Please wait a minute...
 Home  About the Journal Subscription Advertisement Contact us   英文  
Just Accepted  |  Current Issue  |  Archive  |  Featured Articles  |  Most Read  |  Most Download  |  Most Cited
Journal of Geographical Sciences    2018, Vol. 28 Issue (5) : 563-578     DOI: 10.1007/s11442-018-1491-z
Research Articles |
Spatiotemporal characteristics of urban air quality in China and geographic detection of their determinants
ZHANG Xiaoping(),GONG Zezhou
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(3838 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Ambient air pollution brought by the rapid economic development and industrial production in China has exerted a significant influence on socio-economic activities and public health, especially in the densely populated urban areas. Therefore, scientific examination of regional variation of urban air quality and its dominant factors is of great importance to regional environmental management. Based on daily air quality index (AQI) datasets spanning from 2014 to 2016, this study analysed the spatiotemporal characteristics of air quality across different regions throughout China and ascertained the determinants of urban air quality in disparate regions. The main findings are as follows: (1) The annual average value of the urban AQI in China decreased from 2014 to 2016, indicating a desirable trend in air quality at the national scale. (2) The attainment rate of the urban AQI exhibited an apparent spatially stratified heterogeneity, wherein North China retained a high AQI value. The increase of Moran’s I Index reported an apparent spillover effect among adjacent regions. (3) Both at the national and regional scales, the seasonal tendency of air quality in each year is similar, wherein good in summer and relatively poor in winter. (4) Results drawn from the Geographic Detector analysis show that dominant factors influencing AQI vary significantly across urban agglomerations. Topographical and meteorological variations in urban areas may lead to complex spatiotemporal variations in pollutant concentration. Whereas given the same natural conditions, the human-dominated factors, such as industrial structure and urban form, exert significant impacts on urban air quality.The spatial spillover effects and regional heterogeneity of urban air quality illustrated in this study suggest the governments and institutions should set priority to the importance of regional cooperation and collaboration in light of environment regulation and pollution prevention.

Keywords Air Quality Index (AQI)      spatiotemporal characteristics      geographic detector      China     
Fund:National Natural Science Foundation of China, No.41771133;Science and Technology Service (STS) Program of Chinese Academy of Sciences, No.KFJ-EW-STS-089
Issue Date: 31 March 2018
E-mail this article
E-mail Alert
Articles by authors
ZHANG Xiaoping
GONG Zezhou
Cite this article:   
ZHANG Xiaoping,GONG Zezhou. Spatiotemporal characteristics of urban air quality in China and geographic detection of their determinants[J]. Journal of Geographical Sciences, 2018, 28(5): 563-578.
URL:     OR
Figure 1  The location of the study area (a) and sample cities (b)
Figure 2  The daily AQI average of sample cities in China in 2014, 2015, and 2016
Figure 3  The spatial distribution of the attainment rate for the annually averaged AQI in China
Figure 4  Global autocorrelation of AQI for China in 2014, 2015, and 2016
Figure 5  Spatial agglomeration variation of annual AQI in China
Region Province Number of city (2014) Number of city (2015 and 2016)
A Nationwide 161 366
B Heilongjiang, Jilin, Liaoning 16 37
C Beijing, Tianjin, Hebei 13 13
D Shanghai, Jiangsu, Zhejiang 25 39
E Hubei, Hunan, Anhui, Jiangxi 14 54
F Guangdong, Guangxi, Fujian, Hainan 30 46
G Sichuan, Guizhou, Yunnan, Chongqing, Tibet 15 54
H Gansu, Shaanxi, Qinghai, Ningxia, Xinjiang, Inner Mongolia 19 65
I Shandong, Shanxi, Henan 29 58
Table 1  Description of regional divisions in China
Figure 6  Monthly variations of AQI among different regions of China for 2014, 2015, and 2016
Figure 7  Determinants diagram of urban air quality
Indices First-grade Second-grade Third-grade Fourth-grade Fifth-grade
X1 (104 per) <200 200-400 400-700 700-1000 >1000
X2 (%) <4 4-10 10-18 18-33 >33
X3 (104 yuan) <3 3-5 5-7.5 7.5-12 >12
X4 (102) <7 7-15 15-25 25-45 >45
X5 (102 hm2) <15 15-25 25-40 40-80 >80
X6 (103 t) <19 19-23 23-42 42-130 >130
X7 (104 t) <3 3-6 6-10 10-16 >16
X8 (°) <0.1 0.1-0.5 0.5-1.5 1.5-3.5 >3.5
X9 (%) <50 50-60 60-70 70-75 >75
X10 (102 mm) <4.5 4.5-7.5 7.5-10 10-15 >15
X11 (m/s) <1.4 1.4-1.8 1.8-2.2 2.2-2.6 >2.6
X12 (℃) <7 7-11 11-15 15-19 >19
Table 2  Impact factor partitions for the identified geographical factors
Figure 8  Spatial distribution of the 12 detected factors
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
X2 N
X3 N N
X4 N N N
X5 N N N N
X6 N N N N N
X7 N N Y N N N
X8 N N N N N N N
X9 N N Y N N N N N
X10 Y Y Y Y Y Y N Y N
X11 N N N N N N N N N N
X12 Y Y Y Y Y Y Y Y Y N Y
Table 3  Significance test of different factors affecting the urban AQI in China (Region A)
Factors P value
X1 0.1228 0.2636 0.4115 0.2606 0.1194 0.1440 0.2166 0.0907 0.1765
X2 0.1312 0.3477 0.0736 0.1213 0.1568 0.1759 0.1716 0.0448 0.1071
X3 0.0298 0.5177 0.4911 0.1972 0.0688 0.0830 0.1973 0.1315 0.1514
X4 0.1272 0.2982 0.8172 0.5873 0.1350 0.1104 0.1298 0.0447 0.4137
X5 0.1307 0.2824 0.3109 0.2576 0.0771 0.0421 0.5025 0.1660 0.2235
X6 0.1599 0.3471 0.3368 0.4776 0.0162 0.0134 0.0924 0.1616 0.0491
X7 0.1889 0.4813 0.1442 0.3482 0.0182 0.2016 0.0981 0.0888 0.0450
X8 0.1315 0.0705 0.2278 0.1232 0.1490 0.0442 0.4818 0.0145 0.2327
X9 0.2168 0.2764 0.2746 0.2559 0.1084 0.0067 0.3129 0.0231 0.1483
X10 0.2943 0.3289 0.0397 0.6956 0.1880 0.0592 0.4749 0.0575 0.0148
X11 0.1016 0.0562 0.2641 0.2289 0.1782 0.3815 0.4509 0.2087 0.2351
X12 0.3436 0.2479 0.7128 0.0077 0.1507 0.0450 0.3834 0.0365 0.1590
Table 4  Geographically determined weights of the factors affecting the urban AQI in the study area
Region Factors P value Factors P value Factors P value
A X12 0.3436 X10 0.2943 X9 0.2168
B X3 0.5177 X7 0.4813 X2 0.3477
C X4 0.8172 X12 0.7128 X3 0.4911
D X10 0.6956 X4 0.5873 X6 0.4776
E X10 0.1880 X11 0.1782 X2 0.1568
F X11 0.3815 X7 0.2016 X2 0.1759
G X5 0.5025 X8 0.4818 X10 0.4749
H X11 0.2087 X5 0.1660 X6 0.1616
I X4 0.4137 X11 0.2351 X8 0.2327
Table 5  The top three factors affecting the urban AQI for individual regions
[1] Chen J, Li C, Ristovski Zet al., 2017. A review of biomass burning: Emissions and impacts on air quality, health and climate in China.Science of The Total Environment, 579: 1000-1034.
doi: 10.1016/j.scitotenv.2016.11.025 pmid: 27908624
[2] Chen X, Zhang LW, Huang J J , et al. 2016. Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China.Science of The Total Environment, 571: 855-861.
doi: 10.1016/j.scitotenv.2016.07.064 pmid: 27425436
[3] Fang C L, Wang Z B, Xu G, 2016. Spatial-temporal characteristics of PM2.5 in China: A city-level perspective analysis.Journal of Geographical Sciences, 26(11): 1519-1532.
doi: 10.1007/s11442-016-1341-9
[4] Getis A, Ord J K, 1992. The analysis of spatial association by use of distance statistics.Geographical Analysis, 24(3): 189-206.
doi: 10.1111/j.1538-4632.1992.tb00261.x
[5] Gong Z Z, Zhang X P, 2017. Assessment of urban air pollution and spatial spillover effects in China: Cases of 113 key environmental protection cities.Journal of Resources and Ecology, 8(6): 584-594.
doi: 10.5814/j.issn.1674-764x.2017.06.004
[6] Gu C, Wu L, Lan C, 2012. Progress in research on Chinese urbanization.Frontiers of Architectural Research, 1(2): 101-149.
doi: 10.1016/j.foar.2012.02.013
[7] Guan D, Su X, Zhang Qet al., 2014. The socioeconomic drivers of China’s primary PM2.5 emissions.Environmental Research Letters, 9(2): 024010.
doi: 10.1088/1748-9326/9/2/024010
[8] Hu J, Huang L, Chen Met al., 2017. Impacts of power generation on air quality in China (Part II): Future scenarios.Resources Conservation & Recycling, 121: 115-127.
doi: 10.1016/j.resconrec.2016.04.011
[9] Hu J, Ying Q, Wang Yet al., 2015. Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices.Environment International, 84: 17-25.
doi: 10.1016/j.envint.2015.06.014 pmid: 26197060
[10] Jeffrey S J, Carter J O, Moodie K Bet al., 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data.Environmental Modelling & Software, 16(4): 309-330.
doi: 10.1016/S1364-8152(01)00008-1
[11] Ju H, Zhang Z, Zuo Let al., 2016. Driving forces and their interactions of built-up land expansion based on the geographical detector: A case study of Beijing, China.International Journal of Geographical Information Science, 30(11): 1-20.
doi: 10.1080/13658816.2016.1165228
[12] Krummel J R, Gilmore C C, O'Neill R V, 1984. Locating vegetation at-risk to air pollution: An exploration of a regional approach.Journal of Environmental Management, 18(3): 279-290.
doi: 10.1007/BF00053804
[13] Lelieveld J, Evans J S, Fnais Met al., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale.Nature, 525(7569): 367-371.
doi: 10.1038/nature15371 pmid: 26381985
[14] Li P, Yan R, Yu Set al., 2015. Reinstate regional transport of PM2.5 as a major cause of severe haze in Beijing.Proceedings of the National Academy of Sciences of the United States of America, 112(21): 2739-2740.
doi: 10.1073/pnas.1502596112
[15] Li Q, Jiang J, Wang Set al., 2017. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication.Science of The Total Environment, 576: 347-361.
doi: 10.1016/j.scitotenv.2016.10.080 pmid: 27792953
[16] Lin X, Wang D, 2016. Spatiotemporal evolution of urban air quality and socioeconomic driving forces in China.Journal of Geographical Sciences, 26(11): 1533-1549.
doi: 10.1007/s11442-016-1342-8
[17] Liu C, Chen R, Zhao Yet al., 2017. Associations between ambient fine particulate air pollution and hypertension: A nationwide cross-sectional study in China.Science of The Total Environment, 584/585: 869-874.
doi: 10.1016/j.scitotenv.2017.01.133 pmid: 28153400
[18] Liu W, Cai J, Huang Cet al., 2016. Associations of gestational and early life exposures to ambient air pollution with childhood atopic eczema in Shanghai, China.Science of The Total Environment, 572: 34-42.
doi: 10.1016/j.scitotenv.2016.07.197
[19] Lu X, Han L, 2014. Research on meteorological features of PBL during heavy haze episodes in the city of Chengdu, Sichuan basin, China. American Geographical Union, Fall Meeting.
[20] Ministry of Environmental Protection (MEP) of China, 2012. Ambient Air Quality Standards GB3095-2012. Beijing: China's Ministry of Environmental Protection. (in Chinese)
[21] Moran P A P, 1950. Notes on continuous stochastic phenomena.Biometrika, 37(1/2): 17-23.
doi: 10.2307/2332142 pmid: 15420245
[22] Morikawa H, 1988. On the phenomenon of population turnaround or "counterurbanization".Geographical Review of Japan, 61: 685-705.
doi: 10.4157/grj1984a.61.9_685
[23] Oliver M A, Webster R, 1990. Kriging: A method of interpolation for geographical information systems.International Journal of Geographical Information Science, 4(3): 313-332.
doi: 10.1080/02693799008941549
[24] Patton A P, Perkins J, Zamore Wet al., 2014. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway.Atmospheric Environment, 99: 309-321.
doi: 10.1016/j.atmosenv.2014.09.072 pmid: 25364295
[25] Peng J, Chen S, Lü Het al., 2016. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011.Remote Sensing of Environment, 174: 109-121.
doi: 10.1016/j.rse.2015.12.008
[26] Place S E, Mitloehner F M, 2010. Invited review: Contemporary environmental issues: A review of the dairy industry's role in climate change and air quality and the potential of mitigation through improved production efficiency.Journal of Dairy Science, 93(8): 3407-3416.
doi: 10.3168/jds.2009-2719 pmid: 20655409
[27] Qin H, Liao T F, 2016. The association between rural-urban migration flows and urban air quality in China.Regional Environmental Change, 16(5): 1-13.
doi: 10.1007/s10113-015-0865-3
[28] Qin R X, Xiao C, Zhu Yet al., 2017. The interactive effects between high temperature and air pollution on mortality: A time-series analysis in Hefei, China.Science of The Total Environment, 575: 1530-1537.
doi: 10.1016/j.scitotenv.2016.10.033 pmid: 28029451
[29] Shaw D, Pang A, Lin C Cet al., 2010. Economic growth and air quality in China.Environmental Economics and Policy Studies, 12(3): 79-96.
doi: 10.1007/s10018-010-0166-5
[30] Sheng N, Tang U W, 2016. The first official city ranking by air quality in China: A review and analysis.Cities, 51: 139-149.
doi: 10.1016/j.cities.2015.08.012
[31] Sun D, Du W P, Gao Q Xet al., 2012. Change characteristics of API of several typical cities within three urban agglomerations in China from 2001 to 2010.Resources Science, 34(8): 1401-1407. (in Chinese)
[32] Sun L, Wei J, Duan D Het al., 2016. Impact of land-use and land-cover change on urban air quality in representative cities of China.Journal of Atmospheric and Solar-Terrestrial Physics, 142: 43-54.
doi: 10.1016/j.jastp.2016.02.022
[33] Tai A P K, Mickley L J, Jacob D J, 2010. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change.Atmospheric Environment, 44(32): 3976-3984.
doi: 10.1016/j.atmosenv.2010.06.060
[34] Wang J F, 2010. Spatial Analysis. Beijing: Science Press, 50-61. (in Chinese)
[35] Wang J F, Ge Y, Li Let al., 2014. Spatiotemporal data analysis in geography.Acta Geographica Sinica, 69(9): 1326-1345. (in Chinese)
doi: 10.11821/dlxb201409007
[36] Wang J F, Li X H, Christakos Get al., 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China.International Journal of Geographical Information Science, 24(1): 107-127.
doi: 10.1080/13658810802443457
[37] Wang J F, Zhang T L, Fu B J, 2016. A measure of spatial stratified heterogeneity.Ecological Indicators, 67: 250-256.
doi: 10.1016/j.ecolind.2016.02.052
[38] Yan Z, Xin Y, Brown Ret al., 2017. Shipping emissions and their impacts on air quality in China.Science of the Total Environment, 581/582: 186-198.
doi: 10.1016/j.scitotenv.2016.12.098 pmid: 28062109
[39] Zhang R, Fan S, 2011. Study of the influence of wind field on air quality over the Pearl River Delta.Acta Scientiarum Natralium Universitatis Sunyatseni, 50(6): 130-134. (in Chinese)
doi: 10.1016/B978-0-444-53599-3.10005-8
[40] Zhou L, Wu J, Jia Ret al., 2016. Investigation of temporal-spatial characteristics and underlying risk factors of PM2.5 pollution in Beijing-Tianjin-Hebei area.Research of Environmental Sciences, 29(4): 483-493. (in Chinese)
doi: 10.13198/j.issn.1001-6929.2016.04.03
[41] Zou B, Xu S, Sternberg Tet al., 2016. Effect of land use and cover change on air quality in urban sprawl.Sustainability, 8(7): 677-690.
doi: 10.3390/su8070677
[1] NING Jia,LIU Jiyuan,Kuang Wenhui,XU Xinliang,ZHANG Shuwen,YAN Changzhen,LI Rendong,WU Shixin,HU Yunfeng,DU Guoming,CHI Wenfeng,PAN Tao,NING Jing. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015[J]. Journal of Geographical Sciences, 2018, 28(5): 547-562.
[2] LI Gaocong,Gao Shu,WANG Yaping,LI Chunyan. Sediment flux from the Zhoushan Archipelago, eastern China[J]. Journal of Geographical Sciences, 2018, 28(4): 387-399.
[3] SHI Wenjiao,LIU Yiting,SHI Xiaoli. Development of quantitative methods for detecting climate contributions to boundary shifts in farming-pastoral ecotone of northern China[J]. Journal of Geographical Sciences, 2017, 27(9): 1059-1071.
[4] CHU Zheng,GUO Jianping,ZHAO Junfang. Impacts of future climate change on agroclimatic resources in Northeast China[J]. Journal of Geographical Sciences, 2017, 27(9): 1044-1058.
[5] SONG Xianwei,GAO Yang,WEN Xuefa,GUO Dali,YU Guirui,HE Nianpeng,ZHANG Jinzhong. Carbon sequestration potential and its eco-service function in the karst area, China[J]. Journal of Geographical Sciences, 2017, 27(8): 967-980.
[6] SUN Dongqi,ZHOU Liang,LI Yu,LIU Haimeng,SHEN Xiaoyan,WANG Zedong,WANG Xixi. New-type urbanization in China: Predicted trends and investment demand for 2015-2030[J]. Journal of Geographical Sciences, 2017, 27(8): 943-966.
[7] FENG Zhiming,LI Fangzhou,YANG Yanzhao,LI Peng. The past, present, and future of population geography in China:Progress, challenges and opportunities[J]. Journal of Geographical Sciences, 2017, 27(8): 925-942.
[8] LI Xiaoyun,YANG Yu,LIU Yi. Research progress in man-land relationship evolution and its resource-environment base in China[J]. Journal of Geographical Sciences, 2017, 27(8): 899-924.
[9] WANG Degen,NIU Yu,SUN Feng,WANG Kaiyong,QIAN Jia,LI Feng. Evolution and spatial characteristics of tourism field strength of cities linked by high-speed rail (HSR) network in China[J]. Journal of Geographical Sciences, 2017, 27(7): 835-856.
[10] HE Bin,CHEN Aifang,JIANG Weiguo,CHEN Ziyue. The response of vegetation growth to shifts in trend of temperature in China[J]. Journal of Geographical Sciences, 2017, 27(7): 801-816.
[11] YANG Yan, WANG Limao, CAO Zhi, MOU Chufu, SHEN Lei, ZHAO Jianan, FANG Yebing. CO2 emissions from cement industry in China: A bottom-up estimation from factory to regional and national levels[J]. Journal of Geographical Sciences, 2017, 27(6): 711-730.
[12] CHEN Xuejuan,MO Xingguo,HU Shi,LIU Suxia. Contributions of climate change and human activities to ET and GPP trends over North China Plain from 2000 to 2014[J]. Journal of Geographical Sciences, 2017, 27(6): 661-680.
[13] LIU Wenchao,LIU Jiyuan,KUANG Wenhui,NING Jia. Examining the influence of the implementation of Major Function-oriented Zones on built-up area expansion in China[J]. Journal of Geographical Sciences, 2017, 27(6): 643-660.
[14] ZHU Wenbo,LI Shuangcheng. The dynamic response of forest vegetation to hydrothermal conditions in the Funiu Mountains of western Henan Province[J]. Journal of Geographical Sciences, 2017, 27(5): 565-578.
[15] LIU Chunla,LIU Weidong,LU Dadao,CHEN Mingxing,XU Mei. A study of provincial differences in China’s eco-compensation framework[J]. Journal of Geographical Sciences, 2017, 27(2): 240-256.
Full text



Copyright © Journal of Geographical Sciences, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd