Journal of Geographical Sciences ›› 2018, Vol. 28 ›› Issue (10): 1467-1484.doi: 10.1007/s11442-018-1556-z
• Orginal Article • Previous Articles Next Articles
Lina LIU1,2(), Jiansheng QU1,2*(
), Zhiqiang ZHANG1, Jingjing ZENG1,2, Jinping WANG1, Liping DONG1, Huijuan PEI1, Qin LIAO1
Received:
2017-02-24
Accepted:
2017-09-28
Online:
2018-10-25
Published:
2018-10-25
About author:
Author: Liu Lina, PhD, specialized in low-carbon economy and energy policy. E-mail:
Supported by:
Lina LIU, Jiansheng QU, Zhiqiang ZHANG, Jingjing ZENG, Jinping WANG, Liping DONG, Huijuan PEI, Qin LIAO. Assessment and determinants of per capita household CO2 emissions (PHCEs) based on capital city level in China[J].Journal of Geographical Sciences, 2018, 28(10): 1467-1484.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The CO2 emission factors from the household sector used in this work"
Items | Value | Unit | Source |
---|---|---|---|
Anthracite coal | 2.1625 | t CO2/104 t | Data source: The People’s Republic of China National Greenhouse Gas Inventory ( Calculated by IPCC Reference Approach (IPCC, 2006; |
Bituminous coal | 1.9518 | t CO2/104 t | |
Honeycomb briquette | 1.6366 | t CO2/104 t | |
Gasoline | 3.0425 | t CO2/104 t | |
Diesel oil | 3.1469 | t CO2/104 t | |
Coal gas | 2.9509 | t CO2/104 t | |
Liquefied petroleum gas | 7.0493 | t CO2/104 t | |
Natural gas | 21.6502 | t CO2/108 m3 | |
Electricity | / | t CO2/MWh | Data source: ( |
Heating | / | t CO2/m2 | Data source: Zhang et al., 2013 |
Food | 0.77 | t CO2/104 yuan | Data source: China Energy Statistical Yearbook ( Calculated by input-output analysis ( |
Clothing | 1.20 | t CO2/104 Yuan | |
Water | 2.13 | t CO2/104 Yuan | |
Transportation and communication | 2.33 | t CO2/104 Yuan | |
Education, culture, and recreation | 1.09 | t CO2/104 Yuan | |
Health care and medical services | 2.13 | t CO2/104 Yuan | |
Household facilities | 2.44 | t CO2/104 Yuan |
Table 2
The factors influencing PHCEs used in this work"
Variables abbreviations | Variables | Interpretation | Unit |
---|---|---|---|
PHCEs | Per capita household CO2 emissions | Total household CO2 emissions/ population | t CO2/person |
PI | Per capita income | Total income/population | 104 yuan/person |
TP | Total population | Urban population | Person |
UR | Urban and rural structure | The proportion of urban population in total | % |
HS | Household size | Average persons in each household | Person/household |
EL | Education level | The proportion of population with college and higher-level education | % |
AS | Age structure | The proportion of population aged 15-49 | % |
Table 3
Estimation of influencing factors on per capita household CO2 emissions by SLM and SEM"
Explanatory | SLM | SEM | ||||
---|---|---|---|---|---|---|
SLM(i) | SLM(ii) | SLM(iii) | SEM(i) | SEM(ii) | SEM(iii) | |
ρ | -0.1126 | -0.1413 | -0.1797** | |||
C | 5.5368*** | 4.9599*** | 4.1512*** | 3.8121*** | 3.6012*** | 3.5437*** |
PI | 0.2693*** | 0.1893** | 0.1132* | 0.3818*** | 0.3633*** | 0.2951*** |
HS | -0.8135** | -0.7774** | -0.6680* | -0.4058 | -0.4027 | -0.5114* |
EL | 0.0230* | 0.0173 | 0.0066 | 0.0042 | ||
TP | -0.0006 | -0.0001 | ||||
UR | -0.0018** | 0.0004 | ||||
AS | 0.0133* | |||||
γ | 0.6847*** | 0.1559*** | 0.0102 | |||
R2 | 0.47 | 0.52 | 0.59 | 0.59 | 0.59 | 0.61 |
AIC | 55.88 | 55.26 | 55.66 | 49.85 | -51.53 | 55.82 |
SC | 61.62 | 62.43 | 67.14 | 54.15 | 57.26 | 65.85 |
[1] |
Anselin L, 1992. Space and applied econometrics: Introduction.Regional Science and Urban Economics, 22(3): 307-316.
doi: 10.1016/0166-0462(92)90031-U |
[2] |
Bin S, Dowlatabadi H, 2005. Consumer lifestyle approach to US energy use and the related CO2 emissions.Energy Policy, 33: 197-208.
doi: 10.1016/S0301-4215(03)00210-6 |
[3] |
Cheng Yeqing, Wang Zheye, Ye Xinyueet al., 2014. Spatiotemporal dynamics of carbon intensity from energy consumption in China.Journal of Geographical Sciences, 24(4): 631-650.
doi: 10.1007/s11442-014-1110-6 |
[4] |
Chuai Xiaowei, Huang Xianjin, Wang Wanjinget al., 2012. Spatial econometric analysis of carbon emissions from energy consumption in China. Journal of Geographical Sciences, 22(4): 630-642.
doi: 10.1007/s11442-012-0952-z |
[5] |
Cohen C, Lenzen M, Schaeffer R, 2005. Energy requirements of households in Brazil.Energy Policy, 33: 555-562.
doi: 10.1016/j.enpol.2003.08.021 |
[6] |
Dai Hancheng, Masui T, Matsuoka Yet al., 2012. The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050.Energy, 50: 736-750.
doi: 10.1016/j.enpol.2012.08.023 |
[7] | Dietz T, Gardner G T, Gilligan Jet al., 2009. Household actions can provide a behavioral wedge to rapidly reduce U.S. carbon emissions.PNAS, 106(44): 18452-18456. |
[8] | Fahmy E, Thumim J, White V, 2011. The distribution of UK household CO2 emissions: Interim report. York: The Joseph Rowntree Foundation. Download at https://www.jrf.org.uk/reports. |
[9] |
Fan Jin, Guo Xiumei, Marinova Det al., 2012. Embedded carbon footprint of Chinese urban household: Structure and changes. Journal of Cleaner Production, 33: 50-59.
doi: 10.1016/j.jclepro.2012.05.018 |
[10] |
Fan Jin, Wu Yanrui, Guo Xiumeiet al., 2014. Regional disparity of embedded carbon footprint and its sources in China: A consumption perspective.Asia Pacific Business Review, 21(1): 130-146.
doi: 10.1080/13602381.2014.939899 |
[11] |
Fan Jingli, Liao Hua, Liang Qiaomeiet al., 2013. Residential carbon emission evolutions in urban-rural divided China: An end-use and behavior analysis.Applied Energy, 101: 323-332.
doi: 10.1016/j.apenergy.2012.01.020 |
[12] |
Feng Zhenhua, Zou Lele, Wei Yiming, 2011. The impact of household consumption on energy use and CO2 emissions in China.Energy, 36(1): 656-670.
doi: 10.1016/j.energy.2010.09.049 |
[13] |
Golley J, Meng Xin, 2012. Income inequality and carbon dioxide emissions: The case of Chinese urban households. Energy Economics, 34(6): 1864-1872.
doi: 10.1016/j.eneco.2012.07.025 |
[14] |
Guan Dabo, Peters G P, Weber C Let al., 2009. Journey to world top emitter: An analysis of the driving forces of China’s recent CO2 emissions surge.Geophysical Research Letters, 36(4): L04709.
doi: 10.1029/2008GL036540 |
[15] |
Han Liyan, Xu Xinkuo, Han Lu, 2015. Applying quantile regression and Shapley decomposition to analyzing the determinants of household embedded carbon emissions: Evidence from urban China. Journal of Cleaner Production, 103: 219-230.
