Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2018, Vol. 28 Issue (11) : 1641-1658     DOI: 10.1007/s11442-018-1534-5
Special Issue: Land system dynamics: Pattern and process |
Modeling the effects of land-use optimization on the soil organic carbon sequestration potential
YAO Jingtao1,2(),KONG Xiangbin1,2,*()
1. Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. Key Laboratory for Agricultural Land Quality, Monitoring and Control, The Ministry of Land and Resources, Beijing 100193, China
Download: PDF(5869 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Increasing soil organic carbon (SOC) sequestration is not only an efficient method to address climate change problems but also a useful way to improve land productivity. It has been reported by many studies that land-use changes can significantly influence the sequestration of SOC. However, the SOC sequestration potential (SOCP, the difference between the saturation and the existing content of SOC) caused by land-use change, and the effects of land-use optimization on the SOCP are still not well understood. In this research, we modeled the effects of land-use optimization on SOCP in Beijing. We simulated three land-use optimization scenarios (uncontrolled scenario, scale control scenario, and spatial restriction scenario) and assessed their effects on SOCP. The total SOCP (0-20 cm) in Beijing in 2010 was estimated as 23.82 Tg C or 18.27 t C/ha. In the uncontrolled scenario, the built-up land area of Beijing would increase by 951 km2 from 2010 to 2030, and the SOCP would decrease by 1.73 Tg C. In the scale control scenario, the built-up land area would decrease by 25 km2 and the SOCP would increase by 0.07 Tg C from 2010 to 2030. Compared to the uncontrolled scenario, the SOCP in 2030 of Beijing would increase by 0.77 Tg C or 0.64 t C/ha in the spatial restriction scenario. This research provides evidence to guide planning authorities in conducting land-use optimization strategies and estimating their effects on the carbon sequestration function of land-use systems.

Keywords soil organic carbon saturation      carbon sequestration potential      land-use change      modeling      Beijing     
Fund:Key Research Program of Beijing Natural Science Foundation, No.8151001
Corresponding Authors: KONG Xiangbin     E-mail:;
Issue Date: 21 December 2018
E-mail this article
E-mail Alert
Articles by authors
YAO Jingtao
KONG Xiangbin
Cite this article:   
YAO Jingtao,KONG Xiangbin. Modeling the effects of land-use optimization on the soil organic carbon sequestration potential[J]. Journal of Geographical Sciences, 2018, 28(11): 1641-1658.
URL:     OR
Figure 1  Spatial distribution maps of land-use types in Beijing, 1990-2010
Figure 2  Model framework of land-use change simulation
Figure 3  Spatial allocation module of land-use change simulation
Land-use type Observed area
Uncontrolled scenario Scale control scenario
Predicted area (ha) Error (%) Predicted area (ha) Error (%)
Built-up land 278464 283675 1.87 278464 -
Agricultural land 444089 420205 -5.38 424308 -4.45
Ecological land 918253 934608 1.78 935716 1.90
NRMSE 0.0278 0.0249
Table 1  Quantity validation of land-use structure simulated in 2010
Figure 4  Kappa values of land-use simulation of Beijing, 2010
Land-use type 2030
Built-up land Agricultural land Ecological land
Land-use type 2010 Built-up land 0.9979 0.0008 0.0013
Agricultural land 0.1822 0.8106 0.0072
Ecological land 0.0163 0.0019 0.9818
Table 2  Transition probabilities of land-use types in the uncontrolled scenario (UCS), 2010-2030
Land-use type 2030
Built-up land Agricultural land Ecological land
Land-use type 2010 Built-up land 0.8712 0.0487 0.0801
Agricultural land 0.0680 0.9238 0.0082
Ecological land 0.0035 0.0019 0.9946
Table 3  Transition probabilities of land-use types in the scale control scenario (SCS), 2010-2030
Figure 5  Land-use structure changes of Beijing in different scenarios
Figure 6  Land-use change simulation results of Beijing under different scenarios
Figure 7  Spatial maps of SOC in Beijing, 2010
Figure 8  Average SOCP in Beijing, 2010 (SOC, soil organic carbon; SOCE, existing SOC level of the top soil (0-20 cm); SOCS, saturation SOC level of the top soil; SOCP, SOC sequestration potential of the top soil)
Figure 9  Effects of land-use changes on SOCP from 2010 to 2030 in different scenarios (SOCP, soil organic carbon sequestration potential of top soil of 0-20 cm)
Figure 10  Average SOCP of Beijing in 2030 in different scenarios (SOCP, soil organic carbon sequestration potential of top soil of 0-20 cm)
Figure A  The average annual temperature and precipitation maps of Beijing from 1990 to 2010
Figure B  Spatial distribution maps of soil properties in Beijing, 2010
Note: The data was developed based on the Second National Soil Survey, which was conducted from the late 1970s to the early 1990s.
[1] Alqurashi A F, Kumar L, Sinha P, 2016. Urban land cover change modelling using time-series satellite images: A case study of urban growth in five cities of Saudi Arabia.Remote Sensing, 8(10): 838.
doi: 10.3390/rs8100838
[2] Al-sharif A A, Pradhan B, 2014. Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS.Arabian Journal of Geosciences, 7(10): 4291-4301.
doi: 10.1007/s12517-013-1119-7
[3] Angers D A, Arrouays D, Saby N P A et al., 2011. Estimating and mapping the carbon saturation deficit of French agricultural topsoils.Soil Use and Management, 27(4): 448-452.
doi: 10.1111/j.1475-2743.2011.00366.x
[4] Ard? J, Olsson L, 2003. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model. Journal of Arid Environments, 54(4): 633-651.
doi: 10.1006/jare.2002.1105
[5] Armstrong R D, Millar G, Halpin N V et al., 2003. Using zero tillage, fertilisers and legume rotations to maintain productivity and soil fertility in opportunity cropping systems on a shallow vertosol.Australian Journal of Experimental Agriculture, 43(2): 141-153.
doi: 10.1071/EA01175
[6] Bayer C, Lovato T, Dieckow J et al., 2006. A method for estimating coefficients of soil organic matter dynamics based on long-term experiments.Soil and Tillage Research, 91(1/2): 217-226.
doi: 10.1016/j.still.2005.12.006
[7] Bertsekas D P, 2014. Constrained Optimization and Lagrange Multiplier Methods. Academic Press.
[8] Blair N, Faulkner R D, Till A R et al., 2006. Long-term management impacts on soil C, N and physical fertility: Part I: Broadbalk experiment.Soil and Tillage Research, 91(1/2): 30-38.
doi: 10.1016/j.still.2005.11.002
[9] Brown S, Miltner E, Cogger C, 2012. Carbon sequestration potential in urban soils. In: Carbon Sequestration in Urban Ecosystems. Springer: 173-196.
[10] Chapin III F S, Matson P A, Vitousek P, 2011. Principles of terrestrial ecosystem ecology. Springer Science & Business Media.
doi: 10.1007/b97397
[11] Chung H, Grove J H, Six J, 2008. Indications for soil carbon saturation in a temperate agroecosystem.Soil Science Society of America Journal, 72(4): 1132-1139.
doi: 10.2136/sssaj2007.0265
[12] Du Z L, Wu W L, Wu Q Z et al., 2014. Long-term manure amendments enhance soil aggregation and carbon saturation of stable pools in North China Plain.Journal of Integrative Agriculture, 13(10): 2276-2285.
doi: 10.1016/S2095-3119(14)60823-6
[13] Duan Z Q, Verburg P H, Zhang F R et al., 2004. Construction of a land-use change simulation model and its application in Haidian District, Beijing.Acta Geographica Sinica, 59(6): 1037-1047. (in Chinese)
doi: 10.1007/BF02873097
[14] Duan Z Q, Zhang F R, Miao L M, 2006. Land use scenario analysis based on the IPAT-S script language method and its application.Transactions of the Chinese Society of Agricultural Engineering, 22(7): 75-81.
[15] Fischer G, Nachtergaele F, Prieler S et al., 2008. Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy.
[16] Foley J A, DeFries R, Asner G P et al., 2005. Global consequences of land use.Science, 309(5734): 570-574.
doi: 10.1126/science.1111772
[17] Grant R F, Juma N G, Robertson J A et al., 2001. Long-term changes in soil carbon under different fertilizer, manure, and rotation.Soil Science Society of America Journal, 65(1): 205-214.
doi: 10.2136/sssaj2001.651205x
[18] Grimm N B, Faeth S H, Golubiewski N E et al., 2008. Global change and the ecology of cities.Science, 319(5864): 756-760.
doi: 10.1126/science.1150195 pmid: 18258902
[19] Han B, Wang X, Ouyang Z, 2005. Saturation levels and carbon sequestration potentials of soil carbon pools in farmland ecosystems of China.Rural Eco-environment, 21(4): 6-11.
[20] Han H, Yang C, Song J, 2015. Scenario simulation and the prediction of land use and land cover change in Beijing, China.Sustainability, 7(4): 4260-4279.
doi: 10.3390/su7044260
[21] He C Y, Shi P J, Chen J et al., 2001. A study on land use/cover change in Beijing area.Geographical Research, 20(6): 680-687. (in Chinese)
[22] Jiang W G, Chen Z, Lei Xuan et al., 2015. Simulating urban land use change by incorporating an autologistic regression model into a CLUE-S model.Journal of Geographical Sciences, 25(7): 836-850.
doi: 10.1007/s11442-015-1205-8
[23] Kamoni P T, Gicheru P T, Wokabi S M et al., 2007. Evaluation of two soil carbon models using two Kenyan long term experimental datasets.Agriculture, Ecosystems & Environment, 122(1): 95-104.
doi: 10.1016/j.agee.2007.01.011
[24] Lal R, 2002. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems.Land Degradation & Development, 13(6): 469-478.
doi: 10.1002/ldr.531
[25] Lal R, 2004. Soil carbon sequestration impacts on global climate change and food security.Science, 304(5677): 1623-1627.
doi: 10.1126/science.1097396 pmid: 15192216
[26] Liu J Y, Liu M L, Deng X Z et al., 2002. The land use and land cover change database and its relative studies in China.Journal of Geographical Sciences, 12(3): 275-282.
doi: 10.1007/BF02837545
[27] Liu J Y, Liu M L, Zhuang D F et al., 2003. Study on spatial pattern of land-use change in China during 1995-2000.Science in China Series D: Earth Sciences, 46(4): 373-384.
doi: 10.1360/03yd9033
[28] Liu Q H, Shi X Z, Weindorf D C et al., 2006. Soil organic carbon storage of paddy soils in China using the 1:1,000,000 soil database and their implications for C sequestration. Global Biogeochemical Cycles, 20(3). doi: 10.1029/2006GB002731.
doi: 10.1029/2006GB002731
[29] Lorenz K, Lal R, 2009. Biogeochemical C and N cycles in urban soils.Environment International, 35(1): 1-8.
doi: 10.1016/j.envint.2008.05.006 pmid: 18597848
[30] Lu F, Wang X, Han B et al., 2009. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland.Global Change Biology, 15(2): 281-305.
doi: 10.1111/j.1365-2486.2008.01743.x
[31] Lugato E, Bampa F, Panagos P et al., 2014. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices.Global Change Biology, 20(11): 3557-3567.
doi: 10.1111/gcb.12551 pmid: 24789378
[32] Luo Z, Wang E, Sun O J et al., 2011. Modeling long-term soil carbon dynamics and sequestration potential in semi-arid agro-ecosystems.Agricultural and Forest Meteorology, 151(12): 1529-1544.
doi: 10.1016/j.agrformet.2011.06.011
[33] Mondal A, Khare D, Kundu S et al., 2014. Detection of land use change and future prediction with Markov chain model in a part of Narmada River Basin, Madhya Pradesh. Landscape Ecology and Water Management. Springer: 3-14.
doi: 10.1007/978-4-431-54871-3_1
[34] Munafò M, Salvati L, Zitti M, 2013. Estimating soil sealing rate at national level: Italy as a case study.Ecological Indicators, 26: 137-140.
doi: 10.1016/j.ecolind.2012.11.001
[35] Pan G, Li L, Wu L et al., 2004. Storage and sequestration potential of topsoil organic carbon in China's paddy soils.Global Change Biology, 10(1): 79-92.
doi: 10.1111/j.1365-2486.2003.00717.x
[36] Pontius R G, Boersma W, Castella J C et al., 2008. Comparing the input, output, and validation maps for several models of land change.The Annals of Regional Science, 42(1): 11-37.
doi: 10.1007/s00168-007-0138-2
[37] Qin Z, Huang Y, 2010. Quantification of soil organic carbon sequestration potential in cropland: A model approach.Science China Life Sciences, 53(7): 868-884.
doi: 10.1007/s11427-010-4023-3
[38] Qin Z, Huang Y, Zhuang Q, 2013. Soil organic carbon sequestration potential of cropland in China.Global Biogeochemical Cycles, 27(3): 711-722.
doi: 10.1002/gbc.20067
[39] Six J, Conant R, Paul E A et al., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils.Plant and Soil, 241(2): 155-176.
doi: 10.1023/A:1016125726789
[40] Stewart C E, Paustian K, Conant R T et al., 2008. Soil carbon saturation: Evaluation and corroboration by long-term incubations.Soil Biology and Biochemistry, 40(7): 1741-1750.
doi: 10.1016/j.soilbio.2008.02.014
[41] Ussiri D A, Lal R, 2005. Carbon sequestration in reclaimed minesoils.Critical Reviews in Plant Sciences, 24(3): 151-165.
doi: 10.1080/07352680591002147
[42] Veldkamp A, Lambin E F, 2001. Predicting land-use change.Agriculture, Ecosystems & Environment, 85(1-3): 1-6.
[43] Verburg P H, de Nijs T C, van Eck J R et al., 2004. A method to analyse neighbourhood characteristics of land use patterns.Computers, Environment and Urban Systems, 28(6): 667-690.
doi: 10.1016/j.compenvurbsys.2003.07.001
[44] Verburg P H, Soepboer W, Veldkamp A et al., 2002. Modeling the spatial dynamics of regional land use: The CLUE-S model.Environmental Management, 30(3): 391-405.
doi: 10.1007/s00267-002-2630-x pmid: 12148073
[45] Wang K B, Deng L, Ren Z P et al., 2016. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China.Journal of Arid Land, 8(2): 207-220.
doi: 10.1007/s40333-015-0091-3
[46] Weng Q, 2002. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling.Journal of Environmental Management, 64(3): 273-284.
doi: 10.1006/jema.2001.0509 pmid: 12040960
[47] West T O, Post W M, 2002. Soil organic carbon sequestration rates by tillage and crop rotation.Soil Science Society of America Journal, 66(6): 1930-1946.
doi: 10.2136/sssaj2002.1930
[48] Wright C K, Wimberly M C, 2013. Recent land use change in the Western Corn Belt threatens grasslands and wetlands.Proceedings of the National Academy of Sciences, 110(10): 4134-4139.
doi: 10.1073/pnas.1215404110 pmid: 23431143
[49] Wu Q, Li H Q, Wang R S et al., 2006. Monitoring and predicting land use change in Beijing using remote sensing and GIS.Landscape and Urban Planning, 78(4): 322-333.
doi: 10.1016/j.landurbplan.2005.10.002
[50] Yang S M, Malhi S S, Li F M et al., 2007. Long-term effects of manure and fertilization on soil organic matter and quality parameters of a calcareous soil in NW China.Journal of Plant Nutrition and Soil Science, 170(2): 234-243.
doi: 10.1002/jpln.200622012
[51] Yang Y H, Li W H, Zhu C G et al., 2017. Impact of land use/cover changes on carbon storage in a river valley in arid areas of Northwest China.Journal of Arid Land, 9(6): 879-887.
doi: 10.1007/s40333-017-0106-3
[52] Yao J T, Kong X B, Duan Z Q, 2016. A gradient algorithm for land use transform matrix analysis and land use change simulation. In: Research on the Innovation and Development of Land Resources Sciences in China in a New Era. Xi'an: Northeastern University Press, 456-463. (in Chinese)
[53] Young R R, Wilson B, Harden S et al., 2009. Accumulation of soil carbon under zero tillage cropping and perennial vegetation on the Liverpool Plains, eastern Australia.Soil Research, 47(3): 273-285.
doi: 10.1071/SR08104
[54] Zhang H X, Sun B, Xie X L et al., 2015. Simulating the effects of chemical and non-chemical fertilization practices on carbon sequestration and nitrogen loss in subtropical paddy soils using the DNDC model.Paddy and Water Environment, 13(4): 495-506.
doi: 10.1007/s10333-014-0467-6
[55] Zhao G, Guerrero J M, Jiang K et al., 2017. Energy modelling towards low carbon development of Beijing in 2030.Energy, 121: 107-113.
doi: 10.1016/
[1] NING Jia,LIU Jiyuan,Kuang Wenhui,XU Xinliang,ZHANG Shuwen,YAN Changzhen,LI Rendong,WU Shixin,HU Yunfeng,DU Guoming,CHI Wenfeng,PAN Tao,NING Jing. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015[J]. Journal of Geographical Sciences, 2018, 28(5): 547-562.
[2] FANG Jiawen. An analysis of the differentiation rules and influencing factors of venture capital in Beijing-Tianjin-Hebei urban agglomeration[J]. Journal of Geographical Sciences, 2018, 28(4): 514-528.
[3] Sergey V. PYANKOV,Andrey N. SHIKHOV,Nikolay A. KALININ,Eugene M. SVIYAZOV. A GIS-based modeling of snow accumulation and melt processes in the Votkinsk reservoir basin[J]. Journal of Geographical Sciences, 2018, 28(2): 221-237.
[4] KUANG Wenhui,YANG Tianrong,YAN Fengqin. Examining urban land-cover characteristics and ecological regulation during the construction of Xiong’an New District, Hebei Province, China[J]. Journal of Geographical Sciences, 2018, 28(1): 109-123.
[5] ZHAO Meifeng,LIU Shenghe,QI Wei. Exploring the differential impacts of urban transit system on the spatial distribution of local and floating population in Beijing[J]. Journal of Geographical Sciences, 2017, 27(6): 731-751.
[6] SONG Changqing,YUAN Lihua,YANG Xiaofan,FU Bojie. Ecological-hydrological processes in arid environment: Past, present and future[J]. Journal of Geographical Sciences, 2017, 27(12): 1577-1594.
[7] DENG Xiangzheng,LI Zhihui,John GIBSON. A review on trade-off analysis of ecosystem services for sustainable land-use management[J]. Journal of Geographical Sciences, 2016, 26(7): 953-968.
[8] TANG Qiuhong,ZHANG Xuejun,DUAN Qingyun,HUANG Shifeng,YUAN Xing,CUI Huijuan,LI Zhe,LIU Xingcai. Hydrological monitoring and seasonal forecasting:Progress and perspectives[J]. Journal of Geographical Sciences, 2016, 26(7): 904-920.
[9] WANG Degen,WANG Li,CHEN Tian,LU Lin,NIU Yu,ALAN August Lew. HSR mechanisms and effects on the spatial structure of regional tourism in China[J]. Journal of Geographical Sciences, 2016, 26(12): 1725-1753.
[10] WANG Jianghao,DENG Yu,SONG Ci,TIAN Dajiang. Measuring time accessibility and its spatial characteristics in the urban areas of Beijing[J]. Journal of Geographical Sciences, 2016, 26(12): 1754-1768.
[11] Jianhui YU,Guanpeng DONG,Wenzhong ZHANG,Jiaming LI. Study on the synergy between intra-urban resident’s migration and job change in Beijing[J]. Journal of Geographical Sciences, 2015, 25(8): 978-990.
[12] Wei QI,Shenghe LIU,Xiaolu GAO,Meifeng ZHAO. Modeling the spatial distribution of urban population during the daytime and at night based on land use: A case study in Beijing, China[J]. Journal of Geographical Sciences, 2015, 25(6): 756-768.
[13] ZHU He,LIU Jiaming,CHEN Chen,LIN Jing,TAO Hui. A spatial-temporal analysis of urban recreational business districts: A case study in Beijing, China[J]. Journal of Geographical Sciences, 2015, 25(12): 1521-1536.
[14] M USMAN,R LIEDL,M A SHAHID,A ABBAS. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data[J]. Journal of Geographical Sciences, 2015, 25(12): 1479-1506.
[15] LIU Jiyuan, KUANG Wenhui, ZHANG Zengxiang, XU Xinliang, QIN Yuanwei, NING Jia, ZHOU Wancun, ZHANG Shuwen, LI Rendong, YAN Changzhen, WU Shixin, SHI Xuezheng, JIANG Nan, YU Dongsheng, PAN Xianzhang, CHI Wenfeng. Spatiotemporal characteristics, patterns, and caus-es of land-use changes in China since the late 1980s[J]. , 2014, 24(2): 195-210.
Full text



Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd