Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2018, Vol. 28 Issue (12) : 1953-1964     DOI: 10.1007/s11442-019-1573-y
Research Articles |
Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau
WANG Li1,2,4(),YU Haiying3,ZHANG Qiang1,4,*(),XU Yunjia5,6,TAO Zexing5,6,ALATALO Juha7,DAI Junhu5,6,*()
1. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China
2. Qinghai Institute of Meteorological Science, Xining 810001, China
3. College of Agroforestry Engineering and Planning, Tongren University, Tongren 554300, Guizhou, China
4. Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China
5. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
6. University of Chinese Academy of Sciences, Beijing 100049, China
7. Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
Download: PDF(1104 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Aboveground biomass in grasslands of the Qinghai-Tibet Plateau has displayed an overall increasing trend during 2003-2016, which is profoundly influenced by climate change. However, the responses of different biomes show large discrepancies, in both size and magnitude. By applying partial least squares regression, we calculated the correlation between peak aboveground biomass and mean monthly temperature and monthly total precipitation in the preceding 12 months for three different grassland types (alpine steppe, alpine meadow, and temperate steppe) on the central and eastern Qinghai-Tibet Plateau. The results showed that mean temperature in most preceding months was positively correlated with peak aboveground biomass of alpine meadow and alpine steppe, while mean temperature in the preceding October and February to June was significantly negatively correlated with peak aboveground biomass of temperate steppe. Precipitation in all months had a promoting effect on biomass of alpine meadow, but its correlations with biomass of alpine steppe and temperate steppe were inconsistent. It is worth noting that, in a warmer, wetter climate, peak aboveground biomass of alpine meadow would increase more than that of alpine steppe, while that of temperate steppe would decrease significantly, providing support for the hypothesis of conservative growth strategies by vegetation in stressed ecosystems.

Keywords grasslands      aboveground biomass      partial least squares      Qinghai-Tibet Plateau      climate change     
Fund:National Key R&D Program of China, No.2018YFA0606102; National Natural Science Foundation of China, No.41771056; National Key Technology Support Program, No.2012BAH31B02
Corresponding Authors: ZHANG Qiang,DAI Junhu     E-mail:;;
Issue Date: 27 December 2018
E-mail this article
E-mail Alert
Articles by authors
YU Haiying
XU Yunjia
TAO Zexing
DAI Junhu
Cite this article:   
WANG Li,YU Haiying,ZHANG Qiang, et al. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau[J]. Journal of Geographical Sciences, 2018, 28(12): 1953-1964.
URL:     OR
Sites Latitude (°N) Longitude
Elevation MAT MAP Vegetation type
(m) (°C) (mm)
Banma 100.74 32.93 3530.00 3.63 670.34 Alpine meadow
Dari 99.65 33.76 3967.50 0.23 584.90 Alpine meadow
Gande 99.89 33.96 4050.00 -1.44 554.14 Alpine meadow
Gangcha 100.14 37.33 3301.50 0.68 427.72 Temperate steppe
Haiyan 100.86 36.96 3140.00 1.51 431.21 Alpine meadow
Henan 101.60 34.73 3500.00 0.56 595.44 Alpine meadow
Jiuzhi 101.48 33.43 3628.50 1.83 757.34 Alpine meadow
Maduo 98.23 34.92 4272.30 -2.48 358.49 Alpine meadow
Maqin 100.24 34.48 3719.00 0.77 538.17 Alpine meadow
Nangqian 96.47 32.20 3643.70 5.39 568.79 Alpine meadow
Qilian 100.24 38.18 2787.40 2.02 443.79 Alpine meadow
Qingshuihe 97.13 33.80 4415.40 -3.35 555.90 Alpine meadow
Qumalai 95.80 34.12 4175.00 -0.76 455.44 Alpine meadow
Tianjun 99.02 37.30 3417.10 0.28 394.39 Alpine steppe
Tongde 100.60 35.24 3080.00 3.68 475.91 Alpine steppe
Tuole 98.42 38.81 3367.00 -1.59 340.48 Alpine steppe
Tuotuohe 92.44 34.22 4533.10 -2.71 332.98 Alpine steppe
Xinghai 99.98 35.59 3323.20 2.05 407.68 Temperate steppe
Zaduo 95.29 32.89 4066.40 1.83 546.60 Alpine meadow
Zeku 101.47 35.04 3662.80 -0.59 538.04 Alpine meadow
Table 1  Summary of location, mean annual temperature (MAT), mean annual total precipitation (MAP), and vegetation type at the 20 study sites of the Qinghai-Tibet Plateau
Figure 1  Geographical location of the study area in Qinghai on the central and eastern Qinghai-Tibet Plateau and vegetation types at the study sites
Figure 2  Inter-annual variation in peak aboveground biomass (a), and inter-annual variation in temperature (b) and total precipitation (c), averaged over all sites. Error bars indicate standard deviation between sites.
Figure 3  Response of peak aboveground biomass to mean monthly temperature (T, a-f) and monthly total precipitation (P, g-l) during preceding months, based on partial least squares (PLS) regression analysis for three vegetation types: alpine meadow (AM), alpine steppe (AS) and temperate steppe (TS). The left column shows the VIP values and the right column shows the correlation coefficients. The blue bars indicate VIP values greater than 0.8; the green and red bars indicate coefficients with significant VIP.
Figure 4  Linear regression between peak aboveground biomass of alpine meadow (AM), alpine steppe (AS), and temperate steppe (TS), and a) total annual precipitation, b) total precipitation February-June, and c) mean annual temperature
[1] Alatalo J M, J?gerbrand A K, Chen Set al., 2017. Responses of lichen communities to 18?years of natural and experimental warming.Annals of Botany, 120(1): 1-12.
doi: 10.1093/aob/mcx055 pmid: 28873948
[2] Angert A, Biraud S, Bonfils Cet al., 2005. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs.Proceedings of the National Academy of Sciences of the United States of America, 102(31): 10823-10827.
doi: 10.1073/pnas.0501647102
[3] Bai M L, Hao R Q, Hou Qet al., 2011. Impact of climatic vacillation on potential evaporation on typical grassland. Transactions of Atmospheric Sciences, 34(3): 351-355. (in Chinese)
[4] Bai Y F, Han X G, Wu J Get al., 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature, 431(7005): 181-184.
doi: 10.1038/nature02850 pmid: 202020202020202020202020
[5] Briggs J M, Knapp A K, 1995. Interannual variability in primary production in tallgrass prairie: Climate, soil moisture, topographic position, and fire as determinants of aboveground biomass.American Journal of Botany, 82(8): 1024-1030.
doi: 10.1002/j.1537-2197.1995.tb11567.x
[6] Craine J M, Nippert J B, Elmore A Jet al., 2012. Timing of climate variability and grassland productivity.Proceedings of the National Academy of Sciences of the United States of America, 109(9): 3401-3405.
doi: 10.1073/pnas.1118438109 pmid: 22331914
[7] Dai E F, Huang Y, Wu Zet al., 2016. Analysis of spatio-temporal features of a carbon source/sink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem.Journal of Geographical Sciences, 26(3): 297-312.
doi: 10.1007/s11442-016-1269-0
[8] Dukes J S, Chiariello N R, Cleland E E, et al., 2005. Responses of grassland production to single and multiple global environmental changes.PloS Biology, 3(10): e319.
doi: 10.1371/journal.pbio.0030319 pmid: 1182693
[9] Fan Y, Li X Y, Wu X Cet al., 2016. Divergent responses of vegetation aboveground net primary productivity to rainfall pulses in the Inner Mongolian Plateau, China.Journal of Arid Environments, 129: 1-8.
doi: 10.1016/j.jaridenv.2016.02.002
[10] Fang J Y, Chen A P, Peng C Het al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292(5525): 2320-2322.
doi: 10.1126/science.1058629
[11] Fang Y, Cheng W M, Zhang Y Cet al., 2016. Changes in inland lakes on the Tibetan Plateau over the past 40 year.Journal of Geographical Sciences, 26(4): 415-438.
doi: 10.1007/s11442-016-1277-0
[12] Gamon J A, Huemmrich K F, Stone R Set al., 2013. Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt.Remote Sensing of Environment, 129(2): 144-153.
doi: 10.1016/j.rse.2012.10.030
[13] Grime J P, 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory.American Naturalist, 111(982): 1169-1194.
doi: 10.1086/283244
[14] Guo Q, Hu Z M, Li S Get al., 2012. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution.Global Change Biology, 18(12): 3624-3631.
doi: 10.1111/gcb.12009
[15] IPCC. 2013. Summary for Policymakers. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press, 1-1535.
[16] Hollister R D, Webber P J, Tweedie C E, 2005. The response of Alaskan arctic tundra to experimental warming: Differences between short- and long-term responses.Global Change Biology, 11(4): 525-536.
doi: 10.1111/gcb.2005.11.issue-4
[17] Hu Z, Yu G, Fan Jet al., 2010. Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology & Biogeography, 19(6): 842-851.
doi: 10.1111/j.1466-8238.2010.00564.x
[18] Huxman T E, Smith M D, Fay P Aet al., 2004. Convergence across biomes to a common rain-use efficiency.Nature, 429(6992): 651-654.
doi: 10.1038/nature02561
[19] Iwasaki H, 2006. Impact of interannual variability of meteorological parameters on vegetation activity over Mongolia.Journal of the Meteorological Society of Japan, 84(4): 745-762.
doi: 10.2151/jmsj.84.745
[20] Jiao C C, Yu G R, He N Pet al., 2017. Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe.Journal of Geographical Sciences, 27(1): 3-22.
doi: 10.1007/s11442-017-1361-0
[21] Jong S D, 1993. SIMPLS: An alternative approach to partial least squares regression.Chemometrics and Intelligent Laboratory Systems, 18(3): 251-263.
doi: 10.1016/0169-7439(93)85002-X
[22] Kato T, Tang Y, Gu Set al., 2006. Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau.Global Change Biology, 12(7): 1285-1298.
doi: 10.1111/gcb.2006.12.issue-7
[23] Knapp A K, Beier C, Briske D Det al., 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems.Bioscience, 58(9): 811-821.
doi: 10.1641/B580908
[24] Knapp A K, Briggs J M, Koelliker J K, 2001. Frequency and extent of water limitation to primary production in a mesic temperate grassland.Ecosystems, 4(1): 19-28.
doi: 10.1007/s100210000057
[25] Li G Y, Liu Y Z, Frelich L Eet al., 2011. Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions.Journal of Applied Ecology, 48(3): 659-667.
doi: 10.1111/j.1365-2664.2011.01965.x
[26] Liu B, Zhao W Z, Wen Z J, 2012. Photosynthetic response of two shrubs to rainfall pulses in desert regions of northwestern China.Photosynthetica, 50(1): 109-119.
doi: 10.1007/s11099-012-0015-9
[27] Luedeling E, Gassner A, 2012. Partial Least Squares Regression for analyzing walnut phenology in California.Agricultural and Forest Meteorology, 158/159: 43-52.
doi: 10.1016/j.agrformet.2011.10.020
[28] Ma W H, Yang Y H, He J Set al., 2008. Above and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia.Science in China Series C, 51(3): 263-270.
doi: 10.1007/s11427-008-0029-5 pmid: 18246314
[29] Miyazaki S, Yasunari T, Miyamoto Tet al., 2004. Agrometeorological conditions of grassland vegetation in central Mongolia and their impact for leaf area growth.Journal of Geophysical Research, 109(D22106): 1-14.
doi: 10.1029/2004JD005179
[30] Mokany K, Raison R J, Prokushkin A S, 2006. Critical analysis of root: Shoot ratios in terrestrial biomes.Global Change Biology, 12(1): 84-96.
doi: 10.1111/gcb.2006.12.issue-1
[31] Nandintsetseg B, Shinoda M, 2011. Seasonal change of soil moisture in Mongolia: Its climatology and modelling.International Journal of Climatology, 31(8): 1143-1152.
doi: 10.1002/joc.2134
[32] Paruelo J M, Lauenroth W K, Burke I Cet al., 1999. Grassland precipitation-use efficiency varies across a resource gradient.Ecosystems, 2(1): 64-68.
doi: 10.1007/s100219900058
[33] Qiu J, 2014. Double threat for Tibet.Nature, 512(7514): 240-241.
