[1] |
Addor N, Jaun S, Fundel Fet al., 2011. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): Skill, case studies and scenarios.Hydrology and Earth System Sciences, 15: 2327-2347.
doi: 10.5194/hess-15-2327-2011
|
[2] |
Bl¨oschl G, 1999. Scaling issues in snow hydrology.Hydrological Processes, 13: 2149-2175.
doi: 10.1002/(ISSN)1099-1085
|
[3] |
Carroll S S, Cressie N, 1996. A comparison of geostatistical methodologies used to estimate snow water equivalent.Water Resources Bulletin, 32: 267-278.
doi: 10.1111/j.1752-1688.1996.tb03450.x
|
[4] |
Chang A T C, Rango A, 2000. Algorithm Theoretical Basis Document for the AMSR-E Snow Water Equivalent Algorithm, Version 3.1. Greenbelt, MD, USA, NASA Goddard Space Flight Center, 49 pp.
doi: 10.1506/car.25.2.3
|
[5] |
Elder K, Rosenthal W, Davis R, 1998. Estimating the spatial distribution of snow water equivalence in a montane watershed.Hydrological Processes, 12: 1793-1808.
doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K
|
[6] |
Erxleben J, Elder K, Davis R, 2002. Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains.Hydrological Processes, 16: 3627-3649.
doi: 10.1002/hyp.1239
|
[7] |
Garen D C, Marks D, 2005. Spatially distributed energy balance snowmelt modelling in a mountainous river basin: Estimation of meteorological inputs and verification of model results.Journal of Hydrology, 315: 126-153.
doi: 10.1016/j.jhydrol.2005.03.026
|
[8] |
Gelfan A N, Pomeroy J W, Kuchment L S, 2004. Modeling forest cover influences on snow accumulation, sublimation, and melt.Journal of Hydrometeorology, 5: 785-803.
doi: 10.1175/1525-7541(2004)0052.0.CO;2
|
[9] |
Georgakakos K P, Graham N E, Modrick T Met al., 2014. Evaluation of real-time hydrometeorological ensemble prediction on hydrologic scales in northern California.Journal of Hydrology, 519: 2978-3000.
doi: 10.1016/j.jhydrol.2014.05.032
|
[10] |
Gordeev I N, 2013. Simulation of the dynamics of snow albedo during the snowmelt in the basin of the Yenisei River.Earth’s Cryosphere, 17: 47-50. (in Russian)
|
[11] |
Hall D K, Riggs G A, 2007. Accuracy assessment of the MODIS snow products.Hydrological Processes, 21: 1534-1547.
doi: 10.1002/hyp.6715
|
[12] |
Hall D K, Riggs G A, Salomonson V Vet al., 2002. MODIS snow-cover products.Remote Sensing of Environment, 83: 181-194.
doi: 10.1016/S0034-4257(02)00095-0
|
[13] |
Karpechko Yu V, Bondarik N L, 2010. Hydrological role of agricultural & wood activities in the taiga zone of European Russian north. Karelian Scientific Center of RAS: Petrozavodsk. (in Russian)
|
[14] |
Klok E J, Jasper K, Roelofsma K Pet al., 2002. Distributed hydrological modelling of a heavily glaciated Alpine river basin.Hydrological Sciences ~ Journal ~ des Sciences Hydrologiques, 46(4): 553-570.
|
[15] |
Koren’ V I, 1991. Mathematical Models in River Runoff Forecasting. Leningrad: Gidrometeoizdat Publishers. (in Russian)
|
[16] |
Kuchment L S, Gelfan A N, Demidov V N, 2000. A distributed model of runoff generation in the permafrost regions.Journal of Hydrology, 240: 1-22.
doi: 10.1016/S0022-1694(00)00318-8
|
[17] |
Kuchment L S, Romanov P Yu, Gelfan A Net al., 2010. Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation. Hydrology and Earth System Sciences, 14: 339-350.
doi: 10.5194/hess-14-339-2010
|
[18] |
Kumar S V, Peters-Lidard C D, Eastman J Let al., 2008. An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF.Environmental Modelling and Software, 23: 169-181.
doi: 10.1016/j.envsoft.2007.05.012
|
[19] |
Kunstmann H, Stadler C, 2005. High resolution distributed atmospheric-hydrological modelling for Alpine catchments.Journal of Hydrology, 314: 105-124.
doi: 10.1016/j.jhydrol.2005.03.033
|
[20] |
Kuzmin P P, 1961. The Process of Snow Cover Melting. Leningrad: Gidrometeoizdat Publishers. (in Russian)
|
[21] |
Lehning M, Völksch Ingo I, Gustafsson Det al., 2006. ALPINE3D: A detailed model of mountain surface processes and its application to snow hydrology.Hydrological Processes, 20: 2111-2128.
doi: 10.1002/hyp.6204
|
[22] |
Lopez-Moreno J I, Nogues-Bravo D, 2006. Interpolating local snow depth data: An evaluation of methods.Hydrological Processes, 20: 2217-2232.
doi: 10.1002/hyp.6199
|
[23] |
Marks D, Domingo J, Susong Det al., 1999. A spatially distributed energy balance snowmelt model for application in mountain basins.Hydrological Processes, 13: 1935-1959.
doi: 10.1002/(SICI)1099-1085(199909)13:12/133.0.CO;2-C
|
[24] |
Melloh R A, Hardy J P, Bailey R Net al., 2001. An efficient snow albedo model for the open and sub-canopy.Hydrological Processes, 16: 3571-3584.
doi: 10.1002/hyp.1229
|
[25] |
Motoya K, Yamazaki T, Yasuda N, 2001. Evaluating the spatial and temporal distribution of snow accumulation, snowmelts and discharge in a multi basin scale: An application to the Tohoku Region, Japan.Hydrological Processes, 15: 2101-2129.
doi: 10.1002/hyp.279
pmid: 2048967
|
[26] |
Myneni R B, Hoffman S, Knyazikhin Yet al., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data.Remote Sensing of Environment, 83: 214-231.
doi: 10.1016/S0034-4257(02)00074-3
|
[27] |
Nosenko O A, Dolgih N A, Nosenko G A, 2006. Snow cover in the Central European Russia under the data derived from AMSR-E and SSM/I. In: Recent Problems of the Land Surface Remote Sensing from the Space: Physical Basis, Technologies of Monitoring of the Environment and Dangerous Phenomena, “Azbuka-2000”, Moscow, Russia, 296-301. (in Russian)
|
[28] |
Pomeroy J W, Gray D M, Shook K Ret al., 1998. An evaluation of snow accumulation and ablation processes for land surface modelling.Hydrological Processes, 12: 2339-2367.
doi: 10.1002/(ISSN)1099-1085
|
[29] |
Quéno L, Vionnet V, Dombrowski-Etchevers Iet al., 2016. Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts.Cryosphere, 10: 1571-1589.
doi: 10.5194/tc-2016-20
|
[30] |
Shutov V A, 1998. Investigations, analysis and modeling of different scaled spatial variability of snow storage.Izvestiya - Akademiya Nauk, Seriya Geograficheskaya, 1: 122-132. (in Russian)
|
[31] |
Skamarock W, Klemp J, Dudhia Jet al., 2008. A description of the Advanced Research WRF version 3. NCAR Tech., Note NCAR/TN-475+STR.
doi: 10.5065/D68S4MVH
|
[32] |
Tarboton D G, Luce C H, 1996. Utah energy balance snow accumulation and melt model (UEB): Computer model technical description and users guide. Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station, Logan, Utah.
|
[33] |
Verbunt M, Zappa M, Gurtz Jet al., 2006. Verification of a coupled hydrometeorological modelling approach for alpine tributaries in the Rhine basin.Journal of Hydrology, 324: 224-238.
doi: 10.1016/j.jhydrol.2005.09.036
|
[34] |
Wigmosta M S, Vail L W, Lettenmaier D P, 1994. A distributed hydrology-vegetation model for complex terrain.Water Resources Research, 30(6): 1665-1679.
doi: 10.1029/94WR00436
|
[35] |
Wilson, J P, Gallant J C, 2000. Terrain Analysis: Principles and Applications. New York: John Wiley & Sons.
|
[36] |
Zhao Q, Liu Z, Ye Bet al., 2009. A snowmelt runoff forecasting model coupling WRF and DHSVM.Hydrology and Earth Systems Sciences, 13: 925-940.
doi: 10.5194/hess-13-1897-2009
|