Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
 
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2018, Vol. 28 Issue (12) : 1965-1974     DOI: 10.1007/s11442-018-1574-x
Research Articles |
Potential range expansion of the red imported fire ant (Solenopsis invicta) in China under climate change
WANG Huanjiong1(),WANG Hui1,TAO Zexing1,2,GE Quansheng1,*()
1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(736 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The red imported fire ant (RIFA, Solenopsis invicta), a notorious invasive insect, has received considerable attention owing to its impacts on native biodiversity, agriculture, and human health. Under global warming, the inhabitable area of the RIFA may be enlarged. However, few studies have focused on the potential range expansion of the RIFA in East Asia. Using a process-based physiological model, we simulated the potential range of the RIFA in China based on gridded temperature datasets for the current (2004-2012) and future (2090-2100) climates under Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. It was found that the southeastern part of China (below 32°N) is suitable for RIFA proliferation. The present distribution area of the RIFA corresponds well with the potential range simulated by the model. In the RCP 4.5 and RCP 8.5 warming scenarios, the inhabitable area of the RIFA along the northern boundary would on average extend 101.3±85.7 (mean±SD) and 701.2±156.9 km, respectively, by the end of the 21st century. Therefore, future climate change would significantly affect the inhabitable area of the RIFA. Our results provide the basis for local quarantine officials to curtail accidental introductions of this insect, especially in the certain and possible infestation zones.

Keywords biological invasions      distribution      climate change      red imported fire ant      Solenopsis invicta     
Fund:National Key Research and Development Program of China, No.2016YFC1201302
Corresponding Authors: GE Quansheng     E-mail: wanghj@igsnrr.ac.cn;geqs@igsnrr.ac.cn
Issue Date: 27 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Huanjiong
WANG Hui
TAO Zexing
GE Quansheng
Cite this article:   
WANG Huanjiong,WANG Hui,TAO Zexing, et al. Potential range expansion of the red imported fire ant (Solenopsis invicta) in China under climate change[J]. Journal of Geographical Sciences, 2018, 28(12): 1965-1974.
URL:  
http://www.geogsci.com/EN/10.1007/s11442-018-1574-x     OR     http://www.geogsci.com/EN/Y2018/V28/I12/1965
Types Conditions
Certain infestation asum≥3900 and P≥510 mm
Possible infestation 1500≤asum<3900 and P≥510 mm
Unlikely infestation asum<1500 or P<510 mm
Table 1  Different possibilities of the reproductive success of the red imported fire ant (RIFA). asum: the total number of alates produced by a colony during its lifetime. P: mean annual precipitation during 2004-2012.
Figure 1  Potential (a) and current (b) range of the red imported fire ant (RIFA) in China. The number of each province/region shown in Figure 1 (b) corresponds to the number in Table 2.
No. Name Total area Current area Potential range (%) Comparison (%)
Certain Possible Unlikely Certain Possible Unlikely
23 Hainan 291 93(32.0%) 98.6 1.4 0.0 100.0 0.0 0.0
21 Guangdong 1559 956(61.3%) 92.5 4.9 2.6 94.0 4.2 1.8
18 Guangxi 2103 679(32.3%) 85.6 9.2 5.1 97.1 2.5 0.4
15 Jiangxi 1527 174(11.4%) 79.6 12.6 7.9 92.0 5.7 2.3
20 Fujian 1103 121(11.0%) 62.0 24.1 13.9 80.2 12.4 7.4
22 Hong Kong 26 8(30.8%) 57.7 0.0 42.3 87.5 0.0 12.5
19 Taiwan 322 62(19.3%) 57.1 9.6 33.2 59.7 17.7 22.6
12 Shanghai 59 NaN 55.9 32.2 11.9 NaN NaN NaN
14 Hunan 1929 24(1.2%) 55.7 24.0 20.4 62.5 33.3 4.2
11 Chongqing 770 13(1.7%) 40.4 22.9 36.8 84.6 15.4 0.0
10 Hubei 1755 NaN 39.7 21.9 38.4 NaN NaN NaN
13 Zhejiang 937 NaN 38.5 33.5 28.0 NaN NaN NaN
8 Anhui 1331 NaN 22.8 63.3 14.0 NaN NaN NaN
9 Sichuan 4552 54(1.2%) 20.3 7.8 71.9 24.1 25.9 50.0
16 Yunnan 3422 738(21.6%) 18.6 15.9 65.5 29.0 27.6 43.4
17 Guizhou 1603 NaN 9.8 25.0 65.2 NaN NaN NaN
7 Jiangsu 976 NaN 2.0 61.4 36.6 NaN NaN NaN
4 Shaanxi 2041 NaN 1.5 4.7 93.8 NaN NaN NaN
2 Shanxi 1599 NaN 0.3 1.2 98.5 NaN NaN NaN
6 Henan 1612 NaN 0.0 35.2 64.8 NaN NaN NaN
0 Hebei 1967 NaN 0.0 0.0 100.0 NaN NaN NaN
1 Beijing 175 NaN 0.0 0.0 100.0 NaN NaN NaN
3 Tianjin 121 NaN 0.0 0.0 100.0 NaN NaN NaN
5 Shandong 1546 NaN 0.0 0.0 100.0 NaN NaN NaN
Table 2  Comparisons between the potential and current range of the red imported fire ant (RIFA) for each province or region
Figure 2  Potential range of the red imported fire ant (RIFA) in the warming scenarios. The northern boundary of the potential and certain infestation zones of the RIFA in the current climate condition (2004-2013) are shown: (a) RCP 4.5; (b) RCP 8.5.
Figure 3  The factors limiting RIFA distribution in China. T: temperature; P: precipitation.
Number Name RCP 4.5 RCP 8.5
6 Henan 9 1482
17 Guizhou 594 1388
5 Shandong 0 1309
16 Yunnan 259 1290
8 Anhui 455 1028
7 Jiangsu 316 956
14 Hunan 753 855
10 Hubei 101 846
13 Zhejiang 565 565
20 Fujian 417 417
0 Hebei 0 400
11 Chongqing 33 373
9 Sichuan ?139 336
15 Jiangxi 312 312
18 Guangxi 248 302
19 Taiwan 133 133
21 Guangdong 112 112
12 Shanghai 19 19
4 Shaanxi ?31 11
2 Shanxi ?5 9
23 Hainan 4 4
1 Beijing 0 0
3 Tianjin 0 0
22 Hong Kong 0 0
Table 3  The difference in the number of cells within the certain infestation zone of the red imported fire ant (RIFA) between the 2000s and the 2090s in RCP 4.5 and RCP 8.5.
Model parameters Values
Max territory area, Smax 100 m2
Territory area at which worker mortality causes colony death, Smin 0.02 m2
Minimum area for colony production Srep 10 m2
Initial territory area, S0 0.01 m2
Queen longevity, tmax 3000 days
Colony proliferation parameter, q 89
The day of the year when colony founding, J0 165
Temperature when colony growth begins, T1 21°C
Table S1  Standard values of model parameters derived from Korzukhin et al. (2001))
Figure S1  Three empirical curves used in the model of Korzukhin et al. (2001). (a) Colony growth rate in response to soil temperature (T). (b) Worker longevity L(T). 1/L(T) represents the colony decrease rate in response to T. (c) The share of resources directed to alate production f(DOY). DOY: day of the year.
[1] Ascunce M S, Yang C, Oakey J, et al., 2011. Global invasion history of the fire ant Solenopsis invicta. Science, 331(6020): 1066-1068.
[2] Chang M T, Crowley C M, Juin E, et al., 1994. Air and soil temperatures under 3 forest conditions in East Texas.Texas Journal of Science, 46(2): 143-155.
[3] Chen I, Hill J K, Ohlemüller R, et al., 2011. Rapid range shifts of species associated with high levels of climate warming.Science, 333(6045): 1024-1026.http://www.sciencemag.org/cgi/doi/10.1126/science.1206432
doi: 10.1126/science.1206432 pmid: 21852500
[4] Chen J, Shen C H, Lee H J, 2006. Monogynous and polygynous red imported fire ants, Solenopsis invicta buren (Hymenoptera: Formicidae), in Taiwan Environmental Entomology, 35(1): 167-172.http://www.bioone.org/doi/pdf/10.1603/0046-225X-35.1.167
doi: 10.1603/0046-225X-35.1.167
[5] Cook J L, 2003. Conservation of biodiversity in an area impacted by the red imported fire ant,Solenopsis invicta(Hymenoptera: Formicidae). Biodiversity and Conservation, 12(2): 187-195.
[6] DeShazo R D, Williams D F, Moak E S, 1999. Fire ant attacks on residents in health care facilities: A report of two cases.Annals of Internal Medicine, 131(6): 424-429.http://annals.org/article.aspx?doi=10.7326/0003-4819-131-6-199909210-00005
doi: 10.7326/0003-4819-131-6-199909210-00005 pmid: 10498558
[7] Fitzpatrick M C, Weltzin J F, Sanders N J, et al., 2007. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?Global Ecology and Biogeography, 16(1): 24-33.http://www.blackwell-synergy.com/toc/geb/16/1
doi: 10.1111/j.1466-8238.2006.00258.x
[8] Gutrich J J, VanGelder E, Loope L, 2007. Potential economic impact of introduction and spread of the red imported fire ant, Solenopsis invicta, in Hawaii. Environmental Science & Policy, 10(7-8): 685-696.http://www.cabdirect.org/abstracts/20083121613.html
doi: 10.1016/j.envsci.2007.03.007
[9] He J, Yang K, 2011. China meteorological forcing dataset.Cold and Arid Regions Science Data Center at Lanzhou, doi: 10.3972/westdc.002.2014.db.
[10] Holway D A, Lach L, Suarez A V, et al., 2002. The causes and consequences of ant invasions.Annual Review of Ecology and Systematics, 33: 181-233.http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.33.010802.150444
doi: 10.1146/annurev.ecolsys.33.010802.150444
[11] IPCC, 2013. Summary for policymakers. Climate Change 2013: The Physical Science Basis. In: Stocker T F,Qin D, Plattner G K, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 3-29.
[12] Kenis M, Auger-Rozenberg M, Roques Aet al., 2009. Ecological effects of invasive alien insects.Biological Invasions, 11(1): 21-45.http://link.springer.com/10.1007/s10530-008-9318-y
doi: 10.1007/s10530-008-9318-y
[13] Korzukhin M D, Porter S D, Thompson L C, et al., 2001. Modeling temperature-dependent range limits for the fire ant Solenopsis invicta(Hymenoptera: Formicidae) in the United States. Environmental Entomology, 30(4): 645-655.http://ee.oxfordjournals.org/content/30/4/645
doi: 10.1603/0046-225X-30.4.645
[14] Levia D F, Frost E E, 2004. Assessment of climatic suitability for the expansion of Solenopsis invicta Buren in Oklahoma using three general circulation models. Theoretical and Applied Climatology, 79(1): 23-30.http://link.springer.com/article/10.1007/s00704-004-0067-2
doi: 10.1007/s00704-004-0067-2
[15] Lu Y, Wu B, Xu Y, et al., 2012. Effects of red imported fire ants (Solenopsis invicta) on the species structure of ant communities in South China. Sociobiology, 59(1): 275-285.http://www.cabdirect.org/abstracts/20123374327.html
doi: 10.1161/01.HYP.0000122874.21730.81
[16] Meinshausen M, Smith S J, Calvin Ket al., 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300.Climatic Change, 109(1): 213.http://link.springer.com/10.1007/s10584-011-0156-z
doi: 10.1007/s10584-011-0156-z
[17] Mikheyev A S, Mueller U G, 2006. Invasive species: Customs intercepts reveal what makes a good ant stowaway.Current Biology, 16(4): R129-R131.http://linkinghub.elsevier.com/retrieve/pii/S0960982206011110
doi: 10.1016/j.cub.2006.02.001 pmid: 16488863
[18] Morrison L W, Porter S D, Daniels Eet al., 2004. Potential global range expansion of the invasive fire ant,solenopsis invicta. Biological Invasions, 6(2): 183-191.
[19] Morrison L W, Korzukhin M D, Porter S D, 2005. Predicted range expansion of the invasive fire ant,Solenopsis invicta, in the eastern United States based on the VEMAP global warming scenario. Diversity and Distributions, 11(3): 199-204.http://onlinelibrary.wiley.com/doi/10.1111/j.1366-9516.2005.00142.x/full
doi: 10.1111/j.1366-9516.2005.00142.x
[20] Roura-Pascual N, Suarez A V, 2008. The utility of species distribution models to predict the spread of invasive ants (Hymenoptera: Formicidae) and to anticipate changes in their ranges in the face of global climate change.Myrmecological News, 11: 67-77.
[21] Simberloff D, Martin J, Genovesi P, et al., 2013. Impacts of biological invasions: What’s what and the way forward.Trends in Ecology & Evolution, 28(1): 58-66.http://www.cabdirect.org/abstracts/20133034248.html
doi: 10.1016/j.tree.2012.07.013 pmid: 22889499
[22] Sutherst R W, Maywald G, 2005. A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): Implications for invasion of new regions, particularly Oceania Environmental Entomology, 34(2): 317-335.
[23] Teal S, Segarra E, Barr C, et al., 1999. The cost of red imported fire ant infestation: The case of the Texas cattle industry.Texas Journal of Agriculture and Natural Resources, 12: 86-95.http://europepmc.org/abstract/AGR/IND22297661
[24] Tschinkel W R, 2013. The fire ants. Cambridge: Belknap Press of Harvard University Press, 1-752.
[25] Tschinkel W R, King J R, 2017. Ant community and habitat limit colony establishment by the fire ant, Solenopsis invicta. Functional Ecology, 31(4): 955-964.http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12794/abstract
doi: 10.1111/1365-2435.12794
[26] Vinson S B, 1997. Insect life: Invasion of the red imported fire ant (Hymenoptera: Formicidae).American Entomologist, 43(1): 23-39.https://academic.oup.com/ae/article-lookup/doi/10.1093/ae/43.1.23
[27] Ward D, 2009. The potential distribution of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), in New Zealand New Zealand Entomologist, 32(1): 67-75.
[28] Wickings K, Ruberson J R, 2016. The red imported fire ant, Solenopsis invicta, modifies predation at the soil surface and in cotton foliage. Annals of Applied Biology, 169(3): 319-328.
[29] Wylie R, Jennings C, McNaught M K, et al., 2016. Eradication of two incursions of the red imported fire ant in Queensland, Australia.Ecological Management & Restoration, 17(1): 22-32.http://onlinelibrary.wiley.com/doi/10.1111/emr.12197/pdf
doi: 10.1111/emr.12197
[30] Xiong Y, Chen J, Gu Z, et al., 2008. The potential suitability of Jiangsu Province, east China for the invasive red imported fire ant, Solenopsis invicta. Biological Invasions, 10(4): 475-481.http://europepmc.org/abstract/AGR/IND44034366
doi: 10.1007/s10530-007-9145-6
[31] Zavaleta E S, Royval J L, 2002. Climate change and the susceptibility of U.S. Ecosystems to biological invasions:Two cases of expected range expansion. Wildlife Responses to Climate Change: North American Case Studies, Schneider S H, Root T L, Washington, DC: Island Press, 277-341.
[32] Zeng L, Lu Y, He X, et al., 2005. Identification of red imported fire ant Solenopsis invicta to invade mainland China and infestation in Wuchuan, Guangdong. Chinese Bulletin of Entomology, 42(2): 144-148. (in Chinese)http://www.cabdirect.org/abstracts/20053103341.html
[1] XIE Yichun,ZHANG Yang,LAN Hai,MAO Lishen,ZENG Shi,CHEN Yulu. Investigating long-term trends of climate change and their spatial variations caused by regional and local environments through data mining[J]. Journal of Geographical Sciences, 2018, 28(6): 802-818.
[2] ZHANG Wenxia,,FENG Qingrong,WANG Tianguang,WANG Tianqiang. The spatiotemporal responses of Populus euphratica to global warming in Chinese oases between 1960 and 2015[J]. Journal of Geographical Sciences, 2018, 28(5): 579-594.
[3] FU Yang,CHEN Hui,NIU Huihui,ZHANG Siqi,YANG Yi. Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015[J]. Journal of Geographical Sciences, 2018, 28(4): 400-414.
[4] WAN Honglian,SONG Hailong,ZHU Chanchan,ZHANG Beibei,ZHANG Mi. Spatio-temporal evolution of drought and flood disaster chains in Baoji area from 1368 to 1911[J]. Journal of Geographical Sciences, 2018, 28(3): 337-350.
[5] SUN Meiping,LIU Shiyin,YAO Xiaojun,GUO Wanqin,XU Junli. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory[J]. Journal of Geographical Sciences, 2018, 28(2): 206-220.
[6] HUANG Gengzhi,LENG Shuying. The progress of human geography in China under the support of the National Natural Science Foundation of China[J]. Journal of Geographical Sciences, 2018, 28(12): 1735-1756.
[7] WANG Li,YU Haiying,ZHANG Qiang,XU Yunjia,TAO Zexing,ALATALO Juha,DAI Junhu. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau[J]. Journal of Geographical Sciences, 2018, 28(12): 1953-1964.
[8] TIAN Zhan,JI Yinghao,SUN Laixiang,XU Xinliang,FAN Dongli,ZHONG Honglin,LIANG Zhuoran,FICSHER Gunther. Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change:A multi-model ensemble approach[J]. Journal of Geographical Sciences, 2018, 28(11): 1700-1714.
[9] GAO Chao,RUAN Tian. The influence of climate change and human activities on runoff in the middle reaches of the Huaihe River Basin, China[J]. Journal of Geographical Sciences, 2018, 28(1): 79-92.
[10] ZHANG Ming,DU Shiqiang,WU Yanjuan,WEN Jiahong,WANG Congxiao,XU Ming,WU Shuang-Ye. Spatiotemporal changes in frequency and intensity of high-temperature events in China during 1961-2014[J]. Journal of Geographical Sciences, 2017, 27(9): 1027-1043.
[11] CHU Zheng,GUO Jianping,ZHAO Junfang. Impacts of future climate change on agroclimatic resources in Northeast China[J]. Journal of Geographical Sciences, 2017, 27(9): 1044-1058.
[12] SHI Wenjiao,LIU Yiting,SHI Xiaoli. Development of quantitative methods for detecting climate contributions to boundary shifts in farming-pastoral ecotone of northern China[J]. Journal of Geographical Sciences, 2017, 27(9): 1059-1071.
[13] LIU Yujie,QIN Ya,GE Quansheng,DAI Junhu,CHEN Qiaomin. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China[J]. Journal of Geographical Sciences, 2017, 27(9): 1072-1084.
[14] JIA Dan,FANG Xiuqi,ZHANG Chengpeng. Coincidence of abandoned settlements and climate change in the Xinjiang oases zone during the last 2000 years[J]. Journal of Geographical Sciences, 2017, 27(9): 1100-1110.
[15] ZHAO Meifeng,LIU Shenghe,QI Wei. Exploring the differential impacts of urban transit system on the spatial distribution of local and floating population in Beijing[J]. Journal of Geographical Sciences, 2017, 27(6): 731-751.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd