Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2018, Vol. 28 Issue (5) : 595-610     DOI: 10.1007/s11442-018-1493-x
Research Articles |
Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982-2013
TONG Siqin1,2,3(),ZHANG Jiquan1,2(),BAO Yuhai3,4,LAI Quan1,3,4,LIAN Xiao5,LI Na1,BAO Yongbin1
1. School of Environment, Northeast Normal University, Changchun 130024, China
2. Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China
3. College of Geography, Inner Mongolia Normal University, Hohhot 010022, China
4. Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot 010022, China
5. Graduate School of Life and Environmental Sciences, Tsukuba University, Ibaraki 305, Japan
Download: PDF(5315 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

This study analyzed the spatial and temporal variations in the Normalized Difference Vegetation Index (NDVI) on the Mongolian Plateau from 1982-2013 using Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g data and explored the effects of climate factors and human activities on vegetation. The results indicate that NDVI has slight upward trend in the Mongolian Plateau over the last 32 years. The area in which NDVI increased was much larger than that in which it decreased. Increased NDVI was primarily distributed in the southern part of the plateau, especially in the agro-pastoral ecotone of Inner Mongolia. Improvement in the vegetative cover is predicted for a larger area compared to that in which degradation is predicted based on Hurst exponent analysis. The NDVI-indicated vegetation growth in the Mongolian Plateau is a combined result of climate variations and human activities. Specifically, the precipitation has been the dominant factor and the recent human effort in protecting the ecological environments has left readily detectable imprints in the NDVI data series.

Keywords remote sensing      GIMMS NDVI3g      vegetation dynamic trend      Hurst exponent      residual trend analysis      Mongolian Plateau     
Fund:National Key Technology R&D Program of China, No.2013BAK05B01, No.2013BAK05B02;National Natural Science Foundation of China, No.41571491, No.61631011;The Program of Introducing Talents of Discipline to Universities, No.B16011
Issue Date: 31 March 2018
E-mail this article
E-mail Alert
Articles by authors
TONG Siqin
ZHANG Jiquan
BAO Yuhai
LAI Quan
BAO Yongbin
Cite this article:   
TONG Siqin,ZHANG Jiquan,BAO Yuhai, et al. Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982-2013[J]. Journal of Geographical Sciences, 2018, 28(5): 595-610.
URL:     OR
Figure 1  Geographic characteristics of the Mongolian Plateau: Elevation (a), vegetation types (b), annual mean precipitation (c), and temperature (d)
Figure 2  Annual mean NDVI across the Mongolian Plateau from 1982-2013
Figure 3  Annual average NDVI values for the Mongolian Plateau (MP), Inner Mongolia (IM), and Mongolia (MGL) from 1982-2003
Vegetation types NDVI range NDVI average Sen’s slope/yr Mean for H
Broadleaf forest 0.59-0.66 0.63 0.0002 0.419
Coniferous forest 0.52-0.58 0.56 0.0006 0.412
Meadow 0.51-0.56 0.54 0.0004 0.426
Shrub 0.43-0.48 0.45 0.0005 0.447
Cropland 0.37-0.43 0.39 0.0007 0.440
Steppe 0.32-0.39 0.35 0.0004 0.404
Sandy land 0.28-0.35 0.31 0.0005 0.437
Alpine grassland 0.27-0.31 0.28 0.0005 0.418
Desert 0.13-0.16 0.14 0.0001 0.389
Table 1  Annual average NDVI, slope, and Hurst value for each vegetation type in the Mongolian Plateau from 1982-2013
Figure 4  Spatial distribution of NDVI trends on the Mongolian Plateau from1982-2013
Figure 5  Spatial correlation between NDVI and precipitation from 1982-2013
Figure 6  Spatial correlation between NDVI and temperature from 1982-2013
Figure 7  Spatial distribution of residual NDVI trends on the Mongolian Plateau from 1982-2013
Figure 8  Spatial distribution of the Hurst exponent for the annual average NDVI time series on the Mongolian Plateau from 1982-2013. Values over 0.5 suggest a continuation in the past trend, while values below 0.5 suggest a reversal in the past trend
-20 < Zc < -1.96 1.96 < Zc < 20
H<0.5 Improvement Degradation
H>0.5 Consistent degradation Consistent improvement
Table 2  Parameters for predicted future vegetation change trends
Figure 9  Predicted vegetation changing trends on the Mongolian Plateau
Figure 10  Dynamic trends of precipitation (a), temperature (b), and Standardized Precipitation Evapotranspiration Index (SPEI) (c) on the Mongolian Plateau from1982-2013
Figure 11  Statistics for livestock numbers and cumulative afforested area in Ordos (a) and Tongliao (b), Inner Mongolia, from 2000-2013
[1] Chang Z, Gong H, Zhang J , et al. 2014. Correlation analysis on interferometric coherence degree and probability of residue occurrence in interferogram.Sensors Journal IEEE, 14(7): 2369-2375.
doi: 10.1109/JSEN.2014.2310751
[2] Fang J Y, 2000. Forest biomass carbon pool of middle and high latitudes in the north hemisphere is probably much smaller than present estimates.Acta Phytoecologica Sinica, 24(5): 635-638. (in Chinese)
[3] Fensholt R, Langanke T, Rasmussen K , et al. 2012. Greenness in semi-arid areas across the globe 1981-2007: An earth observing satellite based analysis of trends and drivers.Remote Sensing of Environment, 121: 144-158.
doi: 10.1016/j.rse.2012.01.017
[4] Granero M A S, Segovia J E T, Pérez J G, 2008. Some comments on Hurst exponent and the long memory processes on capital markets.Physica A Statistical Mechanics and Its Applications, 387(22): 5543-5551.
doi: 10.1016/j.physa.2008.05.053
[5] Guo X J, 2007. Relationship between grazing intensity with vegetation structure and grassland ecological environment. Qinghai Prataculture, 16(2): 17-20. (in Chinese)
[6] Holben B N, 1986. Characteristics of maximum-value composite images from temporal AVHRR data.International Journal of Remote Sensing, 7(11): 435-445.
[7] Hulme M, Doherty R, Ngara Tet al., 2001. African climate change: 1900-2100.Climate Research, 17(2): 145-168.
doi: 10.3354/cr017145
[8] Hurst H E, 1951. Long term storage capacity of reservoirs.Transactions of the American Society of Civil Engineers, 116(12): 776-808.
doi: 10.1016/0013-4694(51)90043-0
[9] Ichii K, Kawabata A, Yamaguchi Y, 2002. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982-1990.International Journal of Remote Sensing, 23(18): 3873-3878.
doi: 10.1080/01431160110119416
[10] Jiang D M, Liu Z M, Kou Z W , et al. 2004. Ecological environment and its sustainable management of Horqin steppe: A report on the survey of Horqin sandy land.Chinese Journal of Ecology, 23(5): 179-185. (in Chinese)
doi: 10.1088/1009-0630/6/5/011
[11] John R, Chen J, Ouyang Z , et al. 2013. Vegetation response to extreme climate events on the Mongolian Plateau from 2000-2010. Environmental Research Letters, 8, 035033 (12pp).
doi: 10.1088/1748-9326/8/3/035033
[12] Jong R D, Bruin S D, Wit A D , et al. 2011. Analysis of monotonic greening and browning trends from global NDVI time-series.Remote Sensing of Environment, 115(2): 692-702.
doi: 10.1016/j.rse.2010.10.011
[13] Kendall M, 1975. Rank Correlation Methods. London: Charles Griffin.
[14] Lambin E F, Strahler A H, 1994. Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales.International Journal of Remote Sensing, 15(10): 2099-2119.
doi: 10.1080/01431169408954230
[15] Li A, Wu J G, Huang J H, 2012. Distinguishing between human-induced and climate-driver vegetation changes: A critical application of RESTREND in Inner Mongolia. Landscape Ecology, 27: 969-982.
doi: 10.1007/s10980-012-9751-2
[16] Li A M, Han Z W, Xu J , et al. 2006. Transformation dynamics of desertification in Horqin sandy land at the beginning of the 21st century.Acta Geographica Sinica, 61(9): 976-984. (in Chinese)
doi: 10.1007/s11442-006-0415-5
[17] Li J Y, Chen P Q, Ma Z Get al., 2006. Regional research: A main approach to understanding the global environmental change.Advances in Earth Science, 21(5): 441-450. (in Chinese)
[18] Li W Y, Qian Z A, An M H , et al. 2006. Temporal and spatial feature analyses of winter and summer surface air temperature over CMASA, part (Ⅱ): July.Plateau Meteorology, 25(4): 624-632. (in Chinese)
doi: 10.1007/s10409-004-0010-x
[19] Li X G, Liu H M, Wang L Xet al., 2014. Vegetation cover change and its relationship between climate and human activities in Ordos plateau.Chinese Journal of Agrometeorology, 35(4): 470-476. (in Chinese)
[20] Li X Z, Liu X D, 2012. A modeling study on drought trend in the Sino-Mongolian arid and semiarid regions in the 21st century.Arid Zone Research, 29(2): 262-272. (in Chinese)
doi: 10.1007/s11783-011-0280-z
[21] Liu X, Pan Y, Zhu X , et al. 2015. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors.Acta Geographica Sinica, 70(5): 705-716. (in Chinese)
doi: 10.11821/dlxb201505003
[22] Liu Y, Li C Z, Liu Z Het al., 2016. Assessment of spatio-temporal variations in vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI.Acta Ecologica Sinica, 36(19): 1-11. (in Chinese)
doi: 10.1016/j.chnaes.2015.12.003
[23] Liu Y L, Pan Z H, Fan J L , et al. 2005. Spatial and temporal analyses on vegetation cover dynamics in north piedmont of Yinshan Mountain.Resources Science, 27(4): 168-174. (in Chinese)
doi: 10.1360/biodiv.050058
[24] Liu Z, Notaro M, Kutzbach J , et al. 2006. Assessing global vegetation-climate feedbacks from observations.Journal of Climate, 19(5): 787-814.
doi: 10.1175/JCLI3658.1
[25] Lu Y, Zhuang Q, Zhou G , et al. 2009. Possible decline of the carbon sink in the Mongolian Plateau during the 21st century.Environmental Research Letters, 4(4): 940-941.
doi: 10.1088/1748-9326/4/4/045023
[26] Ma W Y, He L, Zhao C Y, 2015. Desertification dynamics in Alxa League over the period of 2000-2012. Journal of Lanzhou University, 51(1): 55-60, 71. (in Chinese)
[27] Miao L J, Liu Q, Fraser R , et al. 2015. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011. Physics and Chemistry of the Earth Parts A/B/C, 87-88, 50-59.
doi: 10.1016/j.pce.2015.07.010
[28] Myneni R B, Keeling C D, Tucker C J , et al. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991.Nature, 386(6626): 698-702.
doi: 10.1038/386698a0
[29] Nemani R R., Keeling C D, Hashimoto Het al., 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999.Science, 300(5625): 1560-3.
doi: 10.1126/science.1082750 pmid: 12791990
[30] Park H S, Sohn B J, 2010. Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations.Journal of Geophysical Research Atmospheres, 115(D14): 1307-1314.
doi: 10.1029/2009JD012752
[31] Parry M L, Canziani O F, Palutikof J P , et al. 2007. IPCC Fourth Assessment Report: Climate Change, 1340-1356.
[32] Peng J, Liu Z, Liu Y , et al. 2012. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst exponent.Ecological Indicators, 14(1): 28-39.
doi: 10.1016/j.ecolind.2011.08.011
[33] Piao S L, Mohammat A, Fang J Yet al., 2006. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China.Global Environmental Change, 16(4): 340-348.
doi: 10.1016/j.gloenvcha.2006.02.002
[34] Seager R, Ting M, Held I , et al. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316(5828): 1181-1184.
doi: 10.1126/science.1139601 pmid: 17412920
[35] Sen P K, 1968. Estimates of the regression coefficient based on Kendall’s tau.Journal of the American Statistical Association, 63(324): 1379-1389.
doi: 10.1080/01621459.1968.10480934
[36] Song Y, Ma M G, 2011. A statistical analysis of the relationship between climatic factors and the normalized difference vegetation index in China.International Journal of Remote Sensing, 45(14): 374-82.
doi: 10.1080/01431161003801336
[37] To?i? I, 2004. Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro.Theoretical and Applied Climatology, 77(1): 47-56.
doi: 10.1007/s00704-003-0022-7
[38] Wang L, Zhen L, Liu X L , et al. 2008. Comparative studies on climate changes and influencing factors in central Mongolian Plateau region.Geographical Research, 27(1): 171-180. (in Chinese)
doi: 10.3724/SP.J.1047.2008.00014
[39] Wei Y J, Zhen L, Ochirbat B , et al. 2009. Empirical study on consumption of ecosystem services and its spatial differences over Mongolian Plateau.Resources Science, 31(10): 1677-1684. (in Chinese)
[40] Wessels K J, Prince S D, Malherbe J , et al. 2007. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa.Journal of Arid Environments, 68(2): 271-297.
doi: 10.1016/j.jaridenv.2006.05.015
[41] Whetton P H, Fowler A M, Haylock M R , et al. 1993. Implications of climate change due to the enhanced greenhouse effect on floods and droughts in Australia. Climatic Change, 25(3): 289-317.
doi: 10.1007/BF01098378
[42] Xin Z B, Xu J X, Zheng W, 2008. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981-2006): Impacts of climate changes and human activities.Science China Earth Sciences, 51(1): 67-78. (in Chinese)
doi: 10.1007/s11430-007-0137-2
[43] Yatagai A, Yasunari T, 1995. Interannual variations of summer precipitation in the arid/semi-arid regions in China and Mongolia: Their regionality and relation to the Asian summer monsoon.Journal of the Meteorological Society of Japan, 73(5): 909-923.
doi: 10.1175/1520-0469(1995)052<3428:OTDAVO>2.0.CO;2
[44] Zhang X Y, Hu Y F, Zhuang D Fet al., 2009. NDVI spatial pattern and its differentiation on the Mongolian Plateau.Journal of Geographical Sciences, 19(4): 403-415.
doi: 10.1007/s11442-009-0403-7
[45] Zhao X, Hu H F, Shen H H , et al. 2015. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau.Landscape Ecology, 30(9): 1599-1611.
doi: 10.1007/s10980-014-0095-y
[46] Zhao Y X, Qiu, G W, 2001. Study of climate change impact on northern farming-pastoral region.Meteorological Monthly, 27(5): 3-7. (in Chinese)
[47] Zhao Z C, Wang S W, Luo Y, 2007. Assessments and projections of temperature rising since the establishment of IPCC.Advances in Climate Change Research, 3(3): 83-84. (in Chinese)
[48] Zhen L, Liu J Y, Liu X L , et al. 2008. Structural change of agriculture-livestock system and affecting factors in Mongolian Plateau.Journal of Arid Land Resources and Environment, 22(1): 144-151. (in Chinese)
doi: 10.3724/SP.J.1148.2008.00259
[49] Zhou L M, Kaufmann R K, TianY , et al. 2003. Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999. Journal of Geophysical Research Atmospheres, 108(D1): ACL 3-16.
doi: 10.1029/2002JD002510
[50] Zhou L M, Tucker C J, Kaufmann R K , et al. 2001. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999.Journal of Geophysical Research Atmospheres, 106(D17): 20069-20084.
doi: 10.1029/2000JD000115
[51] Zhou X Y, Shi H D, Wang X R , et al. 2012. Study on the temporal and spatial dynamic changes of land use and driving forces analysis of Mongolia Plateau in recent 30 years.Acta Agriculture Zhejiangensis, 24(6): 1102-1110. (in Chinese)
doi: 10.1007/s11783-011-0280-z
[52] Zhuo Y, 2007. The ration remote sensing method study of desertification of Mongolian Plateau based on MODIS data [D]. Huhhot: Inner Mongolia Normal University, 1-51. (in Chinese)
[1] NING Jia,LIU Jiyuan,Kuang Wenhui,XU Xinliang,ZHANG Shuwen,YAN Changzhen,LI Rendong,WU Shixin,HU Yunfeng,DU Guoming,CHI Wenfeng,PAN Tao,NING Jing. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015[J]. Journal of Geographical Sciences, 2018, 28(5): 547-562.
[2] FU Yang,CHEN Hui,NIU Huihui,ZHANG Siqi,YANG Yi. Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015[J]. Journal of Geographical Sciences, 2018, 28(4): 400-414.
[3] LIU Wenchao,LIU Jiyuan,KUANG Wenhui,NING Jia. Examining the influence of the implementation of Major Function-oriented Zones on built-up area expansion in China[J]. Journal of Geographical Sciences, 2017, 27(6): 643-660.
[4] WU Yanhong,ZHANG Xin,ZHENG Hongxing,*LI Junsheng,WANG Zhiying. Investigating changes in lake systems in the south-central Tibetan Plateau with multi-source remote sensing[J]. Journal of Geographical Sciences, 2017, 27(3): 337-347.
[5] Asnake MEKURIAW,Andreas HEINIMANN,Gete ZELEKE,Hans HURNI,Kaspar HURNI. An automated method for mapping physical soil and water conservation structures on cultivated land using GIS and remote sensing techniques[J]. Journal of Geographical Sciences, 2017, 27(1): 79-94.
[6] TANG Qiuhong,ZHANG Xuejun,DUAN Qingyun,HUANG Shifeng,YUAN Xing,CUI Huijuan,LI Zhe,LIU Xingcai. Hydrological monitoring and seasonal forecasting:Progress and perspectives[J]. Journal of Geographical Sciences, 2016, 26(7): 904-920.
[7] Dehua MAO,Ling LUO,Zongming WANG,Chunhua ZHANG,Chunying REN. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau[J]. Journal of Geographical Sciences, 2015, 25(8): 967-977.
[8] Zhilong ZHAO,Yili ZHANG,Linshan LIU,Fenggui LIU,Haifeng ZHANG. Recent changes in wetlands on the Tibetan Plateau: A review[J]. Journal of Geographical Sciences, 2015, 25(7): 879-896.
[9] M USMAN,R LIEDL,M A SHAHID,A ABBAS. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data[J]. Journal of Geographical Sciences, 2015, 25(12): 1479-1506.
[10] Wenfeng CHI,Wenjiao SHI,Wenhui KUANG. Spatio-temporal characteristics of intra-urban land cover in the cities of China and USA from 1978 to 2010[J]. Journal of Geographical Sciences, 2015, 25(1): 3-18.
[11] Baojuan HUAI,Zhongqin LI,Shengjie WANG,Meiping SUN,Ping ZHOU,Yan XIAO. RS analysis of glaciers change in the Heihe River Basin, Northwest China, during the recent decades[J]. Journal of Geographical Sciences, 2014, 24(6): 993-1008.
[12] LIU Jiyuan, KUANG Wenhui, ZHANG Zengxiang, XU Xinliang, QIN Yuanwei, NING Jia, ZHOU Wancun, ZHANG Shuwen, LI Rendong, YAN Changzhen, WU Shixin, SHI Xuezheng, JIANG Nan, YU Dongsheng, PAN Xianzhang, CHI Wenfeng. Spatiotemporal characteristics, patterns, and caus-es of land-use changes in China since the late 1980s[J]. , 2014, 24(2): 195-210.
[13] XU Jinyong, ZHANG Zengxiang, ZHAO Xiaoli, WEN Qingke, ZUO Lijun, WANG Xiao, YI Ling. Spatial and temporal variations of coastlines in northern China (2000-2012)[J]. , 2014, 24(1): 18-32.
[14] LI Fapeng, ZHAN Chesheng, XU Zongxue, JIANG Shanshan, XIONG Jun. Remote sensing monitoring on regional crop water productivity in the Haihe River Basin[J]. , 2013, 23(6): 1080-1090.
[15] KANG Yanyan, XIA Fei, DING Xianrong, ZHANG Changkuan, CHENG Ligang, GE Xiaoping, Jennifer GLASS. Coastal evolution of Yancheng, northern Jiangsu, China since the mid-Holocene based on the Landsat MSS imagery[J]. , 2013, 23(5): 915-931.
Full text



Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd