Journal of Geographical Sciences ›› 2018, Vol. 28 ›› Issue (9): 1341-1368.doi: 10.1007/s11442-018-1529-2
• Orginal Article • Previous Articles
Xi CHEN1(), Shanshan WANG2, Zengyun HU1,3, Qiming ZHOU3, Qi HU4
Received:
2018-01-05
Accepted:
2018-03-20
Online:
2018-09-25
Published:
2018-09-25
About author:
Author: Chen Xi, Professor, specialized in hydrology and water resource, as well as environmental remote sensing. E-mail:
Supported by:
Xi CHEN, Shanshan WANG, Zengyun HU, Qiming ZHOU, Qi HU. Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901-2013[J].Journal of Geographical Sciences, 2018, 28(9): 1341-1368.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Mean (mm), coefficient of variation (CV: %) and linear trend (K: mm/10a) of the seasonal precipitation over mountainous area, plain area and Central Asia during 1901-2013, 1951-2013 and 1979-2013"
Study area | Season | 1901-2013 | 1951-2013 | 1979-2013 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | CV | K | Mean | CV | K | Mean | CV | K | ||
Central Asia | MAM | 59 | 21 | 0.41 | 61 | 22 | 0.49 | 61 | 20 | 0.42 |
JJA | 57 | 20 | -0.09 | 57 | 19 | 0.4 | 58 | 19 | 1.62 | |
SON | 43 | 25 | -0.1 | 43 | 22 | 0.23 | 44 | 21 | -1.97 | |
DJF | 41 | 20 | 0.39 | 42 | 18 | 0.77 | 43 | 17 | 0.24 | |
Mountainous area | MAM | 79 | 21 | 0.22 | 81 | 20 | -0.62 | 80 | 20 | -1.47 |
JJA | 77 | 18 | -0.16 | 77 | 18 | 1.23 | 79 | 18 | 2.66 | |
SON | 46 | 29 | -0.16 | 45 | 25 | 0.68 | 47 | 25 | 0.3 | |
DJF | 42 | 22 | 0.31 | 43 | 23 | 0.78 | 43 | 22 | 2.54 | |
Plain area | MAM | 55 | 23 | 0.44 | 56 | 24 | 0.73 | 57 | 22 | 0.84 |
JJA | 53 | 23 | -0.09 | 53 | 22 | 0.21 | 53 | 22 | 1.37 | |
SON | 42 | 26 | -0.1 | 42 | 23 | 0.12 | 43 | 22 | -2.48 | |
DJF | 40 | 22 | 0.4 | 42 | 18 | 0.75 | 43 | 17 | -0.29 |
Figure 3
The decomposition results of annual precipitation time series over Central Asia, (a): MAM; (b): JJA; (c): SON and (d): DJF during the period of 1901-2013. The IMF1-IMF5 indicate the different periods of the annual precipitation time series, and the residue term r is the nonlinear trend obtained by the EEMD method."
Table 2
Hurst Index (H) of the seasonal precipitation over mountainous area, plain area and Central Asia during 1901-2013, 1951-2013 and 1979-2013"
Study area | Season | 1901-2013 | 1951-2013 | 1979-2013 |
---|---|---|---|---|
Central Asia | MAM | 0.56 | 0.62 | 0.66 |
JJA | 0.68 | 0.81 | 0.75 | |
SON | 0.63 | 0.76 | 0.82 | |
DJF | 0.86 | 0.82 | 0.92 | |
Mountainous area | MAM | 0.58 | 0.60 | 0.72 |
JJA | 0.75 | 0.86 | 0.79 | |
SON | 0.55 | 0.66 | 0.80 | |
DJF | 0.59 | 0.74 | 0.82 | |
Plain area | MAM | 0.56 | 0.63 | 0.69 |
JJA | 0.66 | 0.77 | 0.73 | |
SON | 0.65 | 0.78 | 0.81 | |
DJF | 0.89 | 0.81 | 0.98 |
Table 3
Percentage areas (%) with the increasing trend, decreasing trend, significant increasing trend (SIT) and significant decreasing trend (SDT) at 95% confidence level of the four seasonal precipitation during 1901-2013, 1951-2013 and 1979-2013"
Period | Season | Increase | Decrease | SI | SD |
---|---|---|---|---|---|
1901-2013 | MAM | 69.00 | 31.00 | 18.78 | 11.83 |
JJA | 50.37 | 49.63 | 3.01 | 9.06 | |
SON | 57.40 | 42.60 | 6.60 | 16.48 | |
DJF | 60.99 | 39.01 | 26.67 | 20.34 | |
1951-2013 | MAM | 66.50 | 33.50 | 17.22 | 3.71 |
JJA | 57.75 | 42.25 | 9.25 | 1.72 | |
SON | 60.95 | 39.05 | 9.57 | 1.87 | |
DJF | 71.26 | 28.74 | 16.56 | 1.95 | |
1979-2013 | MAM | 61.07 | 38.93 | 4.22 | 1.87 |
JJA | 63.30 | 36.70 | 3.44 | 0.86 | |
SON | 32.57 | 67.43 | 4.49 | 10.39 | |
DJF | 58.53 | 41.47 | 17.77 | 6.21 |
Table 4
CC results of the seasonal lags time series between the precipitation and Ni?o 3.4 index during 1951-2013, lag-i (i=0, 1, 2, 3, 4) means lag i seasons"
Seasonal lag | MAM | JJA | SON | DJF |
---|---|---|---|---|
lag-0 | 0.35* | 0.03 | 0.27* | 0.5** |
lag-1 | 0.31* | 0.27* | 0.47** | 0.42** |
lag-2 | 0.12 | 0.44** | 0.38** | 0.32* |
lag-3 | 0.11 | 0.44** | 0.32* | -0.12 |
lag-4 | 0.22 | 0.36** | -0.21 | 0.11 |
Table 5
El Ni?o and La Ni?a years used in the composite analyses"
Season | El Ni?o | La Ni?a |
---|---|---|
MAM | 1958, 1969, 1983, 1987, 1992, 1993, 1998, 2005, 2010 | 1955, 1956, 1967, 1968, 1971, 1974, 1975, 1985, 1989, 1999, 2000, 2008 |
JJA | 1957, 1965, 1972, 1982, 1987, 1991, 1992, 1997, 2002, 2004, 2009 | 1954, 1955, 1956, 1964, 1970, 1973, 1974, 1975, 1988, 1999, 2010 |
SON | 1965, 1972, 1982, 1987, 1991, 2002, 2004, 2006, 2009 | 1954, 1955, 1964, 1970, 1973, 1975, 1988, 1998, 1999, 2010 |
DJF | 1957, 1965, 1972, 1982, 1986, 1991, 1994, 1997, 2002, 2009 | 1955, 1970, 1973, 1975, 1988, 1998, 1999, 2007, 2010 |
Figure 13
ENSO-based composites of divergences of the total moisture fluxes for MAM, SON and DJF during 1950-2013. The contour interval is 5×10-6 kg/m2/s and the gray areas denote regions significant at the 95% level (p<0.05) by the student’s t-test. The zero contour is omitted and dashed lines are negative."
Figure 14
ENSO-based composites of geopotential height (HGT) (left column) and wind for MAM, SON and DJF at 850 hPa during 1950-2013. The contour interval is 5 m for HGT and the gray areas denote regions significant at the 95% level (p<0.05) by the student’s t-test. The zero contour is omitted and dashed lines are negative."
Table 6
Comparison of decadal seasonal precipitation change rate (mm/10a or %/10a) of Central Asia from 1901 to 2013 from this study to rates reported in other studies, where + means increasing trend, - means decreasing trend, CMIP5 (Coupled Model Intercomparison Project, phase 5), MOPREDAS (Monthly Precipitation Database of Spain), USHCN v2.5 (U.S. Historical Climate Network, version 2.5), Climatic Research Unit (CRU) TS3.21 dataset, NH (Northern Hemispheres)"
Studies | Study area | Study period | Data | MAM | JJA | SON | DJF |
---|---|---|---|---|---|---|---|
Abatzoglou et al. (2014) | Pacific Northwest of the United States | 1901-2012 | USHCN v2.5, PRISM, CRU TS3.21 and U.S. climate division dataset | 1.8%/10a | 1.3%/10a | 0 | 0.2%/10a |
Noake et al. (2012) | Globe | 1952-1999 | VASClimO, Zhang, CRU and CMIP3 | +mid to high latitude of NH | + mid to high latitude of NH | + mid to high latitude of NH | +mid to high latitude of NH |
Sarojini et al. (2012) | Globe | 1951-2005 | Zhang and CMIP5 | + high latitude of NH | + high latitude of NH | + high latitude of NH | + high latitude of NH |
Yao et al. (2008) | Asia | 1978-2002 | Gridded dataset from Xie et al. (2007) | + southeastern and northwestern China | |||
Wang and Yan (2009) | China | 1961-2007 | 587 stations | + northwestern China | + northwestern China | + northwestern China | + north- western China |
De Luis et al. (2010) | Iberian Peninsula | 1946-2005 | MOPREDA | - | + | - | |
De Luis et al. (2009) | Mediter- ranean Iberian Peninsula | 1951-2000 | MOPREDA | -5.5 mm/10a | -4.4 mm/10a | -1.8 mm/10a | -2.2 mm/10a |
Li et al.(2011) | Xinjiang | 1961-2005 | 65 stations | -1.08 mm/10a | 1.8 mm/10a | 2.1 mm/10a | |
Our study | Central Asia | 1901-2013 | GPCC V7 | 0.41 mm/10a | -0.09 mm/10a | -0.1 mm/10a | 0.39 mm/10a |
1951-2013 | 0.49 mm/10a | 0.4 mm/10a | 0.23 mm/10a | 0.77 mm/10a | |||
1979-2013 | 0.42 mm/10a | 1.62 mm/10a | -1.97 mm/10a | 0.24 mm/10a |
Table 7
Correlation coefficient (CC) results between the seasonal precipitation and temperature during the three periods, and between the seasonal precipitation and the normalized difference vegetation index (NDVI) during 1982-2012, where the CC values are obtained by the linear least square method and ** significant at a 99% confidence level by student’s t test"
Variable | Period | MAM | JJA | SON | DJF |
---|---|---|---|---|---|
Temperature | 1901-2013 | -0.06 | -0.24 | 0.15 | 0.27 |
1951-2013 | -0.13 | -0.15 | 0.01 | 0.1 | |
1979-2013 | -0.05 | -0.13 | -0.17 | 0.14 | |
NDVI | 1982-2012 | 0.18 | 0.57** | -0.32 | -0.01 |
[1] |
Abatzoglou J, Rupp D, Mote P, 2014. Seasonal climate variability and change in the Pacific northwest of the United States.Journal of Climate, 27: 2125-2142.
doi: 10.1175/JCLI-D-13-00218.1 |
[2] |
Aizen V, Aizen E, Melack Jet al., 1997. Climatic and hydrologic changes in the Tien Shan, Central Asia.Journal of Climate, 10: 1393-1404.
doi: 10.1175/1520-0442(1997)0102.0.CO;2 |
[3] |
Aizen E, Aizen V, Melack Met al., 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia.International Journal of Climatology, 21: 535-556.
doi: 10.1002/joc.626 |
[4] | Becker A, Finger P, Meyer-Christoffer Aet al., 2013. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present.Earth System Science Data, 5: 71-99. |
[5] |
Berg P, Haerter J, Thejll Pet al., 2009. Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature.Journal of Geophysical Research, 114: D18102.
doi: 10.1029/2009JD012008 |
[6] |
Bintanja R, Selten F, 2014. Future increase in Arctic precipitation linked to local evaporation and sea-ice retreat.Nature, 509: 479-482.
doi: 10.1038/nature13259 pmid: 24805239 |
[7] | Brown C, 1998. Applied Multivariate Statistics in Geohydrology and Related Sciences. Berlin Heidelberg: Springer, 155-157. |
[8] |
Chen F, Huang W, Jin Let al., 2011. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming,Science China Earth Sciences, 54: 1812-1821.
doi: 10.1007/s11430-011-4333-8 |
[9] |
Chen L, Dool H, Becker Eet al., 2017. ENSO Precipitation and temperature forecasts in the North American multimodel ensemble: Composite analysis and validation.Journal of Climate, 30: 1103-1125.
doi: 10.1175/JCLI-D-15-0903.1 |
[10] | Chiodi A, Harrison D, 2015. Global seasonal precipitation anomalies robustly associated with El Niño and La Niña Events: An OLR perspective.Journal of Climate, 28: 6133-6159. |
[11] |
Chou C, Chiang J, Lan Cet al., 2013. Increase in the range between wet and dry season precipitation.Nature Geoscience, 6: 263-267.
doi: 10.1038/NGEO1744 |
[12] | Dai A, Fung I, Del Genio A, 1997. Surface observed global land precipitation variations during 1900-1988.Journal of Climate, 10: 2943-2962. |
[13] |
Dai A, Wigley T, 2000. Global patterns of ENSO-induced precipitation.Geophysical Research Letters, 27: 1283-1286.
doi: 10.1029/1999GL011140 |
[14] | Dai N, Arikin P, 2017. Twentieth century ENSO-related precipitation mean states in twentieth century reanalysis, reconstructed precipitation and CMIP5 models.Climate Dynamics, 48: 3061-3083. |
[15] |
De Luis M, Brunetti M, Gonzalez-Hidalgo Jet al., 2010. Changes in seasonal precipitation in the Iberian Peninsula during 1946-2005.Global and Planetary Change, 74: 27-33.
doi: 10.1016/j.gloplacha.2010.06.006 |
[16] |
De Luis M, Gonzalez-Hidalgo J, Longares Let al., 2009. Seasonal precipitation trends in the Mediterranean Iberian Peninsula in second half of 20th century.International Journal of Climatology, 29: 1312-1323.
doi: 10.1002/joc.1778 |
[17] |
Deflorio M, Pierce D, Cayan Det al., 2013. Western U.S. extreme precipitation events and their relation to ENSO and PDO in CCSM4.Journal of Climate, 15: 4231-4243.
doi: 10.1175/JCLI-D-12-00257.1 |
[18] | Emerton R, Cloke H, Stephens Eet al., 2017. Complex picture for likelihood of ENSO-driven flood hazard.Nature Communications, 8: 14796. |
[19] |
Feddersen H.,2003. Predictability of seasonal precipitation in the Nordic region.Tellus, 55A: 385-400.
doi: 10.1034/j.1600-0870.2003.00027.x |
[20] |
Han T, Wang H, Sun J, 2017. Strengthened relationship between eastern ENSO and summer precipitation over northeastern China.Journal of Climate, 30: 4497-4512.
doi: 10.1175/JCLI-D-16-0551.1 |
[21] | Harris I, Jones P, Osborn Tet al., 2014. Updated high-resolution grids of monthly climatic observations: The CRU TS3.10 Dataset.International Journal of Climatology, 34: 623-642. |
[22] |
Hoell A, Barlow M, Saini R, 2012. The leading pattern of intraseasonal and interannual Indian Ocean precipitation variability and its relationship with Asian circulation during the boreal cold season.Journal of Climate, 25: 7509-7526.
doi: 10.1175/JCLI-D-11-00572.1 |
[23] |
Hoell A, Barlow M, Cannon Fet al., 2017. Oceanic origins of historical Southwest Asia precipitation during the boreal cold season.Journal of Climate, 30: 2885-2903.
doi: 10.1175/JCLI-D-16-0519.1 |
[24] |
Hoell A, Funk C, Barlow M, 2015. The forcing of Southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter.Journal of Climate, 28: 1511-1526.
doi: 10.1175/JCLI-D-14-00344.1 |
[25] |
Hu Z, 1997. Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature.Journal of Geophysical Research, 102: 403-412.
doi: 10.1029/97JD01052 |
[26] |
Hu Z, Hu Q, Zhang Cet al., 2016a. Evaluation of reanalysis, spatially-interpolated and satellite remotely-sensed precipitation datasets in Central Asia.Journal of Geophysical Research-Atmospheres, 121: 5648-5662.
doi: 10.1002/2016JD024781 |
[27] |
Hu Z, Li Q, Chen Xet al., 2016b. Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia.Theoretical Applied Climatology, 126: 519-531.
doi: 10.1007/s00704-015-1568-x |
[28] |
Hu Z, Yang S, Wu R, 2003. Long-term climate variations in China and global warming signals.Journal of Geophysical Research, 108(D19): 4614.
doi: 10.1029/2003JD003651 |
[29] |
Hu Z, Zhang C, Hu Qet al., 2014. Temperature changes in Central Asia from 1979-2011 based on multiple datasets.Journal of Climate, 27: 1143-1167.
doi: 10.1175/JCLI-D-13-00064.1 |
[30] |
Hu Z, Zhou Q, Chen Xet al., 2017. Variations and changes of annual precipitation in Central Asia over the last century.International Journal of Climatology, 37: 157-170.
doi: 10.1002/joc.4988 |
[31] | Hu Z, Zhou Q, Chen Xet al., 2018. Evaluation of three global gridded precipitation datasets in Central Asia based on rain gauge observations.International Journal of Climatology, doi: 10.1002/joc.5510. |
[32] |
Huang J, Ji M, Xie Yet al., 2016. Global semi-arid climate change over last 60 years.Climate Dynamics, 46: 1131-1150.
doi: 10.1007/s00382-015-2636-8 |
[33] |
Hughes B, Saunders M, 2002. Seasonal prediction of European spring precipitation from El Niño-Southern Oscillation and local sea-surface temperatures.International Journal of Climatology, 22: 1-14.
doi: 10.1002/joc.723 |
[34] |
Ji F, Wu Z, Huang Jet al., 2014. Evolution of land surface air temperature trend.Nature Climate Change, 4: 462-466.
doi: 10.1038/nclimate2223 |
[35] |
Jia X, Ge J, 2017. Interdecadal changes in the relationship between ENSO, EAWM, and the wintertime precipitation over China at the end of the twentieth century.Journal of Climate, 30: 1923-1936.
doi: 10.1175/JCLI-D-16-0422.1 |
[36] |
Knippertz P, Ulbrich U, Marques Fet al., 2003. Decadal changes in the link between El Niño and springtime North Atlantic Oscillation and European-North African rainfall.International Journal of Climatology, 23: 1293-1311.
doi: 10.1002/joc.944 |
[37] |
Li B, Chen Y, Chen Zet al., 2016. Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010?Atmospheric Research, 167: 275-284.
doi: 10.1016/j.atmosres.2015.08.017 |
[38] |
Li Q, Chen Y, Shen Yet al., 2011. Spatial and temporal trends of climate change in Xinjiang, China.Journal of Geographical Sciences, 21: 1007-1018.
doi: 10.1007/s11442-011-0896-8 |
[39] |
Lloyd-Hughes B, Saunders M A, 2002. Seasonal prediction of European spring precipitation from El Niño-Southern Oscillation and local sea-surface temperatures.International Journal of Climatology, 22: 1-14.
doi: 10.1002/joc.723 |
[40] | Lorenz E N, 1956. Empirical Orthogonal Functions and Statistical Weather Prediction. Statistical Forecast Project Rep. 1, MIT. Department of Meteorology, Cambridge, MA, 49 pp. |
[41] |
Mann M, 2011. On long range dependence in global surface temperature series.Climatic Change, 107: 267-276.
doi: 10.1007/s10584-010-9998-z |
[42] | Maussion F, Scherer D, Molg Tet al., 2014. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia reanalysis.Journal of Climate, 27: 1910-1927. |
[43] | Madden R A, Williams J, 1978. The correlation between temperature and precipitation in the United States and Europe.Monthly Weather Review, 106: 142-147. |
[44] |
Mariotti A, 2007. How ENSO impacts precipitation in southwest Central Asia.Geophsical Research Letters, 34: L16706.
doi: 10.1029/2007GL030078 |
[45] |
New M, Todd M, Hulme Met al., 2001. Precipitation measurements and trends in the twentieth century.International Journal of Climatology, 21: 1899-1922.
doi: 10.1002/joc.680 |
[46] |
Noake K, Polson D, Hegerl Get al., 2012. Changes in seasonal land precipitation during the latter twentieth-century.Geophysical Research Letters, 39: L03706.
doi: 10.1029/2011GL050405 |
[47] |
Ouyang R, Liu W, Fu Get al., 2014. Linkages between ENSO/PDO signals and precipitation, stream flow in China during the last 100 years.Hydrology and Earth System Sciences, 18: 3651-3661.
doi: 10.5194/hess-18-3651-2014 |
[48] |
Park S, 2004. Remote ENSO influence on Mediterranean sky conditions during late summer and autumn: Evidence for a slowly evolving atmospheric bridge.Quarterly Journal of the Royal Meteorological Society, 130: 2409-2422.
doi: 10.1256/qj.03.62 |
[49] | Poli P, Hersbach H, Dee Det al., 2016. ERA-20C: An atmospheric reanalysis of the twentieth century.Journal of Climate, 29: 4083-4097. |
[50] |
Qian W, Kang H, Lee D, 2002. Distribution of seasonal rainfall in the East Asian monsoon region.Theoretical and Applied Climatology, 73: 151-168.
doi: 10.1007/s00704-002-0679-3 |
[51] | Ropelewski C, Halpert M, 1987. Global and regional scale precipitation patterns associated with the E1 Nifio/Southern Oscillation.Monthly Weather Review, 115: 1606-1626. |
[52] |
Russo S, Sterl A, 2012. Global changes in seasonal means and extremes of precipitation from daily climate model data.Journal of Geophysical Research, 117: D01108.
doi: 10.1029/2011JD016260 |
[53] |
Rudolph J, Friedrich K, 2013. Seasonality of vertical structure in radar-observed precipitation over southern Switzerland.Journal of Hydrometeorology, 14: 318-330.
doi: 10.1175/JHM-D-12-042.1 |
[54] | Schiemann R, Chiemann L, Luthi Det al., 2008. The precipitation climate of Central Asia: Intercomparison of observational and numerical data sources in a remote semiarid region.International Journal of Climatology, 2: 295-314. |
[55] | Schneider U, Becker A, Finger Pet al., 2014. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle.Theoretical and Applied Climatology, 115: 15-40. |
[56] | Schneider U, Becker A, Finger Pet al., 2015. GPCC Full Data Reanalysis Version 7.0 at 0.5º: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. doi: 10.5676/DWD_ GPCC/FD_M_V7_050. |
[57] |
Shaman J, 2014. The seasonal effects of ENSO on European precipitation: Observational analysis.Journal of Climate, 27: 6423-6438.
doi: 10.1175/JCLI-D-14-00008.1 |
[58] |
Smith T, Arkin P, Ren Let al., 2012. Improved reconstruction of global precipitation since 1900.Journal of Atmospheric and Oceanic Technology, 29: 1505-1517.
doi: 10.1175/JTECH-D-12-00001.1 |
[59] |
Sorg A, Bolch T, Stoffel M, 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia).Nature Climate Change, 2: 725-731.
doi: 10.1038/nclimate1592 |
[60] |
Trenberth K, Shea D, 2005. Relationships between precipitation and surface temperature.Geophysical Research Letters, 32: L14703.
doi: 10.1029/2005GL022760 |
[61] |
Tucker C J, Pinzon J E, Brown M Eet al., 2005. An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data.International Journal of Remote Sensing, 26: 4485-5598.
doi: 10.1080/01431160500168686 |
[62] |
Van Oldenborgh G, Burgers G, Tank A, 2000. On the El Niño teleconnection to spring precipitation in Europe.International Journal of Climatology, 20: 565-574.
doi: 10.1002/(sici)1097-0088(200004)20:5<565::aid-joc488>3.0.co;2-5 |
[63] |
Wang S, Huang J, He Yet al., 2014. Combined effects of the Pacific decadal oscillation and El Niño-southern oscillation on global land dry-wet changes.Scientific Reports, 4: 6651.
doi: 10.1038/srep06651 pmid: 25323549 |
[64] |
Wang Y, Yan Z, 2009. Trends in seasonal precipitation over China during 1961-2007.Atmospheric and Oceanic Science Letters, 2: 165-171.
doi: 10.1080/16742834.2009.11446798 |
[65] |
Wang Y, Zhou L, 2005. Observed trends in extreme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation.Geophysical Research Letters, 32: L09707.
doi: 10.1029/2005GL023769 |
[66] |
Ward P, Jongman B, Kummu Met al., 2014. Strong influence of El Niño Southern Oscillation on flood risk around the world.PNAS, 111: 15659-15664.
doi: 10.1073/pnas.1409822111 |
[67] |
Wu Z, Huang N, 2004. A study of the characteristics of white noise using the empirical mode decomposition method.Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 460: 1597-1611.
doi: 10.1098/rspa.2003.1221 |
[68] | Wu Z, Huang N, 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method.Advance in Adaptive Data Analysis, 1: 1-41. |
[69] |
Xiao M, Zhang Q, Singh V, 2015. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China.International Journal of Climatology, 35: 3556-3567.
doi: 10.1002/joc.4228 |
[70] |
Xu L G, Zhou H F, Du Let al., 2015. Precipitation trends and variability from 1950 to 2000 in arid lands of Central Asia.Journal of Arid Land, 7(4): 514-526.
doi: 10.1007/s40333-015-0045-9 |
[71] | Xie P, Arkin P, 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs.Bulletin of American Meteorological Society, 78: 2539-2558. |
[72] | Yatagai A, Kamiguchi K, Arakawa Oet al., 2012. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges.Bulletin of American Meteorological Society, 93: 1401-1415. |
[73] |
Zanchettin D, Franks S W, Traverso Pet al., 2008. On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multi-decadal variability described through the PDO index.International Journal of Climatology, 28: 995-1006.
doi: 10.1002/joc.1601 |
[74] |
Zhang Q, Xu C, Chen Xet al., 2011. Statistical behaviours of precipitation regimes in China and their links with atmospheric circulation 1960-2005.International Journal of Climatology, 31: 1665-1678.
doi: 10.1002/joc.2193 |
[75] | Zhao W, Khalil M A K, 1993. The relationship between precipitation and temperature over the contiguous United States.Journal of Climate, 6: 1232-1236. |
[76] |
Zveryaev I, 2004. Seasonality in precipitation variability over Europe.Journal of Geophysical Research, 109: D05103.
doi: 10.1029/2003JD003668 |
[1] | XU Jun, LIU Ju, XU Yang, PEI Tao. Visualization and analysis of local and distant population flows on the Qinghai-Tibet Plateau using crowd-sourced data [J]. Journal of Geographical Sciences, 2021, 31(2): 231-244. |
[2] | WANG Shaojian, GAO Shuang, HUANG Yongyuan, SHI Chenyi. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends [J]. Journal of Geographical Sciences, 2020, 30(5): 757-774. |
[3] | PEI Tao, SONG Ci, GUO Sihui, SHU Hua, LIU Yaxi, DU Yunyan, MA Ting, ZHOU Chenghu. Big geodata mining: Objective, connotations and research issues [J]. Journal of Geographical Sciences, 2020, 30(2): 251-266. |
[4] | ZHANG Xinhuan, XU Wenqiang, XIANG Xinyi, ZHANG Zhiping, CUI Mingjie. Mechanism of interaction between urbanization and resource environment in Central Asia [J]. Journal of Geographical Sciences, 2020, 30(11): 1723-1738. |
[5] | WANG Yun, LIU Yi. Central Asian geo-relation networks: Evolution and driving forces [J]. Journal of Geographical Sciences, 2020, 30(11): 1739-1760. |
[6] | MA Haitao, SUN Zhan. Comprehensive urbanization level and its dynamic factors for five Central Asian countries [J]. Journal of Geographical Sciences, 2020, 30(11): 1761-1780. |
[7] | KANG Lei, LIU Yi. Characteristics of industrial structure evolution and isomorphism in Central Asia [J]. Journal of Geographical Sciences, 2020, 30(11): 1781-1801. |
[8] | ZHOU Yannan, YANG Yu, SONG Zhouying, HE Ze, XIA Siyou, REN Yawen. Dynamic transition mechanism analysis of the impact of energy development on urbanization in Central Asia [J]. Journal of Geographical Sciences, 2020, 30(11): 1825-1848. |
[9] | HE Ze, CHONG Zhaohui, YANG Yu, ZHOU Yannan, LIU Yi. Evolutionary investment network and the emerging energy power in Central Asia: From the perspective of cross-border mergers and acquisitions [J]. Journal of Geographical Sciences, 2020, 30(11): 1849-1870. |
[10] | ZHOU Qiang, HE Ze, YANG Yu. Energy geopolitics in Central Asia: China’s involvement and responses [J]. Journal of Geographical Sciences, 2020, 30(11): 1871-1895. |
[11] | WANG Guogang, ZHANG Lin, SUN Yuzhu, YANG Yantao, HAN Chengji. Evaluation on the allocative efficiency of agricultural factors in the five Central Asian countries [J]. Journal of Geographical Sciences, 2020, 30(11): 1896-1908. |
[12] | YAN Ziyan, TAN Minghong. Changes in agricultural virtual water in Central Asia, 1992-2016 [J]. Journal of Geographical Sciences, 2020, 30(11): 1909-1920. |
[13] | FANG Xiuqi, ZHENG Xue, ZHANG Xing. Correspondence between the large volcanic eruptions and ENSO events over AD 1525–2000 [J]. Journal of Geographical Sciences, 2020, 30(1): 103-118. |
[14] | TAO Zexing, DAI Junhu, WANG Huanjiong, HUANG Wenjie, GE Quansheng. Spatiotemporal changes in the bud-burst date of herbaceous plants in Inner Mongolia grassland [J]. Journal of Geographical Sciences, 2019, 29(12): 2122-2138. |
[15] | Man ZHANG, Yaning CHEN, Yanjun SHEN, Baofu LI. Tracking climate change in Central Asia through temperature and precipitation extremes [J]. Journal of Geographical Sciences, 2019, 29(1): 3-28. |
|