Journal of Geographical Sciences ›› 2018, Vol. 28 ›› Issue (12): 1953-1964.doi: 10.1007/s11442-019-1573-y
• Research Articles • Previous Articles Next Articles
Li WANG1,2,4(), Haiying YU3, Qiang ZHANG1,4,*(
), Yunjia XU5,6, Zexing TAO5,6, Juha ALATALO7, Junhu DAI5,6,*(
)
Received:
2018-05-30
Accepted:
2018-07-26
Online:
2018-12-20
Published:
2018-12-27
Contact:
Qiang ZHANG,Junhu DAI
E-mail:liw0209@sohu.com;zhangqiang@cma.gov.cn;daijh@igsnrr.ac.cn
About author:
Author: Wang Li (1981-), PhD Candidate, specialized in climate change and biological response. E-mail:
Supported by:
Li WANG, Haiying YU, Qiang ZHANG, Yunjia XU, Zexing TAO, Juha ALATALO, Junhu DAI. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau[J].Journal of Geographical Sciences, 2018, 28(12): 1953-1964.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Summary of location, mean annual temperature (MAT), mean annual total precipitation (MAP), and vegetation type at the 20 study sites of the Qinghai-Tibet Plateau"
Sites | Latitude (°N) | Longitude (°E) | Elevation | MAT | MAP | Vegetation type |
---|---|---|---|---|---|---|
(m) | (°C) | (mm) | ||||
Banma | 100.74 | 32.93 | 3530.00 | 3.63 | 670.34 | Alpine meadow |
Dari | 99.65 | 33.76 | 3967.50 | 0.23 | 584.90 | Alpine meadow |
Gande | 99.89 | 33.96 | 4050.00 | -1.44 | 554.14 | Alpine meadow |
Gangcha | 100.14 | 37.33 | 3301.50 | 0.68 | 427.72 | Temperate steppe |
Haiyan | 100.86 | 36.96 | 3140.00 | 1.51 | 431.21 | Alpine meadow |
Henan | 101.60 | 34.73 | 3500.00 | 0.56 | 595.44 | Alpine meadow |
Jiuzhi | 101.48 | 33.43 | 3628.50 | 1.83 | 757.34 | Alpine meadow |
Maduo | 98.23 | 34.92 | 4272.30 | -2.48 | 358.49 | Alpine meadow |
Maqin | 100.24 | 34.48 | 3719.00 | 0.77 | 538.17 | Alpine meadow |
Nangqian | 96.47 | 32.20 | 3643.70 | 5.39 | 568.79 | Alpine meadow |
Qilian | 100.24 | 38.18 | 2787.40 | 2.02 | 443.79 | Alpine meadow |
Qingshuihe | 97.13 | 33.80 | 4415.40 | -3.35 | 555.90 | Alpine meadow |
Qumalai | 95.80 | 34.12 | 4175.00 | -0.76 | 455.44 | Alpine meadow |
Tianjun | 99.02 | 37.30 | 3417.10 | 0.28 | 394.39 | Alpine steppe |
Tongde | 100.60 | 35.24 | 3080.00 | 3.68 | 475.91 | Alpine steppe |
Tuole | 98.42 | 38.81 | 3367.00 | -1.59 | 340.48 | Alpine steppe |
Tuotuohe | 92.44 | 34.22 | 4533.10 | -2.71 | 332.98 | Alpine steppe |
Xinghai | 99.98 | 35.59 | 3323.20 | 2.05 | 407.68 | Temperate steppe |
Zaduo | 95.29 | 32.89 | 4066.40 | 1.83 | 546.60 | Alpine meadow |
Zeku | 101.47 | 35.04 | 3662.80 | -0.59 | 538.04 | Alpine meadow |
Figure 3
Response of peak aboveground biomass to mean monthly temperature (T, a-f) and monthly total precipitation (P, g-l) during preceding months, based on partial least squares (PLS) regression analysis for three vegetation types: alpine meadow (AM), alpine steppe (AS) and temperate steppe (TS). The left column shows the VIP values and the right column shows the correlation coefficients. The blue bars indicate VIP values greater than 0.8; the green and red bars indicate coefficients with significant VIP."
[1] |
Alatalo J M, Jägerbrand A K, Chen Set al., 2017. Responses of lichen communities to 18 years of natural and experimental warming.Annals of Botany, 120(1): 1-12.
doi: 10.1093/aob/mcx055 pmid: 28873948 |
[2] |
Angert A, Biraud S, Bonfils Cet al., 2005. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs.Proceedings of the National Academy of Sciences of the United States of America, 102(31): 10823-10827.
doi: 10.1073/pnas.0501647102 |
[3] | Bai M L, Hao R Q, Hou Qet al., 2011. Impact of climatic vacillation on potential evaporation on typical grassland. Transactions of Atmospheric Sciences, 34(3): 351-355. (in Chinese) |
[4] |
Bai Y F, Han X G, Wu J Get al., 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature, 431(7005): 181-184.
doi: 10.1038/nature02850 pmid: 202020202020202020202020 |
[5] |
Briggs J M, Knapp A K, 1995. Interannual variability in primary production in tallgrass prairie: Climate, soil moisture, topographic position, and fire as determinants of aboveground biomass.American Journal of Botany, 82(8): 1024-1030.
doi: 10.1002/j.1537-2197.1995.tb11567.x |
[6] |
Craine J M, Nippert J B, Elmore A Jet al., 2012. Timing of climate variability and grassland productivity.Proceedings of the National Academy of Sciences of the United States of America, 109(9): 3401-3405.
doi: 10.1073/pnas.1118438109 pmid: 22331914 |
[7] |
Dai E F, Huang Y, Wu Zet al., 2016. Analysis of spatio-temporal features of a carbon source/sink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem.Journal of Geographical Sciences, 26(3): 297-312.
doi: 10.1007/s11442-016-1269-0 |
[8] |
Dukes J S, Chiariello N R, Cleland E E, et al., 2005. Responses of grassland production to single and multiple global environmental changes.PloS Biology, 3(10): e319.
doi: 10.1371/journal.pbio.0030319 pmid: 1182693 |
[9] |
Fan Y, Li X Y, Wu X Cet al., 2016. Divergent responses of vegetation aboveground net primary productivity to rainfall pulses in the Inner Mongolian Plateau, China.Journal of Arid Environments, 129: 1-8.
doi: 10.1016/j.jaridenv.2016.02.002 |
[10] |
Fang J Y, Chen A P, Peng C Het al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292(5525): 2320-2322.
doi: 10.1126/science.1058629 |
[11] |
Fang Y, Cheng W M, Zhang Y Cet al., 2016. Changes in inland lakes on the Tibetan Plateau over the past 40 year.Journal of Geographical Sciences, 26(4): 415-438.
doi: 10.1007/s11442-016-1277-0 |
[12] |
Gamon J A, Huemmrich K F, Stone R Set al., 2013. Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt.Remote Sensing of Environment, 129(2): 144-153.
doi: 10.1016/j.rse.2012.10.030 |
[13] |
Grime J P, 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory.American Naturalist, 111(982): 1169-1194.
doi: 10.1086/283244 |
[14] |
Guo Q, Hu Z M, Li S Get al., 2012. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution.Global Change Biology, 18(12): 3624-3631.
doi: 10.1111/gcb.12009 |
[15] | IPCC. 2013. Summary for Policymakers. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press, 1-1535. |
[16] |
Hollister R D, Webber P J, Tweedie C E, 2005. The response of Alaskan arctic tundra to experimental warming: Differences between short- and long-term responses.Global Change Biology, 11(4): 525-536.
doi: 10.1111/gcb.2005.11.issue-4 |
[17] |
Hu Z, Yu G, Fan Jet al., 2010. Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology & Biogeography, 19(6): 842-851.
doi: 10.1111/j.1466-8238.2010.00564.x |
[18] |
Huxman T E, Smith M D, Fay P Aet al., 2004. Convergence across biomes to a common rain-use efficiency.Nature, 429(6992): 651-654.
doi: 10.1038/nature02561 |
[19] |
Iwasaki H, 2006. Impact of interannual variability of meteorological parameters on vegetation activity over Mongolia.Journal of the Meteorological Society of Japan, 84(4): 745-762.
doi: 10.2151/jmsj.84.745 |
[20] |
Jiao C C, Yu G R, He N Pet al., 2017. Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe.Journal of Geographical Sciences, 27(1): 3-22.
doi: 10.1007/s11442-017-1361-0 |
[21] |
Jong S D, 1993. SIMPLS: An alternative approach to partial least squares regression.Chemometrics and Intelligent Laboratory Systems, 18(3): 251-263.
doi: 10.1016/0169-7439(93)85002-X |
[22] |
Kato T, Tang Y, Gu Set al., 2006. Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau.Global Change Biology, 12(7): 1285-1298.
doi: 10.1111/gcb.2006.12.issue-7 |
[23] |
Knapp A K, Beier C, Briske D Det al., 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems.Bioscience, 58(9): 811-821.
doi: 10.1641/B580908 |
[24] |
Knapp A K, Briggs J M, Koelliker J K, 2001. Frequency and extent of water limitation to primary production in a mesic temperate grassland.Ecosystems, 4(1): 19-28.
doi: 10.1007/s100210000057 |
[25] |
Li G Y, Liu Y Z, Frelich L Eet al., 2011. Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions.Journal of Applied Ecology, 48(3): 659-667.
doi: 10.1111/j.1365-2664.2011.01965.x |
[26] |
Liu B, Zhao W Z, Wen Z J, 2012. Photosynthetic response of two shrubs to rainfall pulses in desert regions of northwestern China.Photosynthetica, 50(1): 109-119.
doi: 10.1007/s11099-012-0015-9 |
[27] |
Luedeling E, Gassner A, 2012. Partial Least Squares Regression for analyzing walnut phenology in California.Agricultural and Forest Meteorology, 158/159: 43-52.
doi: 10.1016/j.agrformet.2011.10.020 |
[28] |
Ma W H, Yang Y H, He J Set al., 2008. Above and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia.Science in China Series C, 51(3): 263-270.
doi: 10.1007/s11427-008-0029-5 pmid: 18246314 |
[29] |
Miyazaki S, Yasunari T, Miyamoto Tet al., 2004. Agrometeorological conditions of grassland vegetation in central Mongolia and their impact for leaf area growth.Journal of Geophysical Research, 109(D22106): 1-14.
doi: 10.1029/2004JD005179 |
[30] |
Mokany K, Raison R J, Prokushkin A S, 2006. Critical analysis of root: Shoot ratios in terrestrial biomes.Global Change Biology, 12(1): 84-96.
doi: 10.1111/gcb.2006.12.issue-1 |
[31] |
Nandintsetseg B, Shinoda M, 2011. Seasonal change of soil moisture in Mongolia: Its climatology and modelling.International Journal of Climatology, 31(8): 1143-1152.
doi: 10.1002/joc.2134 |
[32] |
Paruelo J M, Lauenroth W K, Burke I Cet al., 1999. Grassland precipitation-use efficiency varies across a resource gradient.Ecosystems, 2(1): 64-68.
doi: 10.1007/s100219900058 |
[33] |
Qiu J, 2014. Double threat for Tibet.Nature, 512(7514): 240-241.
doi: 10.1038/512240a |
[34] |
Richardson A D, Keenan T F, Migliavacca Met al., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system.Agricultural & Forest Meteorology, 169(3): 156-173.
doi: 10.1016/j.agrformet.2012.09.012 |
[35] |
Sebastià M T, 2007. Plant guilds drive biomass response to global warming and water availability in subalpine grassland.Journal of Applied Ecology, 44(1): 158-167.
doi: 10.1111/j.1365-2664.2006.01232.x |
[36] |
Sherry R A, Weng E, Arnone III J Aet al., 2008. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie.Global Change Biology, 14(12): 2923-2936.
doi: 10.1111/j.1365-2486.2008.01703.x |
[37] |
Shinoda M, Nandintsetseg B, 2011. Soil moisture and vegetation memories in a cold, arid climate.Global & Planetary Change, 79(1/2): 110-117.
doi: 10.1016/j.gloplacha.2011.08.005 |
[38] |
Sun J, Cheng G W, Li W P, 2013. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau.Biogeosciences, 10(3): 1707-1715.
doi: 10.5194/bg-10-1707-2013 |
[39] |
Thomey M L, Collins S L, Vargas Ret al., 2015. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland.Global Change Biology, 17(4): 1505-1515.
doi: 10.1111/j.1365-2486.2010.02363.x |
[40] |
Trenberth K E, Shea D J, 2005. Relationships between precipitation and surface temperature. Geophysical Research Letters, 32(14): 129-142.
doi: 10.1029/2005GL022760 |
[41] |
Wan S Q, Hui D F, Wallace Let al., 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie.Global Biogeochemical Cycles, 19(2): 1-13.
doi: 10.1029/2004GB002315 |
[42] |
Wang G X, Bai W, Li Net al., 2011. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China.Climatic Change, 106(3): 463-482.
doi: 10.1007/s10584-010-9952-0 |
[43] |
Wang L, Feng Z M, Yang Y Z, 2015. The change in population density from 2000 to 2010 and its influencing factors in China at the county scale.Journal of Geographical Sciences, 25(4): 485-496.
doi: 10.1007/s11442-015-1181-z |
[44] | Wang Q J, Yang F T, Shi S H, 1988. A preliminary study on formation of belowground biomass in a Kobresia Humilis meadow. In: Northwest Institute of Plateau Biology of the Chinese Academy of Sciences (eds.). The Proceedings of the International Symposium of Alpine Meadow Ecosystem. Beijing: Science Press, 73-81. |
[45] | Wei Y L, Ma X H, Song L M, 2009. Soil moisture dynamic of natural meadow and its impacts on forage biomass in Qinghai Lake region.Pratacultural Science, 26(5): 76-80. (in Chinese) |
[46] |
Wu Z T, Dijkstra P, Koch G Wet al., 2011. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation.Global Change Biology, 17(2): 927-942.
doi: 10.1111/j.1365-2486.2010.02302.x |
[47] |
Xu J C, Grumbine R E, Shrestha Aet al., 2009. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods.Conservation Biology, 23(3): 520-530.
doi: 10.1111/j.1523-1739.2009.01237.x pmid: 22748090 |
[48] |
Xu M H, Liu M, Xue Xet al., 2016. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China.Journal of Arid Land, 8(5): 773-786.
doi: 10.1007/s40333-016-0013-z |
[49] |
Yang H J, Wu M Y, Liu W Xet al., 2011. Community structure and composition in response to climate change in a temperate steppe.Global Change Biology, 17(1): 452-465.
doi: 10.1111/j.1365-2486.2010.02253.x |
[50] |
Yang Y H, Fang J Y, Pan Y Det al., 2009. Aboveground biomass in Tibetan grasslands.Journal of Arid Environment. 73(1): 91-95.
doi: 10.1016/j.jaridenv.2008.09.027 |
[51] |
Yu H Y, Xu J C, Okuto Eet al., 2012. Seasonal response of grasslands to climate change on the Tibetan Plateau.Plos One, 7(11): e49230.
doi: 10.1371/journal.pone.0049230 pmid: 3500274 |
[52] |
Zavaleta E S, 2006. Shrub establishment under experimental global changes in a California grassland.Plant Ecology, 184(1): 53-63.
doi: 10.1007/s11258-005-9051-x |
[53] | Zhang X S, 2007. Vegetation Map of China Committee, Chinese Academy of Sciences. Vegetation map of China and its geographic pattern: Illustration of the vegetation map of the People’s Republic of China (1:1,000,000). Beijing: Geographical Publishing House. (in Chinese) |
[54] |
Zhu X H, Wang W Q, Fraedrich K, 2013. Future climate in the Tibetan Plateau from a statistical regional climate model.Journal of Climate, 26(24): 10125-10138.
doi: 10.1175/JCLI-D-13-00187.1 |
[1] | Martha Elizabeth APPLE, Macy Kara RICKETTS, Alice Caroline MARTIN. Plant functional traits and microbes vary with position on striped periglacial patterned ground at Glacier National Park, Montana [J]. Journal of Geographical Sciences, 2019, 29(7): 1127-1141. |
[2] | Yuan ZHANG, Shuying ZANG, Li SUN, Binghe YAN, Tianpeng YANG, Wenjia YAN, E Michael MEADOWS, Cuizhen WANG, Jiaguo QI. Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 658-674. |
[3] | Yujie LIU, Ya QIN, Quansheng GE. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010 [J]. Journal of Geographical Sciences, 2019, 29(3): 351-362. |
[4] | Danyang MA, Haoyu DENG, Yunhe YIN, Shaohong WU, Du ZHENG. Sensitivity of arid/humid patterns in China to future climate change under a high-emissions scenario [J]. Journal of Geographical Sciences, 2019, 29(1): 29-48. |
[5] | Man ZHANG, Yaning CHEN, Yanjun SHEN, Baofu LI. Tracking climate change in Central Asia through temperature and precipitation extremes [J]. Journal of Geographical Sciences, 2019, 29(1): 3-28. |
[6] | Jing ZHANG, Yanjun SHEN. Spatio-temporal variations in extreme drought in China during 1961-2015 [J]. Journal of Geographical Sciences, 2019, 29(1): 67-83. |
[7] | Haijun DENG, Yaning CHEN, Yang LI. Glacier and snow variations and their impacts on regional water resources in mountains [J]. Journal of Geographical Sciences, 2019, 29(1): 84-100. |
[8] | HU Weijie,LIU Hailong,BAO Anming,Attia M. El-Tantawi. Influences of environmental changes on water storage variations in Central Asia [J]. Journal of Geographical Sciences, 2018, 28(7): 985-1000. |
[9] | XIE Yichun,ZHANG Yang,LAN Hai,MAO Lishen,ZENG Shi,CHEN Yulu. Investigating long-term trends of climate change and their spatial variations caused by regional and local environments through data mining [J]. Journal of Geographical Sciences, 2018, 28(6): 802-818. |
[10] | ZHANG Wenxia,,FENG Qingrong,WANG Tianguang,WANG Tianqiang. The spatiotemporal responses of Populus euphratica to global warming in Chinese oases between 1960 and 2015 [J]. Journal of Geographical Sciences, 2018, 28(5): 579-594. |
[11] | FU Yang,CHEN Hui,NIU Huihui,ZHANG Siqi,YANG Yi. Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015 [J]. Journal of Geographical Sciences, 2018, 28(4): 400-414. |
[12] | WAN Honglian,SONG Hailong,ZHU Chanchan,ZHANG Beibei,ZHANG Mi. Spatio-temporal evolution of drought and flood disaster chains in Baoji area from 1368 to 1911 [J]. Journal of Geographical Sciences, 2018, 28(3): 337-350. |
[13] | SUN Meiping,LIU Shiyin,YAO Xiaojun,GUO Wanqin,XU Junli. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory [J]. Journal of Geographical Sciences, 2018, 28(2): 206-220. |
[14] | Gengzhi HUANG, Shuying LENG. The progress of human geography in China under the support of the National Natural Science Foundation of China [J]. Journal of Geographical Sciences, 2018, 28(12): 1735-1756. |
[15] | WANG Huanjiong,WANG Hui,TAO Zexing,GE Quansheng. Potential range expansion of the red imported fire ant (Solenopsis invicta) in China under climate change [J]. Journal of Geographical Sciences, 2018, 28(12): 1965-1974. |
|