.038 0.098 0.137 0.088 0.214
SH -0.415** -0.331* -0.457** 0.320* 0.507** 0.066 0.004 -0.005 -0.350* -0.365*
SOI -0.172 -0.071 -0.254 0.317* 0.058 -0.061 0.074 0.057 0.010 -0.094
TPI_B 0.312* 0.281 0.326* -0.254 -0.377** 0.028 -0.129 0.073 0.022 0.120
WCI_DJFc 0.402** 0.277 0.485** -0.382* -0.265 0.266 -0.042 0.300 0.347* 0.394**
Table 6  The correlation coefficient values between temperature extremes in CA and atmospheric circulations
Circulation index Indices
Prcptot CDD CWD R10mm R20mm Rx1 day Rx5 day
AAO -0.039 0.024 -0.102 -0.115 0.115 -0.112 -0.149
AO -0.048 -0.139 0.045 -0.038 -0.113 -0.045 -0.077
NAO -0.115 -0.012 -0.089 -0.099 -0.245 -0.119 -0.185
NOI -0.218 0.097 -0.127 -0.261 -0.143 -0.218 -0.059
PDO 0.252 -0.246 0.056 0.243 0.094 0.226 0.146
PNA 0.359* -0.312* 0.039 0.324* 0.300* 0.342* 0.315*
SH -0.313* 0.170 -0.204 -0.265 -0.232 -0.199 -0.131
SOI -0.191 0.063 -0.123 -0.191 -0.126 -0.170 -0.070
TPI-B 0.531** -0.422** 0.311* 0.516** 0.568** 0.344* 0.451**
WCI_DJF 0.117 -0.269 0.195 0.082 0.015 0.212 0.258
Table 7  The correlation coefficient values between precipitation extremes in CA and atmospheric circulations
Figure 10  Time series variations between TPI_B and extreme precipitation indices (a)-(b); and between SH and extreme temperature indices (c)-(d)
Index CA (five countries and Xinjiang of China
(1957-2005)
Northwestern China
(1960-2003)
Middle East (1950-2003) Eastern and central Tibetan Plateau (1961-2005) Southwestern China
(1961-2008)
China (1961-2003) Global
(1951-2003)
Tav 4.89* 5.45*
Txav 3.39* 3.96*
Tnav 5.78* 6.77*
FD0 -4.71* -3.24* -0.6 -4.32* -0.29* -3.73*
ID0 -2.31* -2.75* -2.46* -0.09
SU25 3.18* 1
TXx 2.67* 0.17 0.07 0.28* 0.11* 0.07 0.21*
TNx 5.14* 0.32* 0.23* 0.25* 0.17* 0.21* 0.30*
TXn 2.38* 0.61* 0.2 0.30* 0.13* 0.35* 0.37
TNn 3.86* 0.85* 0.28* 0.69* 0.29* 0.63* 0.71*
Data Source This study Wang et al. (2013b) and Chen et al (2014) Zhang et al. (2005) You et al.
(2008)
Li et al.
(2012)
You et al.
(2011)
Alexander
et al. (2006)
Table 8  Trends of extreme temperature indices from this study and other works
Index CA (five countries and Xinjiang of China) (1957-
2005)
CA (five countries)(1938-
2005)
Northwestern China
(1960-2003)
Middle East (1950-
2003)
Eastern and central Tibetan Plateau (1961-
2005)
Southwestern China
(1961-
2008)
China (1961-
2003)
Global (1951-
2003)
Prcptot 2.11* 3.60* 6.82* -0.3 6.66 0.03 3.21 10.59*
CDD -2.26* -2.68* -4.85* -5.0* -4.64* -0.05 -1.22 -0.05
CWD 0.28 1.70 0.047* -0.07 -0.08*
R10mm 2.19* 2.67* 0.22* -0.03 0.23 0
R20mm 1.94 2.97* 0
Rx1 day 2.14* 0.77 0.63* 0 0.27 0.05* 1.37 0.85*
Rx5 day 1.50 1.85* 0.98* 0 -0.08 0.03 1.90 0.55
Data Source This study Zhang et al. (2017) Wang et al. (2013a) Zhang et al. (2005) You et al. (2008) Li et al.
(2012)
You et al.
(2011)
Alexander et al. (2006)
Table 9  Trends of extreme precipitation indices from this study and other works
[1] Aizen V B, Kuzmichenok V A, Surazakov A B et al., 2006. Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data.Annals of Glaciology, 43(1): 202-213. doi: 10.3189/172756406781812465.https://www.cambridge.org/core/product/identifier/S026030550026196X/type/journal_article
doi: 10.3189/172756406781812465
[2] Alexander L V, 2016. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond.Weather and Climate Extremes, 11: 4-16. doi: 10.1016/j.wace.2015.10.007.https://linkinghub.elsevier.com/retrieve/pii/S2212094715300414
doi: 10.1016/j.wace.2015.10.007
[3] Alexander L V, Arblaster J M, 2009. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections.International Journal of Climatology, 29: 417-435. doi: 10.1002/joc.1730.http://doi.wiley.com/10.1002/joc.v29%3A3
doi: 10.1002/joc.1730
[4] Alexander L V, Zhang X, Peterson, T C et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation.Journal of Geophysical Research, 111: D5. doi: 10.1029/2005jd006290.http://onlinelibrary.wiley.com/doi/10.1029/2005JD006290/full
doi: 10.1029/2005JD006290
[5] Bothe O, Fraedrich K, Zhu X H, 2012. Precipitation climate of Central Asia and the large-scale atmospheric circulation.Theoretical and Applied Climatology, 108: 345-354. doi: 10.1007/s00704-011-0537-2.http://link.springer.com/10.1007/s00704-011-0537-2
doi: 10.1007/s00704-011-0537-2
[6] Buishand T A, 1982. Some methods for testing the homogeneity of rainfall records.Journal of Hydrology, 58: 11-27. doi: 10.1016/0022-1694(82)90066-X.http://linkinghub.elsevier.com/retrieve/pii/002216948290066X
doi: 10.1016/0022-1694(82)90066-X
[7] Chen F H, Wang J S, Jin L Y et al., 2009. Rapid warming in mid-latitude Central Asia for the past 100 years.Frontiers of Earth Science in China, 3: 42-50. doi: 10.1007/s11707-009-0013-9.http://link.springer.com/10.1007/s11707-009-0013-9
doi: 10.1007/s11707-009-0013-9
[8] Chen F H, Yu Z, Yang M et al., 2008. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history.Quaternary Science Reviews, 27: 351-364. doi: 10.1016/j.quascirev.2007.10.017.https://linkinghub.elsevier.com/retrieve/pii/S0277379107002971
doi: 10.1016/j.quascirev.2007.10.017
[9] Chen H P, Sun, J Q, 2017. Anthropogenic warming has caused hot droughts more frequently in China.Journal of Hydrology, 544: 306-318. doi: 10.1016/j.jhydrol.2016.11.044.https://linkinghub.elsevier.com/retrieve/pii/S0022169416307508
doi: 10.1016/j.jhydrol.2016.11.044
[10] Chen Y N, Deng H J, Li B F et al., 2014. Abrupt change of temperature and precipitation extremes in the arid region of Northwest China.Quaternary International, 336: 35-43. doi: 10.1016/j.quaint.2013.12.057.https://linkinghub.elsevier.com/retrieve/pii/S1040618213009919
doi: 10.1016/j.quaint.2013.12.057
[11] Chen Y N, Li Z, Fan Y T et al., 2015. Progress and prospects of climate change impacts on hydrology in the arid region of Northwest China.Environmental Research, 139: 11-19. doi: 10.1016/j.envres.2014.12.029.https://linkinghub.elsevier.com/retrieve/pii/S0013935115000201
doi: 10.1016/j.envres.2014.12.029 pmid: 25682220
[12] Chen Y N, Li Z, Li W H et al., 2016. Water and ecological security: Dealing with hydroclimatic challenges at the heart of China’s Silk Road.Environmental Earth Sciences, 75: 881. doi: 10.1007/s12665-016-5385-z.http://link.springer.com/10.1007/s12665-016-5385-z
doi: 10.1007/s12665-016-5385-z
[13] Cheng H, Spötl C, Breitenbach S F M et al., 2016. Climate variations of Central Asia on orbital to millennial timescales.Scientific Reports, 6: 36975. doi: 10.1038/srep36975.http://www.nature.com/articles/srep36975
doi: 10.1038/srep36975 pmid: 27833133
[14] Cohen J, Saito K, Entekhabi D, 2001. The role of the Siberian High in Northern Hemisphere climate variability.Geophysical Research Letters, 28: 299-302. doi: 10.1029/2000GL011927.http://doi.wiley.com/10.1029/2000GL011927
doi: 10.1029/2000GL011927
[15] Deng H J, Chen Y N, Shi X et al., 2014. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of Northwest China.Atmospheric Research, 138: 346-355. doi: 10.1016/j.atmosres.2013.12.001.https://linkinghub.elsevier.com/retrieve/pii/S0169809513003505
doi: 10.1016/j.atmosres.2013.12.001
[16] Diffenbaugh N S, Singh D, Mankin J S et al., 2017. Quantifying the influence of global warming on unprecedented extreme climate events.Proceedings of the National Academy of Sciences, 114: 4881-4886. doi: 10.1073/pnas.1618082114.http://www.pnas.org/lookup/doi/10.1073/pnas.1618082114
doi: 10.1073/pnas.1618082114 pmid: 28439005
[17] Donat M G, Lowry A L, Alexander L V et al., 2016. More extreme precipitation in the world’s dry and wet regions.Nature Climate Change, 6: 508-513. doi: 10.1038/NCLIMATE2941.http://www.nature.com/articles/nclimate2941
doi: 10.1038/nclimate2941
[18] Donat M G, Peterson T C, Brunet M et al., 2014. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO.International Journal of Climatology, 34: 581-592. doi: 10.1002/joc.3707.http://doi.wiley.com/10.1002/joc.3707
doi: 10.1002/joc.3707
[19] Dugmore A J, Borthwick D M, Church M J et al., 2007. The role of climate in settlement and landscape change in the North Atlantic Islands: An assessment of cumulative deviations in high-resolution proxy climate records.Human Ecology, 35: 169-178. doi: 10.1007/s10745-006-9051-z.http://link.springer.com/10.1007/s10745-006-9051-z
doi: 10.1007/s10745-006-9051-z
[20] Easterling D R, Meehl G A, Parmesan C et al., 2000. Climate extremes: Observations, modeling, and impacts.Science, 289, 2068-2074. doi: 10.1126/science.289.5487.2068.http://www.sciencemag.org/cgi/doi/10.1126/science.289.5487.2068
doi: 10.1126/science.289.5487.2068 pmid: 11000103
[21] Frachetti M D, Smith C E, Traub C M et al., 2017. Nomadic ecology shaped the highland geography of Asia’s Silk Roads.Nature, 543: 193-198. doi: 10.1038/nature21696.http://www.nature.com/doifinder/10.1038/nature21696
doi: 10.1038/nature21696 pmid: 28277506
[22] Gong D Y, Ho C H, 2002. The Siberian High and climate change over middle to high latitude Asia.Theoretical and applied climatology, 72(1): 1-9. doi: 10.1007/s007040200008.http://link.springer.com/article/10.1007/s007040200008
doi: 10.1007/s007040200008
[23] Greve P, Orlowsky B, Mueller B et al., 2014. Global assessment of trends in wetting and drying over land.Nature Geoscience, 7: 716-721. doi: 10.1038/NGEO2247.http://www.nature.com/articles/ngeo2247
doi: 10.1038/ngeo2247
[24] Hansen J, Ruedy R, Sato M et al., 2010. Global surface temperature change. Reviews of Geophysics, 48: RG4004. doi: 10.1029/2010RG000345.
[25] Harris I P D J, Jones P D, Osborn T J et al., 2014. Updated high-resolution grids of monthly climatic observations: The CRU TS3. 10 Dataset.International Journal of Climatology, 34(3): 623-642. doi: 10.1002/joc.3711.http://doi.wiley.com/10.1002/joc.3711
doi: 10.1002/joc.3711
[26] Herold N, Behrangi A, Alexander L V, 2017. Large uncertainties in observed daily precipitation extremes over land.Journal of Geophysical Research: Atmospheres, 122: 668-681. doi: 10.1002/2016JD025842.http://onlinelibrary.wiley.com/doi/10.1002/2016JD025842/full
doi: 10.1002/2016JD025842
[27] Howard K W F, Howard K K, 2016. The new “Silk Road Economic Belt” as a threat to the sustainable management of Central Asia’s transboundary water resources.Environmental Earth Sciences, 75: 976. doi: 10.1007/s12665-016-5752-9.http://link.springer.com/10.1007/s12665-016-5752-9
doi: 10.1007/s12665-016-5752-9
[28] Hu Z, Hu Q, Zhang C et al., 2016. Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in Central Asia.Journal of Geophysical Research: Atmospheres, 121: 5648-5663. doi: 10.1002/2016JD024781.http://onlinelibrary.wiley.com/doi/10.1002/2016JD024781/pdf
doi: 10.1002/2016JD024781
[29] Hu Z Y, Zhang C, Hu Q et al., 2014. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets.Journal of Climate, 27: 1143-1167.http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-13-00064.1
doi: 10.1175/JCLI-D-13-00064.1
[30] IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field C B, Barros V, Stocker T F et al. A Special Report Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, NY, USA: Cambridge University Press, 109-290.
[31] IPCC, 2013: Summary for policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T F, Qin D, Plattner G-Ket al. eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
[32] Jeong J-H, Ou T, Linderholm H W et al., 2011. Recent recovery of the Siberian High intensity.Journal of Geophysical Research: Atmospheres, 116: D23102. doi: 10.1029/2011JD015904.http://onlinelibrary.wiley.com/doi/10.1029/2011JD015904/citedby
doi: 10.1029/2011JD015904
[33] Jones P D, Lister D H, Osborn T J et al., 2012. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010.Journal of Geophysical Research: Atmospheres, 117: D05127.
doi: 10.1029/2011JD017139
[34] Karl T R, Easterling D R, 1999. Climate extremes: Selected review and future research directions.Climatic Change, 42: 309-325. doi: 10.1007/978-94-015-9265-9_17.http://link.springer.com/10.1023/A:1005436904097
doi: 10.1023/A:1005436904097
[35] Kendall M G, 1975. Rank Correlation Measures. London: Charles Griffin, 202.
[36] Kim Y H, Min S K, Zhang X et al., 2016. Attribution of extreme temperature changes during 1951-2010.Climate Dynamics, 46(5/6): 1769-1782. doi: 10.1007/s00382-015-2674-2.http://link.springer.com/10.1007/s00382-015-2674-2
doi: 10.1007/s00382-015-2674-2
[37] King A D, Alexander L V, Donat M G, 2013. The efficacy of using gridded data to examine extreme rainfall characteristics: A case study for Australia.International Journal of Climatology, 33: 2376-2387. doi: 10.1002/joc.3588.http://doi.wiley.com/10.1002/joc.2013.33.issue-10
doi: 10.1002/joc.3588
[38] Klein Tank A M G, Peterson T C, Quadir D A et al., 2006. Changes in daily temperature and precipitation extremes in Central and South Asia.Journal of Geophysical Research, 111: D16105. doi: 10.1029/2005JD006316.http://doi.wiley.com/10.1029/2005JD006316
doi: 10.1029/2005JD006316
[39] Li B F, Chen Y N, Chen Z S et al., 2016a. Why does precipitation in Northwest China show a significant increasing trend from 1960 to 2010?Atmospheric Research, 167: 275-284. doi: 10.1016/j.atmosres.2015.08.017.https://linkinghub.elsevier.com/retrieve/pii/S0169809515002628
doi: 10.1016/j.atmosres.2015.08.017
[40] Li B F, Chen Y N, Shi X, 2012. Why does the temperature rise faster in the arid region of Northwest China?Journal of Geophysical Research: Atmospheres, 117: D16115. doi: 10.1029/2012JD017953.
[41] Li P Y, Qian H, Howard K W F et al., 2015a. Building a new and sustainable “Silk Road Economic Belt”.Environmental Earth Sciences, 74: 7267. doi: 10.1007/s12665-015-4739-2.http://link.springer.com/10.1007/s12665-015-4739-2
doi: 10.1007/s12665-015-4739-2
[42] Li P Y, Qian H, Zhou W, 2017. Finding harmony between the environment and humanity: An introduction to the thematic issue of the Silk Road.Environmental Earth Sciences, 76: 105. doi: 10.1007/s12665-017-6428-9.http://link.springer.com/10.1007/s12665-017-6428-9
doi: 10.1007/s12665-017-6428-9
[43] Li Z, Chen Y N, Li W H et al., 2015b. Potential impacts of climate change on vegetation dynamics in Central Asia.Journal of Geophysical Research: Atmospheres, 120: 12345-12356. doi: 10.1002/2015JD023618.http://onlinelibrary.wiley.com/doi/10.1002/2015JD023618/full
doi: 10.1002/2015JD023618
[44] Li Z, Chen Y N, Wang Y et al., 2016b. Drought promoted the disappearance of civilizations along the ancient Silk Road.Environmental Earth Sciences, 75: 1116. doi: 10.1007/s12665-016-5925-6.http://link.springer.com/10.1007/s12665-016-5925-6
doi: 10.1007/s12665-016-5925-6
[45] Lioubimtseva E, Cole R, Adams J M et al., 2005. Impacts of climate and land-cover changes in arid lands of Central Asia.Journal of Arid Environments, 62: 285-308. doi: 10.1016/j.jaridenv.2004.11.005.https://linkinghub.elsevier.com/retrieve/pii/S0140196304002496
doi: 10.1016/j.jaridenv.2004.11.005
[46] Lioubimtseva E, Henebry G M, 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations.Journal of Arid Environments, 73: 963-977. doi: 10.1016/j.jaridenv.2009.04.022.https://linkinghub.elsevier.com/retrieve/pii/S0140196309001220
doi: 10.1016/j.jaridenv.2009.04.022
[47] Liu M X, Xu X L, Sun A Y et al., 2014. Is southwestern China experiencing more frequent precipitation extremes?Environmental Research Letters, 9: 064002. doi: 10.1088/1748-9326/9/6/064002.http://stacks.iop.org/1748-9326/9/i=6/a=064002?key=crossref.5ce2621ffe06b4b5fd90b60a29e3105c
doi: 10.1088/1748-9326/9/6/064002
[48] Mann H B, 1945. Non-parametric tests against trend.Econometrica, 13: 245-259.https://www.jstor.org/stable/1907187?origin=crossref
doi: 10.2307/1907187
[49] Mannig B, Müller M, Starke E et al., 2013. Dynamical downscaling of climate change in Central Asia.Global and Planetary Change, 110: 26-39. doi: 10.1016/j.gloplacha.2013.05.008.https://linkinghub.elsevier.com/retrieve/pii/S0921818113001331
doi: 10.1016/j.gloplacha.2013.05.008
[50] Markov K V, 1951. Is Middle and Central Asia getting drier?Geografgiz, 24: 98-116.http://xueshurefer.baidu.com/nopagerefer?id=459606a9aa15edc211d7846af5293d9d
[51] Menne M J, Durre I, Vose R S et al., 2012. An overview of the Global Historical Climatology Network-Daily Database.Journal of Atmospheric and Oceanic Technology, 29: 897-910.http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-11-00103.1
doi: 10.1175/JTECH-D-11-00103.1
[52] Morice C P, Kennedy J J, Rayner N A et al., 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set.Journal of Geophysical Research: Atmospheres, 117: D08101. doi: 10.1029/2011JD017187.http://onlinelibrary.wiley.com/doi/10.1029/2011JD017187/abstract
doi: 10.1029/2011JD017187
[53] Nunes A N, Lourenço L, 2015. Precipitation variability in Portugal from 1960 to 2011.Journal of Geographical Sciences, 25(7): 784-800.http://link.springer.com/10.1007/s11442-015-1202-y
doi: 10.1007/s11442-015-1202-y
[54] Omondi P A, Awange J L, Forootan E et al., 2014. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010.International Journal of Climatology, 34(4): 1262-1277. doi: 10.1002/joc.3763.http://doi.wiley.com/10.1002/joc.2014.34.issue-4
doi: 10.1002/joc.3756
[55] Peterson T C, Heim R R, Hirsch R et al., 2013. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge.Bulletin of the American Meteorological Society, 94(6): 821-834. doi: 10.1175/BAMS-D-12-00066.1.http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-12-00066.1
doi: 10.1175/BAMS-D-12-00066.1
[56] Pritchard H D, 2017. Asia’s glaciers are a regionally important buffer against drought.Nature, 545: 169-174. doi: 10.1038/nature22062.http://www.nature.com/doifinder/10.1038/nature22062