doi: 10.1038/512240a
[34] Richardson A D, Keenan T F, Migliavacca Met al., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system.Agricultural & Forest Meteorology, 169(3): 156-173.
doi: 10.1016/j.agrformet.2012.09.012
[35] Sebastià M T, 2007. Plant guilds drive biomass response to global warming and water availability in subalpine grassland.Journal of Applied Ecology, 44(1): 158-167.
doi: 10.1111/j.1365-2664.2006.01232.x
[36] Sherry R A, Weng E, Arnone III J Aet al., 2008. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie.Global Change Biology, 14(12): 2923-2936.
doi: 10.1111/j.1365-2486.2008.01703.x
[37] Shinoda M, Nandintsetseg B, 2011. Soil moisture and vegetation memories in a cold, arid climate.Global & Planetary Change, 79(1/2): 110-117.
doi: 10.1016/j.gloplacha.2011.08.005
[38] Sun J, Cheng G W, Li W P, 2013. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau.Biogeosciences, 10(3): 1707-1715.
doi: 10.5194/bg-10-1707-2013
[39] Thomey M L, Collins S L, Vargas Ret al., 2015. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland.Global Change Biology, 17(4): 1505-1515.
doi: 10.1111/j.1365-2486.2010.02363.x
[40] Trenberth K E, Shea D J, 2005. Relationships between precipitation and surface temperature. Geophysical Research Letters, 32(14): 129-142.
doi: 10.1029/2005GL022760
[41] Wan S Q, Hui D F, Wallace Let al., 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie.Global Biogeochemical Cycles, 19(2): 1-13.
doi: 10.1029/2004GB002315
[42] Wang G X, Bai W, Li Net al., 2011. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China.Climatic Change, 106(3): 463-482.
doi: 10.1007/s10584-010-9952-0
[43] Wang L, Feng Z M, Yang Y Z, 2015. The change in population density from 2000 to 2010 and its influencing factors in China at the county scale.Journal of Geographical Sciences, 25(4): 485-496.
doi: 10.1007/s11442-015-1181-z
[44] Wang Q J, Yang F T, Shi S H, 1988. A preliminary study on formation of belowground biomass in a Kobresia Humilis meadow. In: Northwest Institute of Plateau Biology of the Chinese Academy of Sciences (eds.). The Proceedings of the International Symposium of Alpine Meadow Ecosystem. Beijing: Science Press, 73-81.
[45] Wei Y L, Ma X H, Song L M, 2009. Soil moisture dynamic of natural meadow and its impacts on forage biomass in Qinghai Lake region.Pratacultural Science, 26(5): 76-80. (in Chinese)
[46] Wu Z T, Dijkstra P, Koch G Wet al., 2011. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation.Global Change Biology, 17(2): 927-942.
doi: 10.1111/j.1365-2486.2010.02302.x
[47] Xu J C, Grumbine R E, Shrestha Aet al., 2009. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods.Conservation Biology, 23(3): 520-530.
doi: 10.1111/j.1523-1739.2009.01237.x pmid: 22748090
[48] Xu M H, Liu M, Xue Xet al., 2016. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China.Journal of Arid Land, 8(5): 773-786.
doi: 10.1007/s40333-016-0013-z
[49] Yang H J, Wu M Y, Liu W Xet al., 2011. Community structure and composition in response to climate change in a temperate steppe.Global Change Biology, 17(1): 452-465.
doi: 10.1111/j.1365-2486.2010.02253.x
[50] Yang Y H, Fang J Y, Pan Y Det al., 2009. Aboveground biomass in Tibetan grasslands.Journal of Arid Environment. 73(1): 91-95.
doi: 10.1016/j.jaridenv.2008.09.027
[51] Yu H Y, Xu J C, Okuto Eet al., 2012. Seasonal response of grasslands to climate change on the Tibetan Plateau.Plos One, 7(11): e49230.
doi: 10.1371/journal.pone.0049230 pmid: 3500274
[52] Zavaleta E S, 2006. Shrub establishment under experimental global changes in a California grassland.Plant Ecology, 184(1): 53-63.
doi: 10.1007/s11258-005-9051-x
[53] Zhang X S, 2007. Vegetation Map of China Committee, Chinese Academy of Sciences. Vegetation map of China and its geographic pattern: Illustration of the vegetation map of the People’s Republic of China (1:1,000,000). Beijing: Geographical Publishing House. (in Chinese)
[54] Zhu X H, Wang W Q, Fraedrich K, 2013. Future climate in the Tibetan Plateau from a statistical regional climate model.Journal of Climate, 26(24): 10125-10138.
doi: 10.1175/JCLI-D-13-00187.1
[1] XIE Yichun,ZHANG Yang,LAN Hai,MAO Lishen,ZENG Shi,CHEN Yulu. Investigating long-term trends of climate change and their spatial variations caused by regional and local environments through data mining[J]. Journal of Geographical Sciences, 2018, 28(6): 802-818.
[2] ZHANG Wenxia,,FENG Qingrong,WANG Tianguang,WANG Tianqiang. The spatiotemporal responses of Populus euphratica to global warming in Chinese oases between 1960 and 2015[J]. Journal of Geographical Sciences, 2018, 28(5): 579-594.
[3] FU Yang,CHEN Hui,NIU Huihui,ZHANG Siqi,YANG Yi. Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015[J]. Journal of Geographical Sciences, 2018, 28(4): 400-414.
[4] WAN Honglian,SONG Hailong,ZHU Chanchan,ZHANG Beibei,ZHANG Mi. Spatio-temporal evolution of drought and flood disaster chains in Baoji area from 1368 to 1911[J]. Journal of Geographical Sciences, 2018, 28(3): 337-350.
[5] SUN Meiping,LIU Shiyin,YAO Xiaojun,GUO Wanqin,XU Junli. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory[J]. Journal of Geographical Sciences, 2018, 28(2): 206-220.
[6] WANG Huanjiong,WANG Hui,TAO Zexing,GE Quansheng. Potential range expansion of the red imported fire ant (Solenopsis invicta) in China under climate change[J]. Journal of Geographical Sciences, 2018, 28(12): 1965-1974.
[7] HUANG Gengzhi,LENG Shuying. The progress of human geography in China under the support of the National Natural Science Foundation of China[J]. Journal of Geographical Sciences, 2018, 28(12): 1735-1756.
[8] TIAN Zhan,JI Yinghao,SUN Laixiang,XU Xinliang,FAN Dongli,ZHONG Honglin,LIANG Zhuoran,FICSHER Gunther. Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change:A multi-model ensemble approach[J]. Journal of Geographical Sciences, 2018, 28(11): 1700-1714.
[9] GAO Chao,RUAN Tian. The influence of climate change and human activities on runoff in the middle reaches of the Huaihe River Basin, China[J]. Journal of Geographical Sciences, 2018, 28(1): 79-92.
[10] ZHANG Ming,DU Shiqiang,WU Yanjuan,WEN Jiahong,WANG Congxiao,XU Ming,WU Shuang-Ye. Spatiotemporal changes in frequency and intensity of high-temperature events in China during 1961-2014[J]. Journal of Geographical Sciences, 2017, 27(9): 1027-1043.
[11] CHU Zheng,GUO Jianping,ZHAO Junfang. Impacts of future climate change on agroclimatic resources in Northeast China[J]. Journal of Geographical Sciences, 2017, 27(9): 1044-1058.
[12] SHI Wenjiao,LIU Yiting,SHI Xiaoli. Development of quantitative methods for detecting climate contributions to boundary shifts in farming-pastoral ecotone of northern China[J]. Journal of Geographical Sciences, 2017, 27(9): 1059-1071.
[13] LIU Yujie,QIN Ya,GE Quansheng,DAI Junhu,CHEN Qiaomin. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China[J]. Journal of Geographical Sciences, 2017, 27(9): 1072-1084.
[14] JIA Dan,FANG Xiuqi,ZHANG Chengpeng. Coincidence of abandoned settlements and climate change in the Xinjiang oases zone during the last 2000 years[J]. Journal of Geographical Sciences, 2017, 27(9): 1100-1110.
[15] HONG Si,XIA Jun,CHEN Junxu,WAN Long,NING Like,SHI Wei. Multi-object approach and its application to adaptive water management under climate change[J]. Journal of Geographical Sciences, 2017, 27(3): 259-274.
Full text



Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd