Journal of Geographical Sciences ›› 2018, Vol. 28 ›› Issue (10): 1538-1559.doi: 10.1007/s11442-018-1560-3
• Orginal Article • Previous Articles Next Articles
Guyassa ETEFA1,2(), FRANKL Amaury1,3, LANCKRIET Sil1, Demissie BIADGILGN1,4, Zenebe GEBREYOHANNES5, Zenebe AMANUEL2, POESEN Jean6, NYSSEN Jan1
Received:
2017-04-12
Accepted:
2017-09-13
Online:
2018-10-25
Published:
2018-10-25
About author:
Author: Etefa Guyassa, PhD, specialized in physical geography. E-mail:
Guyassa ETEFA, FRANKL Amaury, LANCKRIET Sil, Demissie BIADGILGN, Zenebe GEBREYOHANNES, Zenebe AMANUEL, POESEN Jean, NYSSEN Jan. Changes in land use/cover mapped over 80 years in the Highlands of Northern Ethiopia[J].Journal of Geographical Sciences, 2018, 28(10): 1538-1559.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Variables and their descriptions"
Factor | Variable | Description | Source/reference |
---|---|---|---|
Land use/cover | Bare land | Land with no vegetation cover, rock outcrop, quarry | WBISPP, 2003 |
Built-up area | Land under settlement, roads | ||
Cropland | Cultivated land (irrigated and non-irrigated) including open and regularly ploughed with or without shrub or tree line (boundary) and scattered trees, fallow with and without bushes/trees | ||
Forest | Land covered with dense trees or open; woodland; riparian trees, plantation (large scale and woodlot), church forest | ||
Grassland | Land covered with grasses used as grazing area | ||
Shrubland | Land covered with bushes: open, open with trees, dense, dense with trees, exclosures | ||
Water body | Land covered with water: lake, pond, river including dry river bed | ||
Topography | Alt (m a.s.l.) | Average elevation at different locations | DEM-SRTM at 30× 30 m resolution |
Slope (%) | Average slope gradient at different locations. | DEM-SRTM at 30 ×30 m resolution | |
Soil type | SS | Soils suitable for cultivation, well to perfectly drained, fertile, moderately deep to deep soil. e.g. Vertic Cambisols, Calcaric Vertisols, Vertic Phaeozems | Tielens et al. (2012) |
SMS | Soils moderately suitable for cultivation, shallow to moderately deep, moderate fertility, moderately drained. e.g. Eutric Regosols, Eutric Cambisols, Calcic Luvisols, Calcaric Cambisols | ||
SNS | Soils not suitable for cultivation, very shallow, rock outcrop, stony, excessively or poorly drained. e.g. Leptosols, Gleysols | ||
Lithology | LV | Volcanics (intrusive and extrusive): trap series; Mekelle dolerite. Contain wide range of minerals, which enhance growth of tree and crop | Tesfamichael et al. (2010); Tesfaye and Gebretsadik (1982) |
LSC | Sedimentary rock dominated by calcium carbonate: metalimestone; Antalo limestone; Agula shale. The land has a dry aspect because of karst and high infiltration. | ||
LSNC | Sedimentary rocks (non-carbonate): slates, metavolcanics; Edaga Arbi glacials; alluvium. Fine-texture, results in slow infiltration and relatively fertile soils | ||
LSS | Sandstones: metaconglomerate; major intrusive (these are granites); Enticho sandstone; Amba Aradom sandstone; Adigrat sandstone. These rocks have coarse texture, silica dominated. Sandy weathering materials where water will easily infiltrate; the domination of Si further makes that few minerals are available for vegetation growth | ||
Socio-economy | Pd (#/km2) | Population density in 2010 | CIESIN, 2016 |
DT (km) | Distance to town in the 1930s (DT30 and distance to town in 2014 (DT14) | ||
DR14 (km) | Distance to road in 2014 |
Table 2
Commission-omission error matrix of LUC point count and mapping"
Ground control / Google Earth | |||||||
---|---|---|---|---|---|---|---|
Cropland | Shrubland | Forest | Other cover | Sum | Commission error | ||
LUC count on screen | Cropland | 132 | 1 | 0 | 2 | 135 | 0.02 |
Shrubland | 6 | 88 | 3 | 2 | 99 | 0.13 | |
Forest | 0 | 0 | 6 | 0 | 6 | 0.00 | |
Other | 3 | 2 | 0 | 30 | 35 | 0.10 | |
Sum | 141 | 91 | 9 | 34 | 275 | ||
Omission error | 0.06 | 0.03 | 0.33 | 0.12 | |||
Overall accuracy | 0.93 | ||||||
Kappa coefficient | 0.89 | ||||||
LUC map | Cropland | 106 | 10 | 1 | 6 | 123 | 0.16 |
Shrubland | 12 | 68 | 1 | 1 | 82 | 0.21 | |
Forest | 1 | 1 | 3 | 0 | 5 | 0.67 | |
Other | 4 | 2 | 0 | 17 | 23 | 0.35 | |
Sum | 123 | 81 | 5 | 24 | 233 | ||
Omission error | 0.14 | 0.16 | 0.40 | 0.29 | |||
Overall accuracy | 0.83 | ||||||
Kappa coefficient | 0.72 |
Figure 2
An example of a point grid superimposed on: a) aerial photograph of January 3, 1936 with coordinate of center of vertical photo 13.561547°N and 39.024014°E (i.e. south of Abiy Adi); b) Google Earth image of January 4, 2014. Significant conversion of LUC occurred at this location as shown by: c) terrestrial photo around grid point N16 where land cover changed from dense forest in 1936 (d) to open forest in 2014 (e), and f) terrestrial photo around grid point F12 where land cover changed from open forest in 1936 (g) to cropland with trees in 2014 (h)"
Table 3
Land use/cover transformation matrix from the 1930s to 2014 in Geba catchment"
1935/ 2014 | Cropland | Shrub land | Forest | Grazing land | Built-up | Bare land | Water body | Total |
---|---|---|---|---|---|---|---|---|
Cropland | 9047 | 2193 | 116 | 434 | 920 | 714 | 168 | 13592 |
Shrub land | 4195 | 9151 | 351 | 460 | 680 | 1701 | 289 | 16827 |
Forest | 514 | 861 | 84 | 36 | 123 | 80 | 17 | 1715 |
Grazingland | 125 | 95 | 12 | 18 | 85 | 21 | 6 | 362 |
Bare land | 265 | 410 | 12 | 23 | 60 | 226 | 23 | 1019 |
Built-up | 79 | 29 | 4 | 7 | 117 | 10 | 1 | 247 |
Water body | 67 | 177 | 5 | 7 | 40 | 75 | 59 | 430 |
Total | 14292 | 12916 | 584 | 985 | 2025 | 2827 | 563 | 34192 |
Table 4
Relative importance of variables in the model using three criteria number of subset (the number of model subset that includes the variables), RSS (the scaled summed decrease of residual sum of squares overall subset) and Generalized Cross Validation (GCV). For the explanation on the variables see Table 1"
1930s | 2014 | |||||||
---|---|---|---|---|---|---|---|---|
Predictor | Number of subset | GCV | RSS | Predictor | Number of subset | GCV | RSS | |
Cropland | SS | 7 | 100 | 100 | SS | 8 | 100 | 100 |
DT30s | 6 | 75 | 77 | Pd | 7 | 66 | 69 | |
Slope | 6 | 75 | 77 | Slope | 6 | 55 | 59 | |
Alt | 2 | 17 | 26 | Alt | 5 | 30 | 39 | |
SMS | 1 | 12 | 18 | SMS | 2 | 4 | 18 | |
GCV R2 = 0.52 R2 = 0.64 | GCV R2 = 0.63 R2 = 0.73 | |||||||
Shrubland | Alt | 3 | 100 | 100 | SS | 5 | 100 | 100 |
Slope | 2 | 54 | 58 | Slope | 4 | 51 | 55 | |
SNS | 1 | 28 | 33 | Alt | 3 | 32 | 38 | |
SMS | 1 | 13 | 18 | |||||
GCV R2 = 0.38 R2 = 0.44 | GCV R2 = 0.58 R2 = 0.64 | |||||||
Forest | Slope | 6 | 100 | 100 | Alt | 6 | 100 | 100 |
Alt | 6 | 100 | 100 | LSC | 6 | 100 | 100 | |
SNS | 6 | 100 | 100 | Pd | 6 | 100 | 100 | |
LSC | 4 | 36 | 49 | SS | 6 | 96 | 97 | |
LSNC | 2 | 25 | 34 | |||||
GCV R2 = 0.40 R2 = 0.52 | GCV R2 = 0.31 R2 = 0.47 |
Figure 4
The spatial distribution and change of three dominant land use/cover of the study area: Cropland (a-c), shrubland (d-f) and forest (g-i). A positive (+) and negative (-) sign in these figures indicates the spatial expansion and shrinkage of LUC types, respectively. Graduated classifications illustrate the percent occurrence of land use type in the 1930s and 2014 that also reveal the degree of spatial changes within each location. Sd, Sf1, Sf2, Sh and Ss are supplementary data at Dergajen, Dessa forest 1, Dessa forest 2, Hadinet and Sinkata respectively."
Table S1
Keys used for the classification of LUC during the point counting on AP and GE"
Major class | Details class | Description | |
---|---|---|---|
X | Impossible to interpret (clouds, damage to photo, poor scan quality) | | |
U | Unsure, unknown land cover class | ||
Bare land | B | Bare (bare soil, rock outcrop), mining area | |
Cropland | C0 | Cropland fallow (scattered small shrubs) | |
C1 | Cropland (open, regularly ploughed) | ||
C2 | Cropland with shrub or tree line (on lynchet or boundary) | ||
C3 | Cropland with scattered trees | ||
Forest | F0 | Forest - open; woodland | |
F1 | Forest - dense | ||
Grazing land | G | Grassland | |
Built-up | H | Habitat (homestead, houses), road | |
Shrubland | S0 | Shrubland - open | |
S1 | Shrubland - open - with trees | ||
S2 S3 | Shrubland - dense Shrubland - dense - with trees | ||
Water body | W | Water (lake, river, dry river bed, reservoir) | |
Table S2
Frequency and percentage of scene at which land use/cover types have shown different changes between the 1930s and 2014; Chi-square test result. n = 139"
Land use/cover | Increased | Decreased | No change | Sig. | |||
---|---|---|---|---|---|---|---|
Frequency | Percent | Frequency | Percent | Frequency | Percent | ||
Bare land | 101 | 73 | 23 | 17 | 15 | 11 | <0.001 |
Built-up area | 113 | 81 | 17 | 12 | 9 | 6 | <0.001 |
Cropland | 85 | 61 | 52 | 37 | 2 | 1 | <0.001 |
Forest | 33 | 24 | 53 | 38 | 53 | 38 | 0.088 |
Grassland | 96 | 69 | 14 | 10 | 29 | 21 | <0.001 |
Shrubland | 29 | 21 | 105 | 76 | 5 | 4 | <0.001 |
Water body | 73 | 53 | 28 | 20 | 38 | 27 | <0.001 |
Table S3
Equations of three major land use/cover (cropland, shrubland and forest) in the 1930s and 2014 which were developed by Multivariate Adaptive Regression Spline model. C1930s = cropland in the 1930s, C2014 = cropland in 2014, S1930s = shrubland in the 1930s, S2014 = shrubland in 2014, F1930s = forest in the 1930s and F2014 = forest in 2014. h=hinge function with zero and a constant (knot) of a factor. For the explanation see Table 1."
Land use/cover | 1930s | 2014 |
---|---|---|
Cropland | C1930s = 0.2232 - 0.01063 * h (0, DT30s - 6) + 0.02519 * h (0, 17.4 - slope) - 0.1589 * h (0, DT30s - 8) * SS + 0.09218 * h (0, 6 - DT30s) * SMS + 0.04719 * h (0, 7 - slope) * SS - 0.00141 * h (0, 2037 - alt) * SS + 0.1724 * h (0, DT30s - 6) * SS | C2014 = 0.1196 + 0.2177 * SS + 0.0008321 * h(0, alt - 1859) + 0.02293 * h(0, 16 - slope) - 0.000121 * Pd * SS - 0.0000118 * Pd * h (0, 16 - slope) + 0.0005874 * h (0, 1859 - alt) * SMS - 0.0000299 * h (0, alt - 1859) * h (0, slope - 7) - 0.0001047 * h (0, alt - 2150) * h (0, 16 - slope) |
GCV 0.041 RSS 4.281 GCV R2 0.53 R2 0.64 | GCV 0.028 RSS 2.78 GRSq 0.63 R2 0.73 | |
Shrubland | S1930s = 0.6112 + 0.1556 * SNS - 0.000357 * h (0, alt - 1778) - 0.01745 * h (0, 15.4 - slope) | S2014 = 0.6841 - 0.2899 * SS - 0.1131 * SMS - 0.0003771 * h (0, 1778 - alt) - 0.0002857 * h (0, alt1 - 1859) - 0.02089 * h (0, 14 - slope) |
GCV 0.044 RSS 5.441 GCV R2 0.38 R2 0.44 | GCV 0.027 RSS 3.16 GCV R2 0.58 R2 0.64 | |
Forest | F1930s = 0.06381 + 0.08914 * LSNC - 0.0001301 * h (0, 2361 - alt) + 0.0001466 * h (0, slope - 6) * h (0, alt - 1980) + 0.0001778 * h (0, slope - 6) * h (0, - 2053) + 0.0001651 * slope * max (0, alt - 2361) * LSC + 0.000121 * h (0, slope - 6) * h (0, alt - 1980) * SNS | F2014 = 0.006373 - 0.1273 * SS + 0.0002263 * h (0, alt - 1830) + 0.0003854 * h (0, alt - 2396)* SNS *LSC + 0.02682 * h (0, alt - 2396) * LSC + 0.000000614 * h (0, 2396 - alt) * h (0, Pd - 81) |
[1] |
Aerts R, Van Overtveld K, November Eet al., 2016. Conservation of the Ethiopian church forests: Threats, opportunities and implications for their management.Sci. Total Environ., 551: 404-414. doi: 10.1016/ j.scitotenv.2016.02.034.
doi: 10.1016/j.scitotenv.2016.02.034 pmid: 26881731 |
[2] |
Alemayehu F, Taha N, Nyssen Jet al., 2009. The impacts of watershed management on land use and land cover dynamics in Eastern Tigray (Ethiopia).Resour. Conserv. Recy., 53(4): 192-198. doi: 10.1016/j.resconrec.2008. 11.007.
doi: 10.1016/j.resconrec.2008.11.007 |
[3] | Amanuel Z, 2009. Assessment of spatial and temporal variability of river discharge, sediment yield and sediment-fixed nutrient export in Geba River catchment, northern Ethiopia [D]. K.U. Leuven, Belgium. |
[4] |
Annys S, Demissie B, Amanuel Zenebeet al., 2017. Land cover changes as impacted by spatio-temporal rainfall variability along the Ethiopian Rift Valley escarpment.Reg. Environ. Change, 17(2): 451-463. doi: 10.1007/ s10113-016-1031-2.
doi: 10.1007/s10113-016-1031-2 |
[5] |
Araya A, Keesstra SD, Stroosnijder L, 2010. A new agro-climatic classification for crop suitability zoning in northern semi-arid Ethiopia.Agric. For. Meteorol., 150: 1057-1064. doi: 10.1016/j.agrformet.2010.04.003.
doi: 10.1016/j.agrformet.2010.04.003 |
[6] |
Asmamaw L, Mohammed A, Lulseged T, 2011. LUC dynamics and their effects in the Gerado catchment, northeastern Ethiopia.Int. J. Environ. Stud., 68(6): 883-900. doi: 10.1080/00207233.2011.637701.
doi: 10.1080/00207233.2011.637701 |
[7] |
Bard K A, Coltorti M, DiBlasi M Cet al., 2000. The environmental history of Tigray (Northern Ethiopia) in the Middle and Late Holocene: A preliminary outline.Afr. Archaeol. Rev., 17(2): 65-86. doi: 10.1023/ A:1006630609041.
doi: 10.1023/a:1006630609041 |
[8] |
Bastin L, Buchanan G, Beresford Aet al., 2013. Open resource mapping and services for web-based land-cover validation.Ecol. Inform., 14: 9-16. doi: 10.1016/j.ecoinf.2012.11.013.
doi: 10.1016/j.ecoinf.2012.11.013 |
[9] |
Bellhouse D, 1981. Area estimation by point-counting techniques.Biometrics, 37(2): 303-312. doi: 10.2307/ 2530419.
doi: 10.2307/2530419 |
[10] | Biadgilgn Demissie, Frankl A, Mitiku Haileet al., 2015. Biophysical controlling factors in upper catchments and braided rivers in drylands.Land Degradation and Development, 26: 748-758. doi: 10.100/lde.2357. |
[11] | CIESIN (Center for International Earth Science Information Network)- Columbia University,2016. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals.Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Accessed 20 March 2016. |
[12] |
Congalton R, Oderwald R, Mead R, 1983. Assessing landsat classification accuracy using discrete multivariate analysis statistical techniques.Photogrammetric Engineering and Remote Sensing, 49(12): 1671-1678.
doi: 10.1271/bbb1961.44.1003 |
[13] | CSA, 2008. Summary and Statistics Report of the 2007 Population and Housing Census. Federal Democratic Republic of Ethiopia Population Census Commission. December 2008, Addis Ababa, Ethiopia, pp113. |
[14] | Daniels R B, Gamble E E, Bartelli L Jet al., 1968. Application of the point count method to problems of soil microbiology.Soil Science, 106(2): 149-152. |
[15] |
de Muelenaere S, Frankl A, Haile Met al., 2014. Historical landscape photographs for calibration of Landsat land use/cover in the Northern Ethiopian Highlands.Land Degrad. Dev., 25(4): 319-335. doi: 10.1002/ldr.2142.
doi: 10.1002/ldr.2142 |
[16] | Deressa T, Hassan R M, Alemu Tet al., 2008. Analyzing the determinants of farmers' choice of adaptation methods and perceptions of climate change in the Nile Basin of Ethiopia. IFPRI Discussion Paper 00798, pp36. |
[17] |
Descheemaeker K, Nyssen J, Poesen Jet al., 2006a. Runoff on slopes with restoring vegetation: A case study from the Tigray highlands, Ethiopia.J. Hydrol., 331(1): 219-241. doi: 10.1016/j.jhydrol.2006.05.015.
doi: 10.1016/j.jhydrol.2006.05.015 |
[18] |
Descheemaeker K, Nyssen J, Rossi Jet al., 2006b. Sediment deposition and pedogenesis in exclosures in the Tigray Highlands, Ethiopia.Geoderma, 132(3): 291-314. doi: 10.1016/j.geoderma.2005.04.027.
doi: 10.1016/j.geoderma.2005.04.027 |
[19] | FAO, 2010. Global Forest Resources Assessment: Main report. Foresty paper 163, FAO. Rome, Italy. |
[20] | FAO, 2011. Food and Agriculture Organization Ethiopia Country Programming Framework: 2012-2015. Office of the FAO Representative in Ethiopia to AU and ECA, Addis Ababa. |
[21] |
Fleiss J L, 1971. Measuring nominal scale agreement among many raters.Psychological Bulletin, 76: 378-382.
doi: 10.1037/h0031619 |
[22] |
Frankl A, Nyssen J De Dapper Met al., 2011. Linking long-term gully and river channel dynamics to environmental change using repeat photography (Northern Ethiopia).Geomorphology, 129(3): 238-251. doi: 10.1016/j.geomorph.2011.02.018.
doi: 10.1016/j.geomorph.2011.02.018 |
[23] |
Frankl A, Poesen J, Haile Met al., 2013a. Quantifying long-term changes in gully networks and volumes in dryland environments: The case of Northern Ethiopia.Geomorphology, 201: 254-263. doi: 10.1016/ j.geomorph.2013.06.025.
doi: 10.1016/j.geomorph.2013.06.025 |
[24] |
Frankl, A, Zwertvaegher A, Poesen Jet al., 2013b. Transferring Google Earth observations to GIS-software: Example from gully erosion study.Int. J. Digital Earth, 6(2): 196-201. doi: 10.1080/17538947.2012.744777.
doi: 10.1080/17538947.2012.744777 |
[25] |
Frankl A, Seghers V, Stal Cet al., 2015. Using image-based modelling (SfM-MVS) to produce a 1935 ortho-mosaic of the Ethiopian Highlands.Int. J. Digital Earth, 8(5): 421-430. doi: 10.1080/17538947. 2014.942715.
doi: 10.1080/17538947.2014.942715 |
[26] | Friedman J H, 1991. Multivariate adaptive regression splines.The Annals of Statistics, 19(1): 1-67. |
[27] |
Friedman J H, Silverman B W, 1989. Flexible parsimonious smoothing and additive modeling.Technometrics, 31(1): 3-21
doi: 10.1080/00401706.1989.10488470 |
[28] |
Fritz S, McCallum I, Schill Cet al., 2009. Geo-Wiki. Org: The use of crowdsourcing to improve global land cover.Remote Sensing, 1(3): 345-354. doi: 10.3390/rs1030345.
doi: 10.3390/rs1030345 |
[29] |
Gebresamuel G, Singh B R, Dick O, 2010. Land-use changes and their impacts on soil degradation and surface runoff of two catchments of Northern Ethiopia.Acta Agr. Scand. BSP, 60(3): 211-226. doi: 10.1080/ 09064710902821741.
doi: 10.1080/09064710902821741 |
[30] |
Gebru T, Eshetu Z, Huang Yet al., 2009. Holocene palaeovegetation of the Tigray Plateau in northern Ethiopia from charcoal and stable organic carbon isotopic analyses of gully sediments.Palaeogeogr. Palaeoclimatol. Palaeoecol., 282(1): 67-80. doi: 10.1016/j.palaeo.2009.08.011.
doi: 10.1016/j.palaeo.2009.08.011 |
[31] | Goldewijk K K, 2001. Estimating global land use change over the 1930s 300 years: The HYDE database.Glob. Biogeochem. Cycles, 15(2): 417-433. doi: 10.1029/1999GB001232. |
[32] |
Goldewijk K K, Ramankutty N, 2004. Land cover change over the last three centuries due to human activities: The availability of new global data sets.GeoJournal, 61(4): 335-344. doi: 10.1007/s10708-004-5050-z.
doi: 10.1007/s10708-004-5050-z |
[33] | Hadush G, 2012. Modeling of Hydrological Process in the Geba Riv er Basin in the northern Ethiopia [D]. Brussels, Belgium: Vrije Universiteit. |
[34] |
Haregeweyn N, Fikadu G, Tsunekawa Aet al., 2012. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia.Landscape and Urban Planning, 106(2): 149-157.
doi: 10.1016/j.landurbplan.2012.02.016 |
[35] | Hoffer R, 1975. Natural resource mapping in mountainous terrain by computer analysis of ERTS-1 satellite data. Purdue University. LARS Research Bulletin, 919: 124 pp. |
[36] | HTS, 1976. Tigrai Rural Development Study, Annex 1. Land and Vegetation Resources. Hunting Technical Services Ltd: Hemel Hempstead. |
[37] | Hu Q, Wu W, Xia Tet al., 2013. Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping.Remote Sensing, 5(11): 6026-6042. doi: 10.3390/rs5116026. |
[38] |
Hurni H, Tato K, Zeleke G, 2005. The implications of changes in population, land use, and land management for surface runoff in the upper Nile basin area of Ethiopia.Mountain Research and Development, 25: 147-154.
doi: 10.1093/glycob/cwu098 pmid: 25246348 |
[39] | Hurni H, Wiesmann U, 2010. Global change and sustainable development: A synthesis of regional experiences from research partnerships. University of Bern. Switzerland. Perspectives of the Swiss National Centre of Competence in Research (NCCR) North-South, University of Bern,Vol. 5. Bern, Switzerland: Geographica Bernensia, 578 pp. |
[40] | IGM. Instituto Geografico Militare, Ente Cartografico dello Stato, 2012. www.igmi.org. Accessed 10 January 2016. |
[41] |
Jacob M, Frankl A, Beeckman Het al., 2015. North Ethiopian Afro-alpine tree line dynamics and forest cover change since the early 20th century.Land Degrad. Dev., 26: 654-664. doi: 10.1002/ldr.2320.
doi: 10.1002/ldr.2320 |
[42] |
Jacob M, Frankl A, Hurni Het al., 2017. Land cover dynamics in the Simien Mountains (Ethiopia), half a century after establishment of the National Park.Reg. Environ. Change, 17: 777-787. doi: 10.1007/s10113-016- 1070-8.
doi: 10.1007/s10113-016-1070-8 |
[43] | Kidane G, Dejene A, Malo M, 2010. Agricultural based Livelihood Systems in Drylands in the Context of Climate Change: Inventory of Adaptation Practices and Technologies of Ethiopia. Environment and Natural Resource Working Paper 38, FAO, Rome, 57pp. |
[44] | Lambin E F, Geist H J, Lepers E, 2003. Dynamics of land-use and land-cover change in tropical regions.Annu. Rev. Environ. Resour., 28(1): 205-241. doi: 10.1146/annurev.energy.28.050302.105459. |
[45] |
Lambin E F, Turner B L, Geist H Jet al., 2001. The causes of land-use and land-cover change: Moving beyond the myths.Glob. Environ. Chang. 11(4): 261-269. doi: 10.1016/S0959-3780(01)00007-3.
doi: 10.1016/S0959-3780(01)00007-3 |
[46] |
Lanckriet S, Derudder B, Naudts Jet al., 2015. A political ecology perspective of land degradation in the north Ethiopian Highlands.Land Degrad. Dev., 26: 521-530. doi: 10.1002/ldr.2278.
doi: 10.1002/ldr.2278 |
[47] |
Lepers E, Lambin E F, Janetos A Cet al., 2005. A synthesis of information on rapid land-cover change for the period 1981-2000.BioScience, 55(2): 115-124. doi: 10.1641/0006-3568.
doi: 10.1641/0006-3568(2005)055[0115:ASOIOR]2.0.CO;2 |
[48] | Loelkes G L, Howard G E, Schwertz E Let al., 1983. Land use/land cover and environmental photointerpretatlon keys.U.S. Geological Survey Bulletin, 1600. |
[49] | Maitima J M, Mugatha S M, Reid R S et al., 2009. The linkages between land use change, land degradation and biodiversity across East Africa.LUCID Working Paper, No.42. Nairobi (Kenya): ILRI.. |
[50] |
Meire E, Frankl A, De Wulf Aet al., 2013. Land use/cover dynamics in Africa since the nineteenth century: warped terrestrial photographs of North Ethiopia.Reg. Environ. Chang., 13(3): 717-737. doi: 10.1007/s10113- 012-0347-9.
doi: 10.1007/s10113-012-0347-9 |
[51] |
Mengistu D A, Waktola D K, Woldetsadik M, 2012. Detection and analysis of land-use and land-cover changes in the Midwest escarpment of the Ethiopian Rift Valley.J. Land Use Sci., 7(3): 239-260. doi: 10.1080/1747423X. 2011.562556.
doi: 10.1080/1747423X.2011.562556 |
[52] | MEA, 2005. Ecosystem and Human Well-being:Synthesis. Millennium Ecosystem Assessment, 2005. Washington DC: : Island Press. |
[53] |
Miheretu B A, Yimer A A, 2018. Land use/land cover changes and their environmental implications in the Gelana sub-watershed of Northern Highlands of Ethiopia.Environmental Systems Research, 6(1): 7.
doi: 10.1186/s40068-017-0084-7 |
[54] | Mitiku H, Herweg K, Stillhardt B, 2006. Sustainable land management: A new approach to soil and water conservation in Ethiopia. Mekelle University, Mekelle, Ethiopia, University of Berne, Berne, Switzerland. |
[55] |
Munro R N, Deckers J, Haile Met al., 2008. Soil landscapes, land cover change and erosion features of the Central Plateau region of Tigrai, Ethiopia: Photo-monitoring with an interval of 30 years.Catena, 75(1): 55-64. doi: 10.1016/j.catena.2008.04.009.
doi: 10.1016/j.catena.2008.04.009 |
[56] |
Nyssen J, Frankl A, Mitiku Haile Hurni Het al., 2015. Environmental conditions and human drivers for changes to north Ethiopian mountain landscapes over 145 years.Sci. Total Environ., 485/486: 164-179. doi: 10.1016/j.scitotenv.2014.03.052.
doi: 10.1016/j.scitotenv.2014.03.052 pmid: 24717722 |
[57] |
Nyssen J, Haile M, Naudts Jet al., 2009. Desertification? Northern Ethiopia re-photographed after 140 years.Sci. Total Environ., 407(8): 2749-2755. doi: 10.1016/j.scitotenv.2008.12.016.
doi: 10.1016/j.scitotenv.2008.12.016 pmid: 19155052 |
[58] |
Nyssen J, Naudts J, De Geyndt Ket al., 2008a. Soils and land use in the Tigray highlands (Northern Ethiopia).Land Degrad. Dev., 19(3): 257-274. doi: 10.1002/ldr.840.
doi: 10.1002/ldr.840 |
[59] |
Nyssen J, Petrie G, Mohamed Set al., 2016. Recovery of the aerial photographs of Ethiopia in the 1930s.J. Cult. Herit., 17: 170-178. doi: 10.1016/j.culher.2015.07.010.
doi: 10.1016/j.culher.2015.07.010 |
[60] |
Nyssen J, Poesen J, Descheemaeker Ket al., 2008b. Effects of region-wide soil and water conservation in semi-arid areas: The case of northern Ethiopia.Z. Geomorphol., 52(3): 291-315. doi: 10.1127/ 0372-8854/ 2008/0052-0291.
doi: 10.1127/0372-8854/2008/0052-0291 |
[61] |
Nyssen J, Vandenreyken H, Poesen Jet al., 2005. Rainfall erosivity and variability in the Northern Ethiopian Highlands.J. Hydrol., 311(1): 172-187. doi: 10.1016/j.jhydrol.2004.12.016.
doi: 10.1016/j.jhydrol.2004.12.016 |
[62] |
Pankhurst R, 1995. The history of deforestation and afforestation in Ethiopia prior to World War I.Northeast African Studies, 2(1): 119-133.
doi: 10.1353/nas.1995.0024 |
[63] |
Quiros E, Felicísimo A M, Cuartero A, 2009. Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images.Sensors, 9(11): 9011-9028. doi: 10.3390/s91109011.
doi: 10.3390/s91109011 pmid: 22291550 |
[64] |
Ramankutty N, Foley J A, 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992.Glob. Biogeochem. Cycles., 13(4): 997-1027. doi: 10.1029/1999GB900046.
doi: 10.1029/1999GB900046 |
[65] |
Ramankutty N, Foley J A, Olejniczak N J, 2002. People on the land: Changes in global population and croplands during the 20th century.Ambio, 31(3): 251-257.
doi: 10.1579/0044-7447-31.3.251 pmid: 12164136 |
[66] |
Reid R S, Kruska R L, Muthui Net al., 2000. Land-use and land-cover dynamics in response to changes in climatic, biological and socio-political forces: The case of southwestern Ethiopia.Landsc. Ecol., 15(4): 339-355. doi: 10.1023/A:1008177712995.
doi: 10.1023/A:1008177712995 |
[67] |
Rembold F, Carnicelli S, Nori Met al., 2000. Use of aerial photographs, Landsat TM imagery and multidisciplinary field survey for land-cover change analysis in the lakes region (Ethiopia).International Journal of Applied Earth Observation and Geoinformation, 2(3/4): 181-189.
doi: 10.1016/S0303-2434(00)85012-6 |
[68] |
Romanov P, Tarpley D, Gutman Get al., 2003. Mapping and monitoring of the snow cover fraction over North America.J. Geophys. Res., 108(D16): 8619. doi: 10.1029/2002JD003142.
doi: 10.1029/2002JD003142 |
[69] | Saebo H V, 1983. Land Use and Environmental statistics obtained by point sampling. Central Bureau of Statistics of Norway. Artikler 144: 35pp. |
[70] |
Scanlon B R, Reedy R C, Tachovsky J A, 2007. Semiarid unsaturated zone chloride profiles: Archives of past land use change impacts on water resources in the southern High Plains, United States.Water Resour. Res., 43(W06423): 1-13. doi: 10.1029/2006WR005769.
doi: 10.1029/2006WR005769 |
[71] | Shockey W R, 1969. Point sampling of land use in the Washita Basin, United States Department of Agriculture, Agricultural research service. Archived Documents, 41-149. |
[72] | Stehman S V, 1996. Estimating the Kappa Coefficient and its variance under stratified random sampling.Photogrammetric Engineering & Remote Sensing, 62(4): 401-402. |
[73] |
Tadesse G, Zavaleta E, Shennan Cet al., 2014. Policy and demographic factors shape deforestation patterns and socio-ecological processes in southwest Ethiopian coffee agroecosystems.Applied Geography, 54: 149-159. doi: 10.1016/j.apgeog.2014.08.001.
doi: 10.1016/j.apgeog.2014.08.001 |
[74] |
Taye G, Poesen J, Wesemael B Vet al., 2013. Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi-arid Northern Ethiopia.Physical Geography, 34(3): 236-259.
doi: 10.1080/02723646.2013.832098 |
[75] |
Tayyebi A, Pijanowski B C, 2014. Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools.Int. J. Appl. Earth Obs. Geoinf., 28: 102-116. doi: 10.1016/j.jag.2013.11.008.
doi: 10.1016/j.jag.2013.11.008 |
[76] |
Teka K, Van Rompaey A, Poesen J, 2013. Assessing the role of policies on land use change and agricultural development since 1960s in northern Ethiopia.Land Use Policy, 30(1): 944-951. doi: 10.1016/j.landusepol. 2012.07.005.
doi: 10.1016/j.landusepol.2012.07.005 |
[77] |
Teka K, Van Rompaey A, Poesen Jet al., 2015. Spatial analysis of land cover changes in eastern Tigray (Ethiopia) from 1965 to 2007: Are there signs of a forest transition?Land Degrad. Dev., 26(7): 680-689. doi: 10.1002/ldr.2275.
doi: 10.1002/ldr.2275 |
[78] | Tesfamichael G, De Smedt F, Miruts Het al., 2010. Large-scale geological mapping of the Geba basin, northern Ethiopia. Tigray Livelihood Paper No 9, VLIR - Mekelle University IUC Program, 46pp. Tesfaye C, Gebretsadik E, 1982. Hydrogeology of Mekelle Aea (ND37-11).Ministry of Mines and Energy, Ethiopian Institute of Geological Survey. The Provisional Military Government of Socialist Ethiopia. Memoir No.2, Addi Ababa, Ethiopia,, pp50. |
[79] | Tielens S, 2012. Towards a Soil Map of the Geba Catchment using benchmark soils. Dissertation, K.U. Leuven, Belgium, pp226. |
[80] |
Tilahun K, 2006. Analysis of rainfall climate and evapo-transpiration in arid and semi-arid regions of Ethiopia using data over the last half a century.J. Arid Environ., 64(3): 474-487. doi: 10.1016/j.jaridenv.2005.06.013.
doi: 10.1016/j.jaridenv.2005.06.013 |
[81] |
Tsegaye D, Moe S R, Vedeld Pet al., 2010. Land-use/cover dynamics in Northern Afar rangelands, Ethiopia.Agriculture, Ecosystems & Environment, 139(1): 174-180.
doi: 10.1016/j.agee.2010.07.017 |
[82] |
Turner B, Meyer W B, Skole D L, 1994. Global land-use/land-cover change: Towards an integrated study.Ambio Stockholm, 23(1): 91-95.
doi: 10.1080/02786829408959678 |
[83] | USGS, 2016. Shuttle Radar Topography Mission (SRTM)(1-arc second) documentation. 2016. |
[84] |
Van de Wauw J, Baert G, Moeyersons Jet al., 2008. Soil-landscape relationships in the basalt-dominated highlands of Tigray, Ethiopia.Catena, 75(1): 117-127. doi: 10.1016/j.catena.2008.04.006.
doi: 10.1016/j.catena.2008.04.006 |
[85] |
Vancampenhout K, Nyssen J, Gebremichael Det al., 2006. Stone bunds for soil conservation in the northern Ethiopian Highlands: Impacts on soil fertility and crop yield.Soil and Tillage Research, 90(1): 1-15.
doi: 10.1016/j.still.2005.08.004 |
[86] | Vanmaercke M, Poesen J, Broeckx Jet al., 2014. Sediment yield in Africa.Earth-Sci. Rev., 136: 350-368. doi: 10.1016/j.earscirev.2014.06.004. |
[87] |
Virgo K, Munro R, 1978. Soil and erosion features of the Central Plateau region of Tigrai, Ethiopia.Geoderma, 20(2): 131-157. doi: 10.1016/0016-7061(78)90040-X.
doi: 10.1016/0016-7061(78)90040-X |
[88] | Woien H, 1995. Deforestation, information and citations.GeoJournal, 37(4): 501-511. doi: 10.1007/BF00806939. |
[89] | WBISPP (Woody Biomass Inventory and Strategic Planning Project), 2003. Tigray Regional State: A strategic plan for the sustainable development, conservation, and management of the woody biomass resources. Final Report, Mekelle, Ethiopia. |
[90] | Zeimetz K A, Dillon E, Hardy E Eet al., 1976. Using area point samples and airphotos to estimate land use change.Agricultural Economics Research, 28(2): 65-74. |
[91] |
Zeleke G, Hurni H, 2001. Implications of land use and land cover dynamics for mountain resource degradation in the Northwestern Ethiopian Highlands.Mountain Research and Development, 21(2): 184-191.
doi: 10.1659/0276-4741(2001)021[0184:IOLUAL]2.0.CO;2 |
[1] | HUANG Huiping, CHEN Wei, ZHANG Yuan, QIAO Lin, DU Yunyan. Analysis of ecological quality in Lhasa Metropolitan Area during 1990-2017 based on remote sensing and Google Earth Engine platform [J]. Journal of Geographical Sciences, 2021, 31(2): 265-280. |
[2] | CAO Juan, ZHANG Zhao, ZHANG Liangliang, LUO Yuchuan, LI Ziyue, TAO Fulu. Damage evaluation of soybean chilling injury based on Google Earth Engine (GEE) and crop modelling [J]. Journal of Geographical Sciences, 2020, 30(8): 1249-1265. |
[3] | ZHAO Zhilong, FANG Xiuqi, YE Yu, ZHANG Chengpeng, ZHANG Diyang. Reconstruction of cropland area in the European part of Tsarist Russia from 1696 to 1914 based on historical documents [J]. Journal of Geographical Sciences, 2020, 30(8): 1307-1324. |
[4] | Fanneng HE, Meijiao Li, Shicheng Li. Reconstruction of Lu-level cropland areas in the Northern Song Dynasty (AD976-1078) [J]. Journal of Geographical Sciences, 2017, 27(5): 606-618. |
[5] | Lijuan ZHANG, Lanqi JIANG, Xuezhen ZHANG. Reconstruction of cropland spatial patterns and its spatiotemporal changes over the 20th century on the Songnen Plain, Northeast China [J]. Journal of Geographical Sciences, 2017, 27(10): 1209-1226. |
[6] | HE Fanneng, LI Shicheng, ZHANG Xuezhen. Reconstruction of cropland area and spatial distribution in the mid-Northern Song Dynasty (AD1004-1085) [J]. Journal of Geographical Sciences, 2012, 22(2): 359-370. |
[7] | LI Yuechen. Land cover dynamic changes in northern China: 1989?2003 [J]. Journal of Geographical Sciences, 2008, 18(1): 85-94. |
[8] | JIANG Jianjun, ZHOU Jie, WU Hong'an, AI Li,ZHANG Hailong, ZHANG Li, XU Jun. Land cover changes in the rural-urban interaction of Xi'an region using Landsat TM/ETM data [J]. Journal of Geographical Sciences, 2005, 15(4): 423-430. |
[9] | LI Rendong, LIU Jiyuan, ZHUANG Dafang, WANG Hongzhi. The spatial-temporal changes of the land use/cover in the Dongting Lake area during the last decade [J]. Journal of Geographical Sciences, 2003, 13(3): 259-264. |
|