doi: 10.1038/nature22062
[57] Schiemann R, Lüthi D, Vidale P L et al., 2008. The precipitation climate of Central Asia: Intercomparison of observational and numerical data sources in a remote semiarid region.International Journal of Climatology, 28: 295-314. doi: 10.1002/joc.1532.http://doi.wiley.com/10.1002/%28ISSN%291097-0088
doi: 10.1002/joc.1606
[58] Skansi M d l M, Brunet M, Sigró J et al., 2013. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America.Global and Planetary Change, 100: 295-307. doi: 10.1016/j.gloplacha.2012.11.004.https://linkinghub.elsevier.com/retrieve/pii/S0921818112002172
doi: 10.1016/j.gloplacha.2012.11.004
[59] Stott P A, 2016. How climate change affects extreme weather events.Science, 352: 1517-1518. doi: 10.1126/science.aaf7271.http://www.sciencemag.org/cgi/doi/10.1126/science.aaf7271
doi: 10.1126/science.aaf7271
[60] Stott P A, Christidis N, Otto F E Let al., 2016. Attribution of extreme weather and climate-related events.Wiley Interdisciplinary Reviews: Climate Change, 7(1): 23-41. doi: 10.1002/wcc.380.http://doi.wiley.com/10.1002/wcc.380
doi: 10.1002/wcc.380 pmid: 26877771
[61] Trenberth K E, Fasullo J T, Shepherd T G, 2015. Attribution of climate extreme events.Nature Climate Change, 5: 725-730. doi: 10.1038/nclimate2657.http://www.nature.com/articles/nclimate2657
doi: 10.1038/nclimate2657
[62] Wang H J, Chen Y N, Chen Z S, 2013a. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960-2010.Hydrological Processes, 27: 1807-1818. doi: 10.1002/hyp.9339.http://doi.wiley.com/10.1002/hyp.v27.12
doi: 10.1002/hyp.9339
[63] Wang H J, Chen Y N, Shi X et al., 2013b. Changes in daily climate extremes in the arid area of northwestern China.Theoretical and Applied Climatology, 112: 15-28. doi: 10.1007/s00704-012-0698-7.http://link.springer.com/10.1007/s00704-012-0698-7
doi: 10.1007/s00704-012-0698-7
[64] Wei W, Zhang R H, Wen Met al., 2017. Relationship between the Asian westerly jet stream and summer rainfall over Central Asia and North China: Roles of the Indian Monsoon and the South Asian High.Journal of Climate, 30: 537-552. doi: 10.1175/JCLI-D-15-0814.1.http://journals.ametsoc.org/doi/10.1175/JCLI-D-15-0814.1
doi: 10.1175/JCLI-D-15-0814.1
[65] Westra S, Alexander L V, Zwiers F W, 2013. Global increasing trends in annual maximum daily precipitation.Journal of Climate, 26: 3904-3918. doi: 10.1175/JCLI-D-12-00502.1.http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00502.1
doi: 10.1175/JCLI-D-12-00502.1
[66] Yatagai A, Kamiguchi K, Arakawa O et al., 2012. Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges.Bulletin of the American Meteorological Society, 93: 1401-1415. doi: 10.1175/BAMS-D-11-00122.1.http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00122.1
doi: 10.1175/BAMS-D-11-00122.1
[67] You Q L, Kang S C, Aguilar E et al., 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005.Journal of Geophysical Research: Atmospheres, 113: D07101. doi: 10.1029/2007jd009389.http://www.onacademic.com/detail/journal_1000035771582810_2767.html
doi: 10.1029/2007JD009389
[68] You Q L, Kang S C, Aguilar E et al., 2011. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003.Climate Dynamics, 36: 2399-2417. doi: 10.1007/s00382-009-0735-0.http://link.springer.com/10.1007/s00382-009-0735-0
doi: 10.1007/s00382-009-0735-0
[69] Zhang C J, Xie J N, Li D L et al., 2002. Effect of East-Asian monsoon on drought climate of Northwest China.Plateau Meteorology, 21(2): 193-198. (in Chinese)
[70] Zhang M, Chen Y N, Shen Y J et al., 2017. Changes of precipitation extremes in arid Central Asia.Quaternary International, 436: 16-27. doi: 10.1016/j.quaint.2016.12.024.https://linkinghub.elsevier.com/retrieve/pii/S1040618216312587
doi: 10.1016/j.quaint.2016.12.024
[71] Zhang X B, Aguilar E, Sensoy S et al., 2005. Trends in Middle East climate extreme indices from 1950 to 2003.Journal of Geophysical Research: Atmospheres, 110: D22. doi: 10.1029/2005JD006181.http://onlinelibrary.wiley.com/doi/10.1029/2005JD006181/full
doi: 10.1029/2005JD006181
[72] Zhang X B, Feng Y, 2004. R ClimDex (1.0). User Manual. Climate research branch environment Canada Downsview, Ontario Canada.
[73] Zhang X B, Wan H, Zwiers F W et al., 2013. Attributing intensification of precipitation extremes to human influence.Geophysical Research Letters, 40: 5252-5257. doi: 10.1002/grl.51010.http://doi.wiley.com/10.1002/grl.51010
doi: 10.1002/grl.51010
[1] MA Danyang,DENG Haoyu,YIN Yunhe,WU Shaohong,ZHENG Du. Sensitivity of arid/humid patterns in China to future climate change under a high-emissions scenario[J]. Journal of Geographical Sciences, 2019, 29(1): 29-48.
[2] ZHANG Jing,SHEN Yanjun. Spatio-temporal variations in extreme drought in China during 1961-2015[J]. Journal of Geographical Sciences, 2019, 29(1): 67-83.
[3] DENG Haijun,CHEN Yaning,LI Yang. Glacier and snow variations and their impacts on regional water resources in mountains[J]. Journal of Geographical Sciences, 2019, 29(1): 84-100.
[4] ZHANG Jiaoyou,CHEN Yaning,LI Zhi. Assessment of efficiency and potentiality of agricultural resources in Central Asia[J]. Journal of Geographical Sciences, 2018, 28(9): 1329-1340.
[5] CHEN Xi,WANG Shanshan,HU Zengyun,ZHOU Qiming,HU Qi. Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901-2013[J]. Journal of Geographical Sciences, 2018, 28(9): 1341-1368.
[6] HU Weijie,LIU Hailong,BAO Anming,Attia M. El-Tantawi. Influences of environmental changes on water storage variations in Central Asia[J]. Journal of Geographical Sciences, 2018, 28(7): 985-1000.
[7] XIE Yichun,ZHANG Yang,LAN Hai,MAO Lishen,ZENG Shi,CHEN Yulu. Investigating long-term trends of climate change and their spatial variations caused by regional and local environments through data mining[J]. Journal of Geographical Sciences, 2018, 28(6): 802-818.
[8] ZHANG Wenxia,,FENG Qingrong,WANG Tianguang,WANG Tianqiang. The spatiotemporal responses of Populus euphratica to global warming in Chinese oases between 1960 and 2015[J]. Journal of Geographical Sciences, 2018, 28(5): 579-594.
[9] FU Yang,CHEN Hui,NIU Huihui,ZHANG Siqi,YANG Yi. Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015[J]. Journal of Geographical Sciences, 2018, 28(4): 400-414.
[10] WAN Honglian,SONG Hailong,ZHU Chanchan,ZHANG Beibei,ZHANG Mi. Spatio-temporal evolution of drought and flood disaster chains in Baoji area from 1368 to 1911[J]. Journal of Geographical Sciences, 2018, 28(3): 337-350.
[11] SUN Meiping,LIU Shiyin,YAO Xiaojun,GUO Wanqin,XU Junli. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory[J]. Journal of Geographical Sciences, 2018, 28(2): 206-220.
[12] HUANG Gengzhi,LENG Shuying. The progress of human geography in China under the support of the National Natural Science Foundation of China[J]. Journal of Geographical Sciences, 2018, 28(12): 1735-1756.
[13] WANG Li,YU Haiying,ZHANG Qiang,XU Yunjia,TAO Zexing,ALATALO Juha,DAI Junhu. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau[J]. Journal of Geographical Sciences, 2018, 28(12): 1953-1964.
[14] WANG Huanjiong,WANG Hui,TAO Zexing,GE Quansheng. Potential range expansion of the red imported fire ant (Solenopsis invicta) in China under climate change[J]. Journal of Geographical Sciences, 2018, 28(12): 1965-1974.
[15] TIAN Zhan,JI Yinghao,SUN Laixiang,XU Xinliang,FAN Dongli,ZHONG Honglin,LIANG Zhuoran,FICSHER Gunther. Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change:A multi-model ensemble approach[J]. Journal of Geographical Sciences, 2018, 28(11): 1700-1714.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd