Journal of Geographical Sciences ›› 2018, Vol. 28 ›› Issue (6): 819-832.doi: 10.1007/s11442-018-1507-8
• Research Articles • Previous Articles Next Articles
Boyi LIANG1(), Suhong LIU2,*(
)
Received:
2017-06-30
Accepted:
2017-12-08
Online:
2018-06-20
Published:
2018-06-20
Contact:
Suhong LIU
E-mail:liangboyi@pku.edu.cn;liush@bnu.edu.cn
About author:
Author: Liang Boyi, E-mail:
Supported by:
Boyi LIANG, Suhong LIU. Measurement of vegetation parameters and error analysis based on Monte Carlo method[J].Journal of Geographical Sciences, 2018, 28(6): 819-832.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Verification of mean and variation"
Sampling quantity | 30 | 50 | 70 | 100 | 150 | 200 | 300 | 500 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Low level | Computer simulation | Variation | Theoretical value | 0.049 | 0.029 | 0.021 | 0.015 | 0.010 | 0.007 | 0.005 | 0.003 |
Real value | 0.056 | 0.032 | 0.022 | 0.016 | 0.011 | 0.008 | 0.006 | 0.003 | |||
Mean | Theoretical value | 2.535 | 2.535 | 2.535 | 2.535 | 2.535 | 2.535 | 2.535 | 2.535 | ||
Real value | 2.531 | 2.546 | 2.541 | 2.536 | 2.537 | 2.534 | 2.540 | 2.537 | |||
GLASS LAI | Variation | Theoretical value | 0.028 | 0.017 | 0.012 | 0.008 | 0.006 | 0.004 | 0.003 | 0.002 | |
Real value | 0.031 | 0.018 | 0.013 | 0.009 | 0.006 | 0.005 | 0.003 | 0.002 | |||
Mean | Theoretical value | 1.234 | 1.234 | 1.234 | 1.234 | 1.234 | 1.234 | 1.234 | 1.234 | ||
Real value | 1.243 | 1.240 | 1.228 | 1.231 | 1.230 | 1.233 | 1.231 | 1.231 | |||
Median level | Computer simulation | Variation | Theoretical value | 0.212 | 0.127 | 0.091 | 0.064 | 0.042 | 0.032 | 0.021 | 0.013 |
Real value | 0.245 | 0.153 | 0.105 | 0.076 | 0.047 | 0.035 | 0.024 | 0.015 | |||
Mean | Theoretical value | 5.086 | 5.086 | 5.086 | 5.086 | 5.086 | 5.086 | 5.086 | 5.086 | ||
Real value | 5.073 | 5.091 | 5.097 | 5.079 | 5.083 | 5.084 | 5.087 | 5.091 | |||
GLASS LAI | Variation | Theoretical value | 0.039 | 0.023 | 0.017 | 0.012 | 0.008 | 0.006 | 0.004 | 0.002 | |
Real value | 0.038 | 0.024 | 0.016 | 0.011 | 0.008 | 0.006 | 0.004 | 0.002 | |||
Mean | Theoretical value | 2.115 | 2.115 | 2.115 | 2.115 | 2.115 | 2.115 | 2.115 | 2.115 | ||
Real value | 2.099 | 2.122 | 2.118 | 2.117 | 2.113 | 2.115 | 2.115 | 2.115 | |||
High level | Computer simulation | Variation | Theoretical value | 0.495 | 0.297 | 0.212 | 0.148 | 0.099 | 0.074 | 0.049 | 0.030 |
Real value | 0.532 | 0.352 | 0.270 | 0.176 | 0.122 | 0.085 | 0.054 | 0.035 | |||
Mean | Theoretical value | 8.086 | 8.086 | 8.086 | 8.086 | 8.086 | 8.086 | 8.086 | 8.086 | ||
Real value | 8.089 | 8.096 | 8.087 | 8.081 | 8.103 | 8.090 | 8.081 | 8.096 | |||
GLASS LAI | Variation | Theoretical value | 0.056 | 0.033 | 0.024 | 0.017 | 0.011 | 0.008 | 0.006 | 0.003 | |
Real value | 0.047 | 0.030 | 0.020 | 0.015 | 0.009 | 0.007 | 0.005 | 0.003 | |||
Mean | Theoretical value | 4.498 | 4.498 | 4.498 | 4.498 | 4.498 | 4.498 | 4.498 | 4.498 | ||
Real value | 4.493 | 4.498 | 4.501 | 4.503 | 4.504 | 4.505 | 4.502 | 4.500 |
Table 2
Statistics of error distribution"
Sampling quantity | 0-3% | 3%-5% | 5%-10% | 10%-20% | >20% | Average |
---|---|---|---|---|---|---|
30 | 3.07% | 0.18% | 0.75% | 3.24% | 0.76% | 1.60% |
50 | 1.95% | 1.60% | 1.45% | 1.86% | 0.24% | 1.42% |
70 | 3.33% | 2.34% | 1.94% | 3.07% | 0.66% | 2.27% |
100 | 2.82% | 2.84% | 1.35% | 1.36% | 0.03% | 1.68% |
150 | 3.20% | 0.95% | 1.59% | 0.52% | 1.57% | |
200 | 3.97% | 1.55% | 2.12% | 0.30% | 1.99% | |
300 | 3.31% | 1.96% | 1.32% | 0.03% | 1.66% | |
500 | 5.99% | 3.75% | 2.24% | 3.99% |
[1] |
Barton C V M, North P R J, 2001. Remote sensing of canopy light use efficiency using the photochemical reflectance index: Model and sensitivity analysis.Remote Sensing of Environment, 78: 264-273.
doi: 10.1016/S0034-4257(01)00224-3 |
[2] |
Benz U C, Hofmann P, Willhauck G, 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information.ISPRS Journal of Photogrammetry and Remote Sensing, 58: 239-258.
doi: 10.1016/j.isprsjprs.2003.10.002 |
[3] |
Bréda N J J, 2003. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies.Journal of Experimental Botany, 54: 2403-2417.
doi: 10.1093/jxb/erg263 pmid: 14565947 |
[4] |
Ceccato P, Flasse S, Tarantola S, 2001. Detecting vegetation leaf water content using reflectance in the optical domain.Remote Sensing of Environment, 77: 22-33.
doi: 10.1016/S0034-4257(01)00191-2 |
[5] |
Chen J M, Cihlar J, 1995. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index.Applied Optics, 34: 6211-6222.
doi: 10.1364/AO.34.006211 pmid: 21060464 |
[6] |
Colombo R, Bellingeri D, Fasolini D, 2003. Retrieval of leaf area index in different vegetation types using high resolution satellite data.Remote Sensing of Environment, 86: 120-131.
doi: 10.1016/S0034-4257(03)00094-4 |
[7] |
Ding M J, Zhang Yili, Liu Linshan.et al, 2007. The relationship between NDVI and precipitation on the Tibetan Plateau.Journal of Geographical Sciences, 17(3): 259-268.
doi: 10.1007/s11442-007-0259-7 |
[8] |
Ditlevsen O, Mohr G, Hoffmeyer P, 1996. Integration of non-Gaussian fields.Probabilistic Engineering Mechanics, 11: 15-23.
doi: 10.1016/0266-8920(95)00023-2 |
[9] | Epanechnikov V A, 1969. Non-parametric estimation of a multivariate probability density.Theory of Probability & Its Applications, 14: 153-158. |
[10] | Evensen G, 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics.Journal of Geophysical Research: Oceans, 99: 10143-10162. |
[11] |
Fitzgerald G J, Pinter P J, Hunsaker D J, 2005. Multiple shadow fractions in spectral mixture analysis of a cotton canopy.Remote Sensing of Environment, 97: 526-539.
doi: 10.1016/j.rse.2005.05.020 |
[12] |
Frontier S, 1987. Applications of fractal theory to ecology. In: Developments in Numerical Ecology. Berlin Heidelberg: Springer, 335-378.
doi: 10.1007/978-3-642-70880-0_9 |
[13] |
Gao B C, 1996. NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space.Remote Sensing of Environment, 58: 257-266.
doi: 10.1117/12.210877 |
[14] |
González-Sanpedro M C, Le Toan T, Moreno J.et al, 2008. Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data.Remote Sensing of Environment, 112(3): 810-824.
doi: 10.1016/j.rse.2007.06.018 |
[15] |
Hastings W K, 1970. Monte Carlo sampling methods using Markov chains and their applications.Biometrika, 57: 97-109.
doi: 10.1093/biomet/57.1.97 |
[16] |
Koehler E, Brown E, Haneuse S J P, 2009. On the assessment of Monte Carlo error in simulation-based statistical analyses.The American Statistician, 63: 155-162.
doi: 10.1198/tast.2009.0030 pmid: 22544972 |
[17] |
Lean J, Rowntree P R, 1993. A GCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation.Quarterly Journal of the Royal Meteorological Society, 119: 509-530.
doi: 10.1002/qj.49711951109 |
[18] |
Lefsky M A, Cohen W B, Parker G G, 2002. Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists.BioScience, 52: 19-30.
doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 |
[19] |
Li Q, Ullha A, 1998. Estimating partially linear panel data models with one-way error components.Econometric Reviews, 17: 145-166.
doi: 10.1080/07474939808800409 |
[20] |
Liang B, Liu S, Qu Y.et al, 2015. Estimating fractional vegetation cover using the hand-held laser range finder: Method and validation.Remote Sensing Letters, 6: 20-28.
doi: 10.1080/2150704X.2014.998348 |
[21] |
Lin Y C, Sarabandi K, 2014. A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees.IEEE Transactions on Geoscience and Remote Sensing, 37: 440-451.
doi: 10.1109/36.739083 |
[22] |
Liu X F, Zhang Jinshui, Zhu Xiufang.et al, 2014. Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000-2011.Journal of Geographical Sciences, 24(2): 288-302.
doi: 10.1007/s11442-014-1088-0 |
[23] |
Manies K L, Mladenoff D J, 2000. Testing methods to produce landscape-scale presettlement vegetation maps from the US public land survey records.Landscape Ecology, 15: 741-754.
doi: 10.1023/A:1008115200471 |
[24] |
Mehner H, Cutler M, Fairbairn D.et al, 2004. Remote sensing of upland vegetation: The potential of high spatial resolution satellite sensors.Global Ecology and Biogeography, 13: 359-369.
doi: 10.1111/j.1466-822X.2004.00096.x |
[25] | Nishiyama Y, 2001. Higher order asymptotic theory for semiparametric averaged derivatives. London School of Economics and Political Science (United Kingdom). |
[26] |
Phillips O L, Malhi Y, Higuchi N.et al, 1998. Changes in the carbon balance of tropical forests: Evidence from long-term plots.Science, 282(5388): 439-442.
doi: 10.1126/science.282.5388.439 |
[27] |
Raich J W, Tufekciogul A, 2000. Vegetation and soil respiration: Correlations and controls.Biogeochemistry, 48: 71-90.
doi: 10.1023/A:1006112000616 |
[28] |
Richey J E, Melack J M, Aufdenkampe A K.et al, 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2.Nature, 416: 617-620.
doi: 10.1038/416617a pmid: 11948346 |
[29] |
Sato N, Sellers P J, Randall D A.et al, 1989. Effects of implementing the simple biosphere model in a general circulation model.Journal of the Atmospheric Sciences, 46(18): 2757-2782.
doi: 10.1175/1520-0469(1989)0462.0.CO;2 |
[30] |
Shao Quanqin, Cao Wei, Fan Jiangwen.et al, 2017. Effects of an ecological conservation and restoration project in the Three-River Source Region, China.Journal of Geographical Sciences, 27(2): 183-204.
doi: 10.1007/s11442-017-1371-y |
[31] |
Singh A, 1989. Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10: 989-1003.
doi: 10.1080/01431168908903939 |
[32] | Stein C M, 1981. Estimation of the mean of a multivariate normal distribution.The Annals of Statistics, 1135-1151. |
[33] |
Tan Minghong, 2016. Exploring the relationship between vegetation and dust-storm intensity (DSI) in China.Journal of Geographical Sciences, 26(4): 387-396.
doi: 10.1007/s11442-016-1275-2 |
[34] |
Valentini R, Matteucci G, Dolman A J.et al, 2000. Respiration as the main determinant of carbon balance in European forests.Nature, 404(6780): 861-865.
doi: 10.1038/35009084 |
[35] |
Weibel E R, 1999. Fractal geometry: A design principle for living organisms. American Journal of Physiology-Lung Cellular and Molecular Physiology, 261: L361-L369.
pmid: 1767856 |
[36] |
Weiss M, Baret F, 1999. Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data.Remote Sensing of Environment, 70: 293-306.
doi: 10.1016/S0034-4257(99)00045-0 |
[37] |
Xu L, Myneni R B, Chapin Iii F S.et al, 2013. Temperature and vegetation seasonality diminishment over northern lands.Nature Climate Change, 3(6): 581-586.
doi: 10.1038/nclimate1836 |
[38] |
Yu Q, Gong P, Clinton N.et al, 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery.Photogrammetric Engineering & Remote Sensing, 72(7): 799-811.
doi: 10.14358/PERS.72.7.799 |
[1] | HUANG Huiping, CHEN Wei, ZHANG Yuan, QIAO Lin, DU Yunyan. Analysis of ecological quality in Lhasa Metropolitan Area during 1990-2017 based on remote sensing and Google Earth Engine platform [J]. Journal of Geographical Sciences, 2021, 31(2): 265-280. |
[2] | XU Chenchen, LIAO Xiaohan, YE Huping, YUE Huanyin. Iterative construction of low-altitude UAV air route network in urban areas: Case planning and assessment [J]. Journal of Geographical Sciences, 2020, 30(9): 1534-1552. |
[3] | ZHAO Guining, ZHANG Zhengyong, LIU Lin, LI Zhongqin, WANG Puyu, XU Liping. Simulation and construction of the glacier mass balance in the Manas River Basin, Tianshan, China from 2000 to 2016 [J]. Journal of Geographical Sciences, 2020, 30(6): 988-1004. |
[4] | LIU Wenchao, LIU Jiyuan, KUANG Wenhui. Spatio-temporal characteristics of soil protection efforts of the Grain for Green Project in northern Shaanxi Province [J]. Journal of Geographical Sciences, 2020, 30(3): 401-422. |
[5] | LI Deren, GUO Wei, CHANG Xiaomeng, LI Xi. From earth observation to human observation: Geocomputation for social science [J]. Journal of Geographical Sciences, 2020, 30(2): 233-250. |
[6] | YAO Yonghui, SUONAN Dongzhu, ZHANG Junyao. Compilation of 1:50,000 vegetation type map with remote sensing images based on mountain altitudinal belts of Taibai Mountain in the North-South transitional zone of China [J]. Journal of Geographical Sciences, 2020, 30(2): 267-280. |
[7] | ZHANG Yongqiang. Using LiDAR-DEM based rapid flood inundation modelling framework to map floodplain inundation extent and depth [J]. Journal of Geographical Sciences, 2020, 30(10): 1649-1663. |
[8] | CHEN Shaodan, ZHANG Liping, ZHANG Yanjun, GUO Mengyao, LIU Xin. Evaluation of Tropical Rainfall Measuring Mission (TRMM) satellite precipitation products for drought monitoring over the middle and lower reaches of the Yangtze River Basin, China [J]. Journal of Geographical Sciences, 2020, 30(1): 53-67. |
[9] | Xifang WU, Yongqing QI, Yanjun SHEN, Wei YANG, Yucui ZHANG, Akihiko KONDOH. Change of winter wheat planting area and its impacts on groundwater depletion in the North China Plain [J]. Journal of Geographical Sciences, 2019, 29(6): 891-908. |
[10] | Yucui ZHANG, Yongqing QI, Yanjun SHEN, Hongying WANG, Xuepeng PAN. Mapping the agricultural land use of the North China Plain in 2002 and 2012 [J]. Journal of Geographical Sciences, 2019, 29(6): 909-921. |
[11] | Qifei ZHANG, Yaning CHEN, Zhi LI, Yupeng LI, Yanyun XIANG, Wei BIAN. Glacier changes from 1975 to 2016 in the Aksu River Basin, Central Tianshan Mountains [J]. Journal of Geographical Sciences, 2019, 29(6): 984-1000. |
[12] | Cunjian YANG, Guanghong XU, Hechao LI, Defei YANG, He HUANG, Jing NI, Xiao LI, Xiao XIANG. Measuring the area of cultivated land reclaimed from rural settlements using an unmanned aerial vehicle [J]. Journal of Geographical Sciences, 2019, 29(5): 846-860. |
[13] | LIU Qionghuan, ZHANG Yili, LIU Linshan, LI Lanhui, QI Wei. The spatial local accuracy of land cover datasets over the Qiangtang Plateau, High Asia [J]. Journal of Geographical Sciences, 2019, 29(11): 1841-1858. |
[14] | Yong GE, Yuehong CHEN, Yuanxin JIA, Xian GUO, Shan HU. Dynamic monitoring the infrastructure of major ports in Sri Lanka by using multi-temporal high spatial resolution remote sensing images [J]. Journal of Geographical Sciences, 2018, 28(7): 973-984. |
[15] | Jia NING, Jiyuan LIU, Wenhui Kuang, Xinliang XU, Shuwen ZHANG, Changzhen YAN, Rendong LI, Shixin WU, Yunfeng HU, Guoming DU, Wenfeng CHI, Tao PAN, Jing NING. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015 [J]. Journal of Geographical Sciences, 2018, 28(5): 547-562. |
|