Journal of Geographical Sciences ›› 2018, Vol. 28 ›› Issue (12): 1965-1974.doi: 10.1007/s11442-018-1574-x
• Research Articles • Previous Articles Next Articles
Huanjiong WANG1(), Hui WANG1, Zexing TAO1,2, Quansheng GE1,*(
)
Received:
2017-06-12
Accepted:
2017-11-16
Online:
2018-12-20
Published:
2018-12-20
Contact:
Quansheng GE
E-mail:wanghj@igsnrr.ac.cn;geqs@igsnrr.ac.cn
About author:
Author: Wang Huanjiong: Associate Professor, specialized in climate change and biometeorology. E-mail:
Supported by:
Huanjiong WANG, Hui WANG, Zexing TAO, Quansheng GE. Potential range expansion of the red imported fire ant (Solenopsis invicta) in China under climate change[J].Journal of Geographical Sciences, 2018, 28(12): 1965-1974.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Different possibilities of the reproductive success of the red imported fire ant (RIFA). asum: the total number of alates produced by a colony during its lifetime. P: mean annual precipitation during 2004-2012."
Types | Conditions |
---|---|
Certain infestation | asum≥3900 and P≥510 mm |
Possible infestation | 1500≤asum<3900 and P≥510 mm |
Unlikely infestation | asum<1500 or P<510 mm |
Table 2
Comparisons between the potential and current range of the red imported fire ant (RIFA) for each province or region"
No. | Name | Total area | Current area | Potential range (%) | Comparison (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Certain | Possible | Unlikely | Certain | Possible | Unlikely | ||||
23 | Hainan | 291 | 93(32.0%) | 98.6 | 1.4 | 0.0 | 100.0 | 0.0 | 0.0 |
21 | Guangdong | 1559 | 956(61.3%) | 92.5 | 4.9 | 2.6 | 94.0 | 4.2 | 1.8 |
18 | Guangxi | 2103 | 679(32.3%) | 85.6 | 9.2 | 5.1 | 97.1 | 2.5 | 0.4 |
15 | Jiangxi | 1527 | 174(11.4%) | 79.6 | 12.6 | 7.9 | 92.0 | 5.7 | 2.3 |
20 | Fujian | 1103 | 121(11.0%) | 62.0 | 24.1 | 13.9 | 80.2 | 12.4 | 7.4 |
22 | Hong Kong | 26 | 8(30.8%) | 57.7 | 0.0 | 42.3 | 87.5 | 0.0 | 12.5 |
19 | Taiwan | 322 | 62(19.3%) | 57.1 | 9.6 | 33.2 | 59.7 | 17.7 | 22.6 |
12 | Shanghai | 59 | NaN | 55.9 | 32.2 | 11.9 | NaN | NaN | NaN |
14 | Hunan | 1929 | 24(1.2%) | 55.7 | 24.0 | 20.4 | 62.5 | 33.3 | 4.2 |
11 | Chongqing | 770 | 13(1.7%) | 40.4 | 22.9 | 36.8 | 84.6 | 15.4 | 0.0 |
10 | Hubei | 1755 | NaN | 39.7 | 21.9 | 38.4 | NaN | NaN | NaN |
13 | Zhejiang | 937 | NaN | 38.5 | 33.5 | 28.0 | NaN | NaN | NaN |
8 | Anhui | 1331 | NaN | 22.8 | 63.3 | 14.0 | NaN | NaN | NaN |
9 | Sichuan | 4552 | 54(1.2%) | 20.3 | 7.8 | 71.9 | 24.1 | 25.9 | 50.0 |
16 | Yunnan | 3422 | 738(21.6%) | 18.6 | 15.9 | 65.5 | 29.0 | 27.6 | 43.4 |
17 | Guizhou | 1603 | NaN | 9.8 | 25.0 | 65.2 | NaN | NaN | NaN |
7 | Jiangsu | 976 | NaN | 2.0 | 61.4 | 36.6 | NaN | NaN | NaN |
4 | Shaanxi | 2041 | NaN | 1.5 | 4.7 | 93.8 | NaN | NaN | NaN |
2 | Shanxi | 1599 | NaN | 0.3 | 1.2 | 98.5 | NaN | NaN | NaN |
6 | Henan | 1612 | NaN | 0.0 | 35.2 | 64.8 | NaN | NaN | NaN |
0 | Hebei | 1967 | NaN | 0.0 | 0.0 | 100.0 | NaN | NaN | NaN |
1 | Beijing | 175 | NaN | 0.0 | 0.0 | 100.0 | NaN | NaN | NaN |
3 | Tianjin | 121 | NaN | 0.0 | 0.0 | 100.0 | NaN | NaN | NaN |
5 | Shandong | 1546 | NaN | 0.0 | 0.0 | 100.0 | NaN | NaN | NaN |
Table 3
The difference in the number of cells within the certain infestation zone of the red imported fire ant (RIFA) between the 2000s and the 2090s in RCP 4.5 and RCP 8.5."
Number | Name | RCP 4.5 | RCP 8.5 |
---|---|---|---|
6 | Henan | 9 | 1482 |
17 | Guizhou | 594 | 1388 |
5 | Shandong | 0 | 1309 |
16 | Yunnan | 259 | 1290 |
8 | Anhui | 455 | 1028 |
7 | Jiangsu | 316 | 956 |
14 | Hunan | 753 | 855 |
10 | Hubei | 101 | 846 |
13 | Zhejiang | 565 | 565 |
20 | Fujian | 417 | 417 |
0 | Hebei | 0 | 400 |
11 | Chongqing | 33 | 373 |
9 | Sichuan | ?139 | 336 |
15 | Jiangxi | 312 | 312 |
18 | Guangxi | 248 | 302 |
19 | Taiwan | 133 | 133 |
21 | Guangdong | 112 | 112 |
12 | Shanghai | 19 | 19 |
4 | Shaanxi | ?31 | 11 |
2 | Shanxi | ?5 | 9 |
23 | Hainan | 4 | 4 |
1 | Beijing | 0 | 0 |
3 | Tianjin | 0 | 0 |
22 | Hong Kong | 0 | 0 |
Table S1
Standard values of model parameters derived from Korzukhin et al. (2001))"
Model parameters | Values |
---|---|
Max territory area, Smax | 100 m2 |
Territory area at which worker mortality causes colony death, Smin | 0.02 m2 |
Minimum area for colony production Srep | 10 m2 |
Initial territory area, S0 | 0.01 m2 |
Queen longevity, tmax | 3000 days |
Colony proliferation parameter, q | 89 |
The day of the year when colony founding, J0 | 165 |
Temperature when colony growth begins, T1 | 21°C |
Figure S1
Three empirical curves used in the model of Korzukhin et al. (2001). (a) Colony growth rate in response to soil temperature (T). (b) Worker longevity L(T). 1/L(T) represents the colony decrease rate in response to T. (c) The share of resources directed to alate production f(DOY). DOY: day of the year."
[1] | Ascunce M S, Yang C, Oakey J, et al., 2011. Global invasion history of the fire ant Solenopsis invicta. Science, 331(6020): 1066-1068. |
[2] | Chang M T, Crowley C M, Juin E, et al., 1994. Air and soil temperatures under 3 forest conditions in East Texas.Texas Journal of Science, 46(2): 143-155. |
[3] |
Chen I, Hill J K, Ohlemüller R, et al., 2011. Rapid range shifts of species associated with high levels of climate warming.Science, 333(6045): 1024-1026.
doi: 10.1126/science.1206432 pmid: 21852500 |
[4] |
Chen J, Shen C H, Lee H J, 2006. Monogynous and polygynous red imported fire ants, Solenopsis invicta buren (Hymenoptera: Formicidae), in Taiwan Environmental Entomology, 35(1): 167-172.
doi: 10.1603/0046-225X-35.1.167 |
[5] | Cook J L, 2003. Conservation of biodiversity in an area impacted by the red imported fire ant,Solenopsis invicta(Hymenoptera: Formicidae). Biodiversity and Conservation, 12(2): 187-195. |
[6] |
DeShazo R D, Williams D F, Moak E S, 1999. Fire ant attacks on residents in health care facilities: A report of two cases.Annals of Internal Medicine, 131(6): 424-429.
doi: 10.7326/0003-4819-131-6-199909210-00005 pmid: 10498558 |
[7] |
Fitzpatrick M C, Weltzin J F, Sanders N J, et al., 2007. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?Global Ecology and Biogeography, 16(1): 24-33.
doi: 10.1111/j.1466-8238.2006.00258.x |
[8] |
Gutrich J J, VanGelder E, Loope L, 2007. Potential economic impact of introduction and spread of the red imported fire ant, Solenopsis invicta, in Hawaii. Environmental Science & Policy, 10(7-8): 685-696.
doi: 10.1016/j.envsci.2007.03.007 |
[9] | He J, Yang K, 2011. China meteorological forcing dataset.Cold and Arid Regions Science Data Center at Lanzhou, doi: 10.3972/westdc.002.2014.db. |
[10] |
Holway D A, Lach L, Suarez A V, et al., 2002. The causes and consequences of ant invasions.Annual Review of Ecology and Systematics, 33: 181-233.
doi: 10.1146/annurev.ecolsys.33.010802.150444 |
[11] | IPCC, 2013. Summary for policymakers. Climate Change 2013: The Physical Science Basis. In: Stocker T F,Qin D, Plattner G K, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 3-29. |
[12] |
Kenis M, Auger-Rozenberg M, Roques Aet al., 2009. Ecological effects of invasive alien insects.Biological Invasions, 11(1): 21-45.
doi: 10.1007/s10530-008-9318-y |
[13] |
Korzukhin M D, Porter S D, Thompson L C, et al., 2001. Modeling temperature-dependent range limits for the fire ant Solenopsis invicta(Hymenoptera: Formicidae) in the United States. Environmental Entomology, 30(4): 645-655.
doi: 10.1603/0046-225X-30.4.645 |
[14] |
Levia D F, Frost E E, 2004. Assessment of climatic suitability for the expansion of Solenopsis invicta Buren in Oklahoma using three general circulation models. Theoretical and Applied Climatology, 79(1): 23-30.
doi: 10.1007/s00704-004-0067-2 |
[15] |
Lu Y, Wu B, Xu Y, et al., 2012. Effects of red imported fire ants (Solenopsis invicta) on the species structure of ant communities in South China. Sociobiology, 59(1): 275-285.
doi: 10.1161/01.HYP.0000122874.21730.81 |
[16] |
Meinshausen M, Smith S J, Calvin Ket al., 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300.Climatic Change, 109(1): 213.
doi: 10.1007/s10584-011-0156-z |
[17] |
Mikheyev A S, Mueller U G, 2006. Invasive species: Customs intercepts reveal what makes a good ant stowaway.Current Biology, 16(4): R129-R131.
doi: 10.1016/j.cub.2006.02.001 pmid: 16488863 |
[18] | Morrison L W, Porter S D, Daniels Eet al., 2004. Potential global range expansion of the invasive fire ant,solenopsis invicta. Biological Invasions, 6(2): 183-191. |
[19] |
Morrison L W, Korzukhin M D, Porter S D, 2005. Predicted range expansion of the invasive fire ant,Solenopsis invicta, in the eastern United States based on the VEMAP global warming scenario. Diversity and Distributions, 11(3): 199-204.
doi: 10.1111/j.1366-9516.2005.00142.x |
[20] | Roura-Pascual N, Suarez A V, 2008. The utility of species distribution models to predict the spread of invasive ants (Hymenoptera: Formicidae) and to anticipate changes in their ranges in the face of global climate change.Myrmecological News, 11: 67-77. |
[21] |
Simberloff D, Martin J, Genovesi P, et al., 2013. Impacts of biological invasions: What’s what and the way forward.Trends in Ecology & Evolution, 28(1): 58-66.
doi: 10.1016/j.tree.2012.07.013 pmid: 22889499 |
[22] | Sutherst R W, Maywald G, 2005. A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): Implications for invasion of new regions, particularly Oceania Environmental Entomology, 34(2): 317-335. |
[23] | Teal S, Segarra E, Barr C, et al., 1999. The cost of red imported fire ant infestation: The case of the Texas cattle industry.Texas Journal of Agriculture and Natural Resources, 12: 86-95. |
[24] | Tschinkel W R, 2013. The fire ants. Cambridge: Belknap Press of Harvard University Press, 1-752. |
[25] |
Tschinkel W R, King J R, 2017. Ant community and habitat limit colony establishment by the fire ant, Solenopsis invicta. Functional Ecology, 31(4): 955-964.
doi: 10.1111/1365-2435.12794 |
[26] | Vinson S B, 1997. Insect life: Invasion of the red imported fire ant (Hymenoptera: Formicidae).American Entomologist, 43(1): 23-39. |
[27] | Ward D, 2009. The potential distribution of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), in New Zealand New Zealand Entomologist, 32(1): 67-75. |
[28] | Wickings K, Ruberson J R, 2016. The red imported fire ant, Solenopsis invicta, modifies predation at the soil surface and in cotton foliage. Annals of Applied Biology, 169(3): 319-328. |
[29] |
Wylie R, Jennings C, McNaught M K, et al., 2016. Eradication of two incursions of the red imported fire ant in Queensland, Australia.Ecological Management & Restoration, 17(1): 22-32.
doi: 10.1111/emr.12197 |
[30] |
Xiong Y, Chen J, Gu Z, et al., 2008. The potential suitability of Jiangsu Province, east China for the invasive red imported fire ant, Solenopsis invicta. Biological Invasions, 10(4): 475-481.
doi: 10.1007/s10530-007-9145-6 |
[31] | Zavaleta E S, Royval J L, 2002. Climate change and the susceptibility of U.S. Ecosystems to biological invasions:Two cases of expected range expansion. Wildlife Responses to Climate Change: North American Case Studies, Schneider S H, Root T L, Washington, DC: Island Press, 277-341. |
[32] | Zeng L, Lu Y, He X, et al., 2005. Identification of red imported fire ant Solenopsis invicta to invade mainland China and infestation in Wuchuan, Guangdong. Chinese Bulletin of Entomology, 42(2): 144-148. (in Chinese) |
[1] | WU Li, SUN Xiaoling, SUN Wei, ZHU Cheng, ZHU Tongxin, LU Shuguang, ZHOU Hui, GUO Qingchun, GUAN Houchun, XIE Wei, KE Rui, LIN Guiping. Evolution of Neolithic site distribution (9.0-4.0 ka BP) in Anhui, East China [J]. Journal of Geographical Sciences, 2020, 30(9): 1451-1466. |
[2] | ZHANG Chi, WU Shaohong, LENG Guoyong. Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2 [J]. Journal of Geographical Sciences, 2020, 30(8): 1219-1232. |
[3] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[4] | LIU Haimeng, FANG Chuanglin, FANG Kai. Coupled Human and Natural Cube: A novel framework for analyzing the multiple interactions between humans and nature [J]. Journal of Geographical Sciences, 2020, 30(3): 355-377. |
[5] | SHI Wenjiao, LU Changhe, SHI Xiaoli, CUI Jiaying. Patterns and trends in grain self-sufficiency on the Tibetan Plateau during 1985-2016 [J]. Journal of Geographical Sciences, 2020, 30(10): 1590-1602. |
[6] | YUAN Lihua, SONG Changqing, CHENG Changxiu, SHEN Shi, CHEN Xiaoqiang, WANG Yuanhui. The cooperative and conflictual interactions between the United States, Russia, and China: A quantitative analysis of event data [J]. Journal of Geographical Sciences, 2020, 30(10): 1702-1720. |
[7] | LIU Juan, YAO Xiaojun, LIU Shiyin, GUO Wanqin, XU Junli. Glacial changes in the Gangdisê Mountains from 1970 to 2016 [J]. Journal of Geographical Sciences, 2020, 30(1): 131-144. |
[8] | BA Wulong, DU Pengfei, LIU Tie, BAO Anming, CHEN Xi, LIU Jiao, QIN Chengxin. Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China [J]. Journal of Geographical Sciences, 2020, 30(1): 164-176. |
[9] | FAN Zemeng, BAI Ruyu, YUE Tianxiang. Scenarios of land cover in Eurasia under climate change [J]. Journal of Geographical Sciences, 2020, 30(1): 3-17. |
[10] | CHEN Qihui, CHEN Hua, ZHANG Jun, HOU Yukun, SHEN Mingxi, CHEN Jie, XU Chongyu. Impacts of climate change and LULC change on runoff in the Jinsha River Basin [J]. Journal of Geographical Sciences, 2020, 30(1): 85-102. |
[11] | Martha Elizabeth APPLE, Macy Kara RICKETTS, Alice Caroline MARTIN. Plant functional traits and microbes vary with position on striped periglacial patterned ground at Glacier National Park, Montana [J]. Journal of Geographical Sciences, 2019, 29(7): 1127-1141. |
[12] | Yuan ZHANG, Shuying ZANG, Li SUN, Binghe YAN, Tianpeng YANG, Wenjia YAN, E Michael MEADOWS, Cuizhen WANG, Jiaguo QI. Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 658-674. |
[13] | Zhi CAO, Yurui LI, Zhengjia LIU, Lingfan YANG. Quantifying the vertical distribution pattern of land-use conversion in the loess hilly region of northern Shaanxi Province 1995-2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 730-748. |
[14] | Yujie LIU, Ya QIN, Quansheng GE. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010 [J]. Journal of Geographical Sciences, 2019, 29(3): 351-362. |
[15] | Yuying YUAN. Cultural evolution and spatial-temporal distribution of archaeological sites from 9.5-2.3 ka BP in the Yan-Liao region, China [J]. Journal of Geographical Sciences, 2019, 29(3): 449-464. |
|