Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (10): 1249-1267.doi: 10.1007/s11442-017-1433-1
• Orginal Article • Previous Articles Next Articles
Xingying YOU1,2(), Jinwu TANG3, Xiaofeng ZHANG1, Weiguo HOU3,*, Yunping YANG4(
), Zhaohua SUN1, Zhaohui WENG2
Received:
2016-12-30
Accepted:
2017-01-23
Online:
2017-10-25
Published:
2017-09-06
Contact:
Weiguo HOU
E-mail:you_tang@foxmail.com;yangsan520_521@163.com
About author:
Author: You Xingying (1986-), specialized in river bed evolution. E-mail:
*Corresponding author: Yang Yunping (1985-), PhD, E-mail:
Supported by:
Xingying YOU, Jinwu TANG, Xiaofeng ZHANG, Weiguo HOU, Yunping YANG, Zhaohua SUN, Zhaohui WENG. The mechanism of barrier river reaches in the middle and lower Yangtze River[J].Journal of Geographical Sciences, 2017, 27(10): 1249-1267.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Barrier control factors of single-thread reaches in the middle and lower Yangtze River"
Reach | No. | Reach name (Abbreviation) | Reach length (km) | Distance from Yichang (km) | River pattern | Presence location of flow deflecting nodes | Hydraulic geometric coefficient | Presence of barrier property |
---|---|---|---|---|---|---|---|---|
Jingjiang | 1 | Douhudi (DHD) | 9.9 | 175 | Single meandering | Non | 2.55 | Yes |
2 | Shishou (SS) | 8 | 234 | Single meandering | In the middle | 2.86 | No | |
3 | Nianziwan (NZW) | 15 | 242 | Single meandering | Non | 4.76 | No | |
4 | Hekou (HK) | 7 | 257 | Single meandering | Non | 3.19 | No | |
5 | Tiaoguan (TG) | 13 | 264 | Single meandering | Non | 2.61 | Yes | |
6 | Laijiapu (LJP) | 12 | 277 | Single meandering | Non | 3.32 | No | |
7 | Tashiyi (TSY) | 14 | 289 | Single meandering | