Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (11): 1376-1388.doi: 10.1007/s11442-017-1441-1
• Research Articles • Previous Articles Next Articles
Boyi LIU1,2(), Suiji WANG1,2,*(
)
Received:
2017-06-02
Accepted:
2017-07-06
Online:
2017-11-10
Published:
2017-09-07
Contact:
Suiji WANG
E-mail:liuby.14s@igsnrr.ac.cn;wangsj@igsnrr.ac.cn
About author:
Author: Liu Boyi, Master Candidate, specialized in fluvial geomorphology. E-mail:
Supported by:
Boyi LIU, Suiji WANG. Planform characteristics and development of interchannel wetlands in a gravel-bed anastomosing river, Maqu Reach of the Upper Yellow River[J].Journal of Geographical Sciences, 2017, 27(11): 1376-1388.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Satellite imagery information"
Image | Satellite | Date | Covered reach (km) | Discharge (m3/s) |
---|---|---|---|---|
1 | Worldview-02 | Aug. 27, 2011 | 0-13.34 | 627 |
2 | GeoEye-01 | Jul. 29, 2013 | 13.41-45.18 | 1640 |
3 | GeoEye-01 | Aug. 1, 2013 | 45.18-64.81 | 1920 |
4 | Landsat 8 | Jul. 23, 2013 | 0-64.81 | 1610 |
5 | Worldview-02 | Mar. 8, 2011 | 25.25-59.81 | 113 |
Table 2
Definition of the micro geomorphologic units in the anastomosing Maqu reach"
Micro geomorphologic units | Definition |
---|---|
River corridor | Area of all geomorphologic units in the anastomosing river, including all channels and interchannel wetlands |
Principal channel | The primary channel in an anastomosing river, which is usually the largest of all channels and has active water during low flow |
Anabranches | All channels other than the principal channel |
Interchannel wetlands | Vegetated land between channels |
Interchannel wetland clusters | A combination of interchannel wetlands that develop on the same gravel bar and anabranches separating those interchannel wetlands |
Table 3
Geomorphologic parameters of the interchannel wetland clusters on the Maqu reach"
Code | Su (ha) | I | P (%) | Li (km) | Dl (km/km2) | N | Dn (node/km2) |
---|---|---|---|---|---|---|---|
U1 | 28.58 | 5 | 44.89 | 4.32 | 15.13 | 7 | 24.49 |
U2 | 63.51 | 16 | 65.40 | 8.08 | 12.72 | 33 | 51.96 |
U3 | 250.27 | 22 | 77.32 | 19.50 | 7.79 | 41 | 16.38 |
U4 | 404.15 | 47 | 73.51 | 43.70 | 10.81 | 83 | 20.54 |
U5 | 136.88 | 17 | 74.15 | 14.73 | 10.76 | 29 | 21.19 |
U6 | 44.21 | 15 | 66.02 | 6.93 | 15.67 | 24 | 54.29 |
U7 | 128.55 | 16 | 81.96 | 13.62 | 10.59 | 28 | 21.78 |
U8 | 25.31 | 9 | 37.56 | 3.94 | 15.58 | 12 | 47.42 |
U9 | 345.31 | 53 | 75.80 | 39.65 | 11.48 | 65 | 18.82 |
U10 | 331.36 | 44 | 71.27 | 32.82 | 9.90 | 64 | 19.31 |
U11 | 27.77 | 8 | 40.83 | 3.64 | 13.12 | 11 | 39.61 |
U12 | 163.57 | 28 | 73.58 | 21.67 | 13.25 | 36 | 22.01 |
U13 | 672.94 | 85 | 79.12 | 71.11 | 10.57 | 143 | 21.25 |
U14 | 54.45 | 14 | 50.81 | 7.75 | 14.23 | 28 | 51.42 |
U15 | 170.26 | 27 | 74.86 | 17.73 | 10.41 | 31 | 18.21 |
U16 | 119.13 | 15 | 70.07 | 13.97 | 11.73 | 16 | 13.43 |
U17 | 67.94 | 20 | 50.52 | 10.00 | 14.72 | 31 | 45.63 |
U18 | 1336.17 | 131 | 79.24 | 110.94 | 8.30 | 202 | 15.12 |
U19 | 177.93 | 48 | 63.95 | 24.47 | 13.75 | 56 | 31.47 |
U20 | 95.34 | 41 | 57.09 | 17.20 | 18.04 | 63 | 66.08 |
U21 | 321.44 | 54 | 78.85 | 35.77 | 11.13 | 67 | 20.84 |
U22 | 239.77 | 12 | 73.98 | 14.48 | 6.04 | 15 | 6.26 |
U23 | 6.46 | 2 | 33.25 | 0.82 | 12.66 | 3 | 46.47 |
U24 | 96.14 | 13 | 78.33 | 11.31 | 11.76 | 21 | 21.84 |
U25 | 70.64 | 4 | 71.70 | 5.92 | 8.37 | 7 | 9.91 |
U26 | 243.44 | 18 | 71.57 | 22.62 | 9.29 | 32 | 13.15 |
U27 | 183.42 | 26 | 83.21 | 18.86 | 10.28 | 45 | 24.53 |
U28 | 114.00 | 14 | 55.55 | 11.24 | 9.86 | 22 | 19.30 |
U29 | 260.51 | 29 | 73.11 | 20.06 | 7.70 | 40 | 15.35 |
U30 | 25.73 | 4 | 52.71 | 3.54 | 13.77 | 7 | 27.21 |
Table 4
Total number and total area of interchannel wetlands in different size ranges"
Area (ha) | Type | Interchannel wetlands number | Interchannel wetlands number frequency (%) | Total area (ha) | Total area frequency (%) |
---|---|---|---|---|---|
<0.1 | Micro | 231 | 27.24 | 8.70 | 0.19 |
0.1-1 | Small | 284 | 33.49 | 108.92 | 2.36 |
1-10 | Middle | 232 | 27.36 | 808.19 | 17.54 |
10-100 | Large | 97 | 11.44 | 2988.96 | 64.87 |
≥100 | Mega | 4 | 0.47 | 692.67 | 15.03 |
Table 5
Total area and total number of interchannel wetlands of interchannel wetland clusters with different sizes"
Area (ha) | Type | Number | Total area (ha) | Total area frequency (%) | Interchannel wetlands number | Number | Total number frequency (%) |
---|---|---|---|---|---|---|---|
<10 | Small | 1 | 6.46 | 0.10 | < 10 | 6 | 5.14 |
10-50 | 5 | 151.59 | 2.44 | 10-20 | 10 | 20.31 | |
50-100 | 6 | 448.02 | 7.22 | 21-50 | 10 | 36.80 | |
100-200 | Middle | 8 | 1193.74 | 19.24 | 51-100 | 3 | 22.10 |
200-500 | Large | 8 | 2396.24 | 38.62 | > 100 | 1 | 15.65 |
>500 | Mega | 2 | 2009.11 | 32.38 |
Table 6
Interchannel wetland cluster parameters categorized by area"
Area (ha) | P (%) | Dl (km/km2) | Dn (node/km2) | ||||||
---|---|---|---|---|---|---|---|---|---|
Avg. | Min | Max | Avg. | Min | Max | Avg. | Min | Max | |
<10 | 33.25 | 12.66 | 46.47 | ||||||
10-50 | 48.40 | 37.56 | 66.02 | 14.65 | 13.12 | 15.67 | 38.60 | 24.49 | 54.29 |
50-100 | 62.31 | 50.52 | 78.33 | 13.31 | 8.37 | 18.04 | 41.14 | 9.91 | 66.08 |
100-200 | 72.17 | 55.55 | 83.21 | 11.33 | 9.86 | 13.75 | 21.49 | 13.43 | 31.47 |
200-500 | 74.46 | 71.27 | 78.85 | 9.27 | 6.04 | 11.48 | 16.33 | 6.26 | 20.84 |
>500 | 79.18 | 79.12 | 79.24 | 9.43 | 8.30 | 10.57 | 18.18 | 15.12 | 21.25 |
[1] |
Abbado D, Slingerland R, Smith N D, 2005. Origin of anastomosis in the upper Columbia River, British Columbia, Canada. In: Blum M D, Marriott S B, Leclair S F. Fluvial Sedimentology VII. Oxford, UK: Blackwell Publishing Ltd., 1-15.
doi: 10.1002/9781444304350.ch1 |
[2] |
Belletti B, Dufour S, Piégay H, 2015. What is the relative effect of space and time to explain the braided river width and island patterns at a regional scale?River Research and Applications, 31(1): 1-15.
doi: 10.1002/rra.2714 |
[3] |
Bertoldi W, Zanoni L, Tubino M, 2009. Planform dynamics of braided rivers.Earth Surface Processes and Landforms, 34(4): 547-557.
doi: 10.1002/esp.1755 |
[4] | Brice J C, 1964. Channel patterns and terraces of the Loup Rivers in Nebraska. U.S. Geological Survey Professional Paper 422-D, Washington DC. |
[5] |
Bryant M, Falk P, Paola C, 1995. Experimental study of avulsion frequency and rate of deposition.Geology, 23(4): 365-368.
doi: 10.1130/0091-7613(1995)0232.3.CO;2 |
[6] |
Chu L, Huang C, Liu Get al., 2014. Changes in ecological patterns of Maqu alpine wetland in Yellow River Source Area during 2000-2010.Progress in Geography, 33(3): 326-335. (in Chinese)
doi: 10.11820/dlkxjz.2014.03.004 |
[7] |
Church M, Rice S P, 2009. Form and growth of bars in a wandering gravel-bed river.Earth Surface Processes and Landforms, 34(10): 1422-1432.
doi: 10.1002/esp.1831 |
[8] | Friend P F, Sinha R, 1993. Braiding and meandering parameters. In: Best J L, Bristow C S. Braided Rivers. London, UK: Geological Society of London, 75: 105-111. |
[9] |
Gurnell A M, Petts G E, Hannah D Met al., 2001. Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy.Earth Surface Processes and Landforms, 26(1): 31-62.
doi: 10.1002/(ISSN)1096-9837 |
[10] |
Hooke J M, Yorke L, 2011. Channel bar dynamics on multi-decadal timescales in an active meandering river. Earth Surface Processes and Landforms, 36(14): 1910-1928.
doi: 10.1002/esp.2214 |
[11] |
Li Z,Wang Z, Pan Bet al., 2013a. Analysis of controls upon channel planform at the First Great Bend of the Upper Yellow River, Qinghai-Tibet Plateau.Journal of Geographical Sciences, 23(5): 833-848.
doi: 10.1007/s11442-013-1047-1 |
[12] | Li Z, Wang Z, Yu Get al., 2013b. River pattern transition and its causes along Maqu reach of Yellow River source region.Journal of Sediment Research, 3: 51-58. (in Chinese) |
[13] |
Liu H, Xu X, Wang Jet al., 2012. Type and distribution of aeolian geomorphology at Marqu Region of Upstream Yellow River.Arid Land Geography, 35(3): 348-357. (in Chinese)
doi: 10.1007/s11783-011-0280-z |
[14] | Jiang S, 2008. Analysis on variety trend of runoff between Dari and Maqu in the headwater region of Yellow River in the past 50 years.Geographical Research, 27(1): 221-228. (in Chinese) |
[15] |
Jones L S, Schumm S A, 1999. Causes of avulsion: An overview. In: Smith N D, Rogers J. Fluvial Sedimentology VI. Oxford, UK: Blackwell Publishing Ltd., 171-178.
doi: 10.1002/9781444304213.ch13 |
[16] |
Kidová A, Lehotský M, Rusnák M, 2016. Geomorphic diversity in the braided-wandering Belá River, Slovak Carpathians, as a response to flood variability and environmental changes.Geomorphology, 272: 137-149.
doi: 10.1016/j.geomorph.2016.01.002 |
[17] |
Makaske B, 2001. Anastomosing rivers: A review of their classification, origin and sedimentary products.Earth Science Reviews, 53(3): 149-196.
doi: 10.1016/S0012-8252(00)00038-6 |
[18] |
Makaske B, Smith D G, Berendsen H J A, 2002. Avulsions, channel evolution and floodplain sedimentation rates of the anastomosing upper Columbia River, British Columbia, Canada.Sedimentology, 49(5): 1049-1071.
doi: 10.1046/j.1365-3091.2002.00489.x |
[19] |
Makaske B, Smith D G, Berendsen H J Aet al., 2009. Hydraulic and sedimentary processes causing anastomosing morphology of the upper Columbia River, British Columbia, Canada.Geomorphology, 111(3/4): 194-205.
doi: 10.1016/j.geomorph.2009.04.019 |
[20] |
Makaske B, Lavooi E, De Haas Tet al., 2017. Upstream control of river anastomosis by sediment overloading, upper Columbia River, British Columbia, Canada.Sedimentology, doi: 10.1111/sed.12361.
doi: 10.1111/sed.12361 |
[21] |
Miall A D, 1977. A review of the braided river depositional environment.Earth Science Reviews, 13(1): 1-62.
doi: 10.1016/0012-8252(77)90055-1 |
[22] |
Mikuś P, Wyżga B, Kaczka R Jet al., 2013. Islands in a European mountain river: Linkages with large wood deposition, flood flows and plant diversity.Geomorphology, 202: 115-127.
doi: 10.1016/j.geomorph.2012.09.016 |
[23] |
Miller J R, 1991. Development of anastomosing channels in south-central Indiana.Geomorphology, 4: 221-229.
doi: 10.1016/0169-555X(91)90005-U |
[24] |
Osterkamp W R, 1998. Processes of fluvial island formation, with examples from Plum Creek, Colorado and Snake River, Idaho.Wetlands, 18(4): 530-545.
doi: 10.1007/BF03161670 |
[25] |
Picco L, Mao L, Rainato Ret al., 2014. Medium-term fluvial island evolution in a disturbed gravel-bed river (Piave River, Northeastern Italian Alps). Geografiska Annaler: Series A,Physical Geography, 96(1): 83-97.
doi: 10.1111/geoa.12034 |
[26] | Qi D, Li G, 2008. Status, causes and protection counter measures of wetland degradation in Maqu County in the Upper Yellow River.Wetland Science, 5(4): 341-347. (in Chinese) |
[27] |
Rice S P, Church M, Wooldridge C Let al., 2009. Morphology and evolution of bars in a wandering gravel-bed river; lower Fraser river, British Columbia, Canada.Sedimentology, 56(3): 709-736.
doi: 10.1111/j.1365-3091.2008.00994.x |
[28] |
Rozo M G, Nogueira A C R, Truckenbrodt W, 2012. The anastomosing pattern and the extensively distributed scroll bars in the middle Amazon River.Earth Surface Processes and Landforms, 37(14): 1471-1488.
doi: 10.1002/esp.3249 |
[29] | Rust B R, 1978. A classification of alluvial channel systems. In: Miall A D. Fluvial Sedimentology. Canada Calgary: Canadian Society of Petroleum Geologists, 187-198. |
[30] |
Schumm S A, 1968. Speculations concerning paleohydrologic controls of terrestrial sedimentation.Geological Society of America Bulletin, 79(11): 1573-1588.
doi: 10.1130/0016-7606(1968)79[1573:SCPCOT]2.0.CO;2 |
[31] |
Singh M, Evans D, Friess Det al., 2015. Mapping above-ground biomass in a tropical forest in Cambodia using canopy textures derived from Google Earth.Remote Sensing, 7(5): 5057-5076.
doi: 10.3390/rs70505057 |
[32] |
Smith D G, Smith N D, 1980. Sedimentation in anastomosed river systems: examples from alluvial valley near Bannf, Alberta.Journal of Sedimentary Research, 50(1): 157-164.
doi: 10.1306/212F7991-2B24-11D7-8648000102C1865D |
[33] |
Tabata K K, Hickin E J, 2003. Interchannel hydraulic geometry and hydraulic efficiency of the anastomosing Columbia River, southeastern British Columbia, Canada.Earth Surface Processes and Landforms, 28(8): 837-852.
doi: 10.1002/esp.497 |
[34] |
Wang S, 2002. Comparison of formation model and channel stability between two different sorts of multiple channel river patterns.Acta Geoscientia Sinica, 23(1): 89-93. (in Chinese)
doi: 10.1007/s11769-002-0045-5 |
[35] |
Wang S, 2003. Architectures, relationships between discharges and width/depth ratios of stream cross profiles, and stream powers of anastomosing rivers.Acta Sedimentologica Sinica, 21(4): 565-570. (in Chinese)
doi: 10.1007/BF02873154 |
[36] | Wang S, 2004. Simulation experiment of anastomosing multiple channel formation. In: Hu C, Tan Y. Proceedings of the Ninth International Symposium on River Sedimentation. Beijing: Tsinghua University Press, 1747-1753. |
[37] | Wang S, 2008. Analysis of river pattern transformations in the Yellow River basin.Progress in Geography, 27(2): 10-17. (in Chinese) |
[38] |
Wang S, Chen Z, Smith D G, 2005. Anastomosing river system along the middle Yangtze River Basin, Southern China.Catena, 60(2): 147-163.
doi: 10.1016/j.catena.2004.11.007 |
[39] | Wang S, Ni J, Wang Get al., 2004. Hydrological processes of an anastomosing river system on the Zhujiang River delta, China.Journal of Coastal Research, 43(Special Issue): 124-133. |
[40] | Wang S, Ren M, 1999. A new classification of fluvial rivers according to channel planform and sediment characteristics.Acta Sedimentologica Sinica, 17(2): 240-246. (in Chinese) |
[41] | Wang S J, Li J S, Yin S P, 2000. Basic characteristics and controlling factors of anastomosing fluvial systems.Chinese Geographical Science, 10(1): 31-38. |
[42] |
Wyrick J R, Klingeman P C, 2011. Proposed fluvial island classification scheme and its use for river restoration.River Research and Applications, 27(7): 814-825.
doi: 10.1002/rra.1395 |
[43] | Yin S, Xie Q, Guan S, 2000. Study on anastomosed river with comparative sedimentology.Acta Sedimentologica Sinica, 18(2): 221-226. (in Chinese) |
[44] |
Yu G, Brierley G, Huang H Qet al., 2014. An environmental gradient of vegetative controls upon channel planform in the source region of the Yangtze and Yellow rivers.Catena, 119: 143-153.
doi: 10.1016/j.catena.2014.02.010 |
[45] |
Yu G, Liu L, Li Zet al., 2013. Fluvial diversity in relation to valley setting in the source region of the Yangtze and Yellow rivers.Journal of Geographical Sciences, 23(5): 817-832.
doi: 10.1007/s11442-013-1046-2 |
[46] |
Zanoni L, Gurnell A, Drake Net al., 2008. Island dynamics in a braided river from analysis of historical maps and air photographs.River Research and Applications, 24(8): 1141-1159.
doi: 10.1002/rra.1086 |
|