Journal of Geographical Sciences ›› 2018, Vol. 28 ›› Issue (7): 985-1000.doi: 10.1007/s11442-018-1517-6
• Special Issue: Geopolitical Environment Simulation on the Belt and Road Region • Previous Articles Next Articles
Weijie HU1,3(), Hailong LIU2,*(
), Anming BAO1, M. El-Tantawi Attia1,4
Received:
2017-07-24
Online:
2018-07-20
Published:
2018-07-20
Contact:
Hailong LIU
E-mail:wjhu@ms.xjb.ac.cn;liuhl@uestc.edu.cn
About author:
Author: Hu Weijie (1990-), Research Intern, specialized in hydrology and water resources. E-mail:
Supported by:
Weijie HU, Hailong LIU, Anming BAO, M. El-Tantawi Attia. Influences of environmental changes on water storage variations in Central Asia[J].Journal of Geographical Sciences, 2018, 28(7): 985-1000.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
LUCC of Central Asia and correlation coefficients with TWS"
Land use type | Percentage (%) | Changed area (×104 km2) | Correlation coefficients |
---|---|---|---|
Water | 8.05 | -2.20 | 0.81 |
Evergreen needle-leaf forest | 0.21 | 2.49 | -0.76 |
Evergreen broad-leaf forest | 0.02 | -0.06 | 0.56 |
Deciduous needle-leaf forest | 0.05 | -0.22 | 0.75 |
Deciduous broad-leaf forest | 0.17 | 0.25 | -0.62 |
Shrub land | 6.39 | -8.19 | 0.37 |
Grassland | 47.37 | 8.36 | -0.36 |
Cereal crops | 6.10 | -5.44 | 0.55 |
Broad-leaf crops | 1.08 | 2.32 | -0.58 |
Urban and built-up area | 0.34 | 0.0005 | -0.50 |
Snow and ice | 0.70 | 1.23 | -0.27 |
Bare land | 29.44 | 1.66 | -0.15 |
Unclassified region | 0.09 | -0.19 | 0.40 |
[18] |
Gao H, Wood E F, Drusch Met al., 2004. Using a microwave emission model to estimate soil moisture from ESTAR observations during SGP99.Journal of Hydrometeorology, 5(1): 49-63.
doi: 10.1175/1525-7541(2004)0052.0.CO;2 |
[19] |
Han S C, Yeo I Y, Alsdorf Det al., 2010. Movement of Amazon surface water from time-variable satellite gravity measurements and implications for water cycle parameters in land surface models.Geochemistry Geophysics Geosystems, 11(9): 1-20.
doi: 10.1029/2010GC003214 |
[20] |
Hu Z, Zhang C, Hu Q,et al. 2014. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets.Journal of Climate, 27(3): 1143-1167.
doi: 10.1175/JCLI-D-13-00064.1 |
[21] |
Huang Y, Salama M, Krol M Set al., 2015. Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: A case study of the Yangtze River basin.Water Resources Research, 51(10): 8494-8516.
doi: 10.1002/2015WR016923 |
[22] |
Immerzeel W W, Beek L P H V, Bierkens M F P, 2010. Climate change will affect the Asian water towers.Science, 328(5984): 1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
[23] |
Khandu, Forootan E, Schumacher M,et al. 2016. Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna River Basin.Water Resources Research, 52(3): 2240-2258.
doi: 10.1002/2015WR018113 |
[24] |
Lettenmaier D P, Famiglietti J S, 2006. Hydrology: Water from on high.Nature, 444(444): 562-563.
doi: 10.1038/444562a |
[25] |
Lioubimtseva E, Henebry G M, 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations.Journal of Arid Environments, 73(11): 963-977.
doi: 10.1016/j.jaridenv.2009.04.022 |
[26] |
Long D, Longuevergne L, Scanlon B R, 2015. Global analysis of approaches for deriving total water storage changes from GRACE satellites.Water Resources Research, 51(4): 2574-2594.
doi: 10.1002/2014WR016853 |
[27] |
Long D, Shen Y, Sun A, et al.2014. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data.Remote Sensing of Environment, 155(1): 145-160.
doi: 10.1016/j.rse.2014.08.006 |
[28] |
Luthcke S B, Zwally H J, Abdalati W,et al. 2006. Recent Greenland ice mass loss by drainage system from satellite gravity observations.Science, 314(5803): 1286-1289.
doi: 10.1126/science.1130776 |
[29] |
Matsuo K, Heki K, 2010. Time-variable ice loss in Asian high mountains from satellite gravimetry.Earth and Planetary Science Letters, 290(1/2): 30-36.
doi: 10.1016/j.epsl.2009.11.053 |
[30] |
Mohamed A, Mohamed S, John Wet al., 2011. Integration of GRACE (Gravity Recovery and Climate Experiment) data with traditional data sets for a better understanding of the time-dependent water partitioning African watersheds.Geology, 39(5): 479-482.
doi: 10.1130/G31812.1 |
[31] |
Njoku E G, Jackson T J, Lakshmi V,et al. 2003. Soil moisture retrieval from AMSR-E.IEEE Transactions on Geoscience & Remote Sensing, 41(2): 215-229.
doi: 10.1109/TGRS.2002.808243 |
[32] |
Qin B Q, 1999. A preliminary investigation of lake evolution in 20-century in Inland Mainland Asia with relation to the global warming.Journal of Lake Science, 11(1): 11-19. (in Chinese)
doi: 10.18307/1999.0102 |
[33] |
Ramillien G, Frappart F, Cazenave A,et al. 2005. Time variations of land water storage from an inversion of 2 years of GRACE geoids.Earth & Planetary Science Letters, 235(1/2): 283-301.
doi: 10.1016/j.epsl.2005.04.005 |
[34] |
Robock A, Vinnikov K Y, Srinivasan G,et al. 2000. The global soil moisture data bank.Bulletin of the American Meteorological Society, 81(6): 1281-1300.
doi: 10.1175/1520-0477(2000)0812.3.CO;2 |
[35] |
Rodell M, Velicogna I, Famiglietti J S, 2009. Satellite-based estimates of groundwater depletion in India.Nature, 460(7258): 999-1003.
doi: 10.1038/nature08238 pmid: 19675570 |
[36] |
Schmidt R, Schwintzer P, Flechtner F,et al. 2006. GRACE observations of changes in continental water storage.Global & Planetary Change, 50(1): 112-126.
doi: 10.1016/j.gloplacha.2004.11.018 |
[37] |
Serreze M C, Clark M P, Armstrong R L,et al. 1999. Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data.Water Resources Research, 35(7): 2145-2160.
doi: 10.1029/1999WR900090 |
[38] |
Siegfried T, Bernauer T, Guiennet R, et al.2012. Will climate change exacerbate water stress in Central Asia?Climatic Change, 112(3): 1-19.
doi: 10.1007/s10584-011-0336-x |
[39] |
Singh A, Seitz F, Schwatke C, 2012. Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry.Remote Sensing of Environment, 123(4): 187-195.
doi: 10.1016/j.rse.2012.01.001 |
[40] |
Sorg A, Bolch T, Stoffel M,et al. 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia).Nature Climate Change, 2(10): 725-731.
doi: 10.1038/nclimate1592 |
[41] |
Suo Y, Wang Z, Liu C,et al. 2009. Relationship between NDVI and precipitation and temperature in middle Asia during 1982-2002.Resources Science, 28(12): 1145-1152.
doi: 10.1016/j.mce.2006.08.010 |
[42] |
Syed T H, Famiglietti J S, Rodell M,et al. 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS.Water Resources Research, 44(2): 339-356.
doi: 10.1029/2006WR005779 |
[43] |
Tangdamrongsub N, Hwang C, Kao Y C, 2011. Water storage loss in Central and South Asia from GRACE satellite gravity: Correlations with climate data.Natural Hazards, 59(2): 749-769.
doi: 10.1007/s11069-011-9793-9 |
[44] |
Tapley B D, Bettadpur S, Ries J C,et al. 2004. GRACE measurements of mass variability in the Earth system.Science, 305(5683): 503-505.
doi: 10.1126/science.1099192 |
[45] |
Velicogna I, Wahr J, 2006. Measurements of time-variable gravity show mass loss in Antarctica.Science, 311(5768): 1745-1756.
doi: 10.1126/science.1123785 pmid: 16513944 |
[46] |
Wahr J, Molenaar M, Bryan F, 1998. Time variability of the earth’s gravity field: Hydrological and oceanic effects and their possible detection using grace.Journal of Geophysical Research Solid Earth, 103(B12): 30205-30230.
doi: 10.1029/98JB02844 |
[47] | Wahr J, Swenson S, Zlotnicki V, 2004. Time-variable gravity from GRACE: First results.Geophysical Research Letter, 31(11): 293-317. |
[48] |
Wang J S, Chen F, Jin L,et al. 2010. Characteristics of the dry/wet trend over arid Central Asia over the past 100 years.Climate Research, 41(1): 51-59.
doi: 10.3354/cr00837 |
[49] |
Yang P, Chen Y, 2015. An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan Mountains and its adjacent areas, Central Asia.Quaternary International, 358(11): 106-112.
doi: 10.1016/j.quaint.2014.09.077 |
[50] |
Yang T, Wang C, Chen Y,et al. 2015. Climate change and water storage variability over an arid endorheic region.Journal of Hydrology, 529: 330-339.
doi: 10.1016/j.jhydrol.2015.07.051 |
[51] |
Yang T, Wang C, Yu Z,et al. 2013. Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage.Global and Planetary Change, 109(4): 30-37.
doi: 10.1016/j.gloplacha.2013.07.005 |
[1] |
Aizen V B, Aizen E M, Melack J Met al., 1997. Climatic and hydrologic changes in the Tien Shan, Central Asia.Journal of Climate, 10(6): 1393-1404.
doi: 10.1175/1520-0442(1997)010<1393:CAHCIT>2.0.CO;2 |
[2] |
Alley W M, Healy R W, La B J W,et al. 2002. Flow and storage in groundwater systems.Science, 296(5575): 1985-1990.
doi: 10.1126/science.1067123 pmid: 12065826 |
[3] |
Awange J L, Forootan E, Kuhn Met al., 2014. Water storage changes and climate variability within the Nile Basin between 2002 and 2011.Advances in Water Resources, 73: 1-15.
doi: 10.1016/j.advwatres.2014.06.010 |
[4] |
Bernauer T, Siegfried T, 2012. Climate change and international water conflict in Central Asia.Journal of Peace Research, 49(1): 227-239.
doi: 10.1177/0022343311425843 |
[5] |
Brutsaert W, Parlange M B, 1998. Hydrologic cycle explains the evaporation paradox.Nature, 396(6706): 30.
doi: 10.1038/23845 |
[6] |
Cao Y, Nan Z, Cheng G, 2015. GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China.Remote Sensing, 7(1): 1021-1047.
doi: 10.3390/rs70101021 |
[7] |
Cayan D R, 1996. Inter-annual climate variability and snowpack in the western United States.Journal of Climate, 9(5): 928-948.
doi: 10.1175/1520-0442(1996)009<0928:ICVASI>2.0.CO;2 |
[8] |
Chen F H, Huang W, Jin L Yet al., 2011. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming.Science China Earth Sciences, 54(12): 1812-1821.
doi: 10.1007/s11430-011-4333-8 |
[9] |
Chen J L, Wilson C R, Tapley B D,et al. 2009. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models.Journal of Geophysical Research Atmospheres, 114(B5): 3093-3107.
doi: 10.1029/2008JB006056 |
[10] | Chen X, 2008. Land Use/Cover Change in Arid Areas in China. Beijing: Science Press, 180-201. (in Chinese) |
[11] |
Chen X, Bai J, Li X,et al. 2013. Changes in land use/land cover and ecosystem services in Central Asia during 1990-2009.Current Opinion in Environmental Sustainability, 5(1): 116-127.
doi: 10.1016/j.cosust.2012.12.005 |
[12] |
Chen Y, Li Z, Fan Yet al., 2015. Progress and prospects of climate change impacts on hydrology in the arid region of Northwest China.Environmental Research, 139: 11-19.
doi: 10.1016/j.envres.2014.12.029 pmid: 25682220 |
[13] |
De K M, Henebry G M, Owsley B Cet al., 2015. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001-2013.Remote Sensing of Environment, 170: 48-61.
doi: 10.1016/j.rse.2015.08.018 |
[14] | De P E, 2008. ICARDA regional GIS datasets for Central Asia: Explanatory notes. GIS Unit Technical Bulletin. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo. |
[15] |
Deng H, Chen Y, 2016. Influences of recent climate change and human activities on water storage variations in Central Asia.Journal of Hydrology, 544: 46-57.
doi: 10.1016/j.jhydrol.2016.11.006 |
[16] |
Dijk A I J M V, Peña-Arancibia J L, Wood E Fet al., 2013. Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide.Water Resources Research, 49(5): 2729-2746.
doi: 10.1002/wrcr.20251 |
[17] |
Frappart F, Ramillien G, Ronchail J, 2013. Changes in terrestrial water storage versus, rainfall and discharges in the Amazon basin.International Journal of Climatology, 33(14): 3029-3046.
doi: 10.1002/joc.3647 |
[52] |
Zhou H, Deng Z, Xia Y,et al. 2016. A new sampling method in particle filter based on Pearson correlation coefficient.Neurocomputing, 216: 208-215.
doi: 10.1016/j.neucom.2016.07.036 |
[1] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[2] | ZHU Wenbo, ZHANG Jingjing, CUI Yaoping, ZHU Lianqi. Ecosystem carbon storage under different scenarios of land use change in Qihe catchment, China [J]. Journal of Geographical Sciences, 2020, 30(9): 1507-1522. |
[3] | ZHANG Chi, WU Shaohong, LENG Guoyong. Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2 [J]. Journal of Geographical Sciences, 2020, 30(8): 1219-1232. |
[4] | ZHAO Zhilong, FANG Xiuqi, YE Yu, ZHANG Chengpeng, ZHANG Diyang. Reconstruction of cropland area in the European part of Tsarist Russia from 1696 to 1914 based on historical documents [J]. Journal of Geographical Sciences, 2020, 30(8): 1307-1324. |
[5] | GE Dazhuan, ZHOU Guipeng, QIAO Weifeng, YANG Mengqi. Land use transition and rural spatial governance: Mechanism, framework and perspectives [J]. Journal of Geographical Sciences, 2020, 30(8): 1325-1340. |
[6] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[7] | LONG Hualou, QU Yi, TU Shuangshuang, ZHANG Yingnan, JIANG Yanfeng. Development of land use transitions research in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1195-1214. |
[8] | YU Xia, ZHOU Weijian, WANG Yunqiang, CHENG Peng, HOU Yaoyao, XIONG Xiaohu, DU Hua, YANG Ling, WANG Ya. Effects of land use and cultivation time on soil organic and inorganic carbon storage in deep soils [J]. Journal of Geographical Sciences, 2020, 30(6): 921-934. |
[9] | LUO Xiang, AO Xinhe, ZHANG Zuo, WAN Qing, LIU Xingjian. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints [J]. Journal of Geographical Sciences, 2020, 30(4): 535-552. |
[10] | ZHANG Xueru, ZHOU Jie, LI Guoning, CHEN Chun, LI Mengmei, LUO Jianmei. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010 [J]. Journal of Geographical Sciences, 2020, 30(4): 601-620. |
[11] | SONG Xiaoqing, WEN Mengmeng, SHEN Yajing, FENG Qi, XIANG Jingwei, ZHANG Weina, ZHAO Guosong, WU Zhifeng. Urban vacant land in growing urbanization: An international review [J]. Journal of Geographical Sciences, 2020, 30(4): 669-687. |
[12] | LIU Haimeng, FANG Chuanglin, FANG Kai. Coupled Human and Natural Cube: A novel framework for analyzing the multiple interactions between humans and nature [J]. Journal of Geographical Sciences, 2020, 30(3): 355-377. |
[13] | ZHANG Xinhuan, XU Wenqiang, XIANG Xinyi, ZHANG Zhiping, CUI Mingjie. Mechanism of interaction between urbanization and resource environment in Central Asia [J]. Journal of Geographical Sciences, 2020, 30(11): 1723-1738. |
[14] | WANG Yun, LIU Yi. Central Asian geo-relation networks: Evolution and driving forces [J]. Journal of Geographical Sciences, 2020, 30(11): 1739-1760. |
[15] | MA Haitao, SUN Zhan. Comprehensive urbanization level and its dynamic factors for five Central Asian countries [J]. Journal of Geographical Sciences, 2020, 30(11): 1761-1780. |
|