doi: 10.1016/j.jclepro.2014.08.078 |
[16] |
Hao Yu, Chen Hao, Wei Yiminget al., 2016. The influence of climate change on CO2 (carbon dioxide) emissions: An empirical estimation based on Chinese provincial panel data.Journal of Cleaner Production, 131: 667-677.
doi: 10.1016/j.jclepro.2016.04.117 |
[17] | Intergovernmental Panel on Climate Change (IPCC), 2006.IPCC guidelines for national greenhouse gas inventories.Download at . |
[18] |
Jones C M, Kammen D M, 2011. Quantifying carbon footprint reduction opportunities for U.S. households and communities.Environmental Science & Technology, 45(9): 4088-4095.
doi: 10.1021/es102221h pmid: 21449584 |
[19] |
Jones C M, Kammen D M, 2013. Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density.Environmental Science & Technology, 48(2): 895-902.
doi: 10.1021/es4034364 pmid: 24328208 |
[20] |
Kadian R, Dahiya R P, Garg H P, 2007. Energy-related emissions and mitigation opportunities from the household sector in Delhi.Energy Policy, 35: 6195-6211.
doi: 10.1016/j.enpol.2007.07.014 |
[21] |
Kerkhof A C, Benders R M J, Moll H C, 2009. Determinants of variation in household CO2 emissions between and within countries.Energy Policy, 37(4): 1509-1517.
doi: 10.1016/j.enpol.2008.12.013 |
[22] |
Lenzen M, 1998. Primary energy and greenhouse gases embodied in Australian final consumption: An input-output analysis.Energy Policy, 26(6): 495-506.
doi: 10.1016/S0301-4215(98)00012-3 |
[23] |
Li Jianbao, Huang Xianjin, Yang Honget al., 2016. Situation and determinants of household carbon emissions in Northwest China.Habitat International, 51: 178-187.
doi: 10.1016/j.habitatint.2015.10.024 |
[24] |
Li Yanmei, Zhao Rui, Liu Tianshuet al.Liu Tianshu , 2015. Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996-2012.Journal of Cleaner Production, 102: 103-114.
doi: 10.1016/j.jclepro.2015.04.037 |
[25] |
Liu Lancui, Wu Gang, Wang Jinnanet al., 2011. China’s carbon emissions from urban and rural households during 1992-2007.Journal of Cleaner Production, 19(15): 1754-1762.
doi: 10.1016/j.jclepro.2011.06.011 |
[26] | Liu Lina, Qu Jiansheng, Afton C Set al., 2017. Spatial variations and determinants of per capita household CO2 emissions (PHCEs) in China.Sustainability, 9(17): 1277. |
[27] |
Liu Yansui, Yan Bin, Zhou Yang, 2016. Urbanization, economic growth, and carbon dioxide emissions in China: A panel cointegration and causality analysis.Journal of Geographical Sciences, 26(2): 131-152.
doi: 10.1007/s11442-016-1259-2 |
[28] | National Bureau of Statistics of China (NBSC), 2013. China Energy Statistical Yearbook 2012. Beijing: China Statistics Press. (in Chinese) |
[29] | National Bureau of Statistics of China (NBSC), 2013. China Statistical Yearbook 2012. Beijing: China Statistics Press. (in Chinese) |
[30] | National Bureau of Statistics of China (NBSC), 2015. Input-output Tables of China 2012. Beijing: China Statistics Press. (in Chinese) |
[31] | National Development and Reform Commission (NDRC), 2007. The People's Republic of China National Greenhouse Gas Inventory. Beijing: China Environmental Science Press. (in Chinese) |
[32] | Clean Development Mechanism in China (CDMC), 2010. Baseline Emission Factor for Regional Power Grids in China. Download at |
[33] |
Nejat P, Jomehzadeh F, Taheri M Met al., 2015. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries).Renewable and Sustainable Energy Reviews, 43: 843-862.
doi: 10.1016/j.rser.2014.11.066 |
[34] |
Qu Jiansheng, Zeng Jingjing, Li Yanet al., 2013. Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China.Energy Policy, 57: 133-140.
doi: 10.1016/j.enpol.2012.12.065 |
[35] |
Qu Jiansheng, Maraseni T, Liu Linaet al., 2015. A comparison of household carbon emission patterns of urban and rural China over the 17 year period (1995-2011). Energies, 8: 10537-10557.
doi: 10.3390/en80910537 |
[36] |
Reinders A H M E, Vringer K, Blok K, 2003. The direct and indirect energy requirement of households in the European Union.Energy Policy, 31: 139-153.
doi: 10.1016/0140-6701(96)88033-7 |
[37] | Shan Yuli, Guan Dabo, Liu Jianghua et al., 2017. Methodology and applications of city level CO2 emissions accounts in China. Journal of Cleaner Production. . Download at |
[38] |
Shen Lei, Sun Yanzhi, 2016. Review on carbon emissions, energy consumption and low-carbon economy in China from a perspective of global climate change.Journal of Geographical Sciences, 26(7): 855-870.
doi: 10.1007/s11442-016-1302-3 |
[39] |
Tian Xin, Chang Miao, Lin Chenet al., 2014. China’s carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns.Applied Energy, 123: 19-28.
doi: 10.1016/j.apenergy.2014.02.016 |
[40] | Underwood A J, 2013. Household carbon dioxide emissions in the United States: The role of demographic change (Doctoral dissertation, Colorado State University, 2013). ProQuest Dissertations Publishing. |
[41] |
Vringer K, Blok K, 1995. The direct and indirect energy requirements of households in the Netherlands.Energy Policy, 23(10): 893-910.
doi: 10.1016/0140-6701(96)88033-7 |
[42] |
Xu Xibo, Tan Yan, Shen Shuanget al., 2015. Urban household carbon emission and contributing factors in the Yangtze River Delta, China.PLoS ONE, 10(4): e0121604.
doi: 10.1371/journal.pone.0121604 pmid: 25884853 |
[43] |
Wang Shaojian, Fang Chuanglin, Li Guangdong, 2015. Spatiotemporal characteristics, determinants and scenario analysis of CO2 emissions in China using provincial panel data.PLoS ONE, 10(9): e0138666.
doi: 10.1371/journal.pone.0138666 pmid: 26397373 |
[44] |
Wang Zhaohua, Yang Lin, 2014. Indirect carbon emissions in household consumption: Evidence from the urban and rural area in China.Journal of Cleaner Production, 78: 94-103.
doi: 10.1016/j.jclepro.2014.04.041 |
[45] |
Wang Zhaohua, Liu Wei, Yin Jianhua, 2015. Driving forces of indirect carbon emissions from household consumption in China: An input-output decomposition analysis. Nat Hazards, 75(2): 257-272.
doi: 10.1007/s11069-014-1114-7 |
[46] |
Weber C L, Matthews H S, 2008. Quantifying the global and distributional aspects of American household carbon footprint.Ecological Economics, 66(2/3): 379-391.
doi: 10.1016/j.ecolecon.2007.09.021 |
[47] |
Wei Yiming, Liu Lancui, Fan Yinget al., 2007. The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China’s residents.Energy Policy, 35: 247-257.
doi: 10.1016/j.enpol.2005.11.020 |
[48] |
Wiedenhofer D, Guan Dabo, Liu Zhuet al., 2017. Unequal household carbon footprints in China. Nature Climate Change, 7: 75-80.
doi: 10.1038/nclimate3165 |
[49] | Wooldridge J, 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Massachusetts: MIT Press. |
[50] | World Bank Group, 2016. down |
[51] |
Yuan Bolong, Ren Shenggang, Chen Xiaohong, 2015. The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis. Applied Energy, 140: 94-106.
doi: 10.1016/j.apenergy.2014.11.047 |
[52] |
Zha Donglan, Zhou Dequn, Zhou Peng, 2010. Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis. Energy Policy, 38(7): 3377-3383.
doi: 10.1016/j.enpol.2010.02.011 |
[53] | Zhang Yan, Chen Taizheng, Qin Yaochen, 2013. Spatial pattern and the influencing factors of CO2 emissions from urban residents direct energy consumption.Journal of Henan University (Natural Science), 43(2): 161-167. (in Chinese) |
[54] |
Zhao Rui, Min Ning, Geng Yonget al., 2016. Allocation of carbon emissions among industries/sectors: An emissions intensity reduction constrained approach. Journal of Cleaner Production, 142(4): 3083-3094.
doi: 10.1016/j.jclepro.2016.10.159 |
[55] | Zhao Rui, Zhou Xiao, Jin Qiaoet al., 2016. Enterprises’ compliance with government carbon reduction labelling policy using a system dynamic approach. Journal of Cleaner Production, 163: 303-319. |
[56] |
Zhu Qin, Peng Xizhe, Wu Kaiya, 2012. Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input-output model.Energy Policy, 48: 618-626.
doi: 10.1016/j.enpol.2012.05.068 |
[57] |
Zhu Qin, Wei Taoyuan, 2015. Household energy use and carbon emissions in China: A decomposition analysis.Environmental Policy and Governance, 25(5): 316-329.
doi: 10.1002/eet.1675 |
[1] | WEI Wei, GUO Zecheng, SHI Peiji, ZHOU Liang, WANG Xufeng, LI Zhenya, PANG Sufei, XIE Binbin. Spatiotemporal changes of land desertification sensitivity in northwest China from 2000 to 2017 [J]. Journal of Geographical Sciences, 2021, 31(1): 46-68. |
[2] | MA Bin, ZHANG Bo, JIA Lige. Spatio-temporal variation in China’s climatic seasons from 1951 to 2017 [J]. Journal of Geographical Sciences, 2020, 30(9): 1387-1400. |
[3] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[4] | WU Li, SUN Xiaoling, SUN Wei, ZHU Cheng, ZHU Tongxin, LU Shuguang, ZHOU Hui, GUO Qingchun, GUAN Houchun, XIE Wei, KE Rui, LIN Guiping. Evolution of Neolithic site distribution (9.0-4.0 ka BP) in Anhui, East China [J]. Journal of Geographical Sciences, 2020, 30(9): 1451-1466. |
[5] | YE Chao, LI Simeng, ZHANG Zhao, ZHU Xiaodan. A comparison and case analysis between domestic and overseas industrial parks of China since the Belt and Road Initiative [J]. Journal of Geographical Sciences, 2020, 30(8): 1266-1282. |
[6] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[7] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[8] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
[9] | FANG Chuanglin, WANG Zhenbo, LIU Haimeng. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application [J]. Journal of Geographical Sciences, 2020, 30(5): 691-704. |
[10] | CHEN Mingxing, LIANG Longwu, WANG Zhenbo, ZHANG Wenzhong, YU Jianhui, LIANG Yi. Geographical thoughts on the relationship between ‘Beautiful China’ and land spatial planning [J]. Journal of Geographical Sciences, 2020, 30(5): 705-723. |
[11] | TANG Zhipeng, MEI Ziao, LIU Weidong, XIA Yan. Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm [J]. Journal of Geographical Sciences, 2020, 30(5): 743-756. |
[12] | WANG Shaojian, GAO Shuang, HUANG Yongyuan, SHI Chenyi. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends [J]. Journal of Geographical Sciences, 2020, 30(5): 757-774. |
[13] | SONG Zhouying, ZHU Qiaoling. Spatio-temporal pattern and driving forces of urbanization in China’s border areas [J]. Journal of Geographical Sciences, 2020, 30(5): 775-793. |
[14] | ZHAO Ting, BAI Hongying, YUAN Yuan, DENG Chenhui, QI Guizeng, ZHAI Danping. Spatio-temporal differentiation of climate warming (1959-2016) in the middle Qinling Mountains of China [J]. Journal of Geographical Sciences, 2020, 30(4): 657-668. |
[15] | WANG Jiayue, XIN Liangjie, WANG Yahui. How farmers’ non-agricultural employment affects rural land circulation in China? [J]. Journal of Geographical Sciences, 2020, 30(3): 378-400. |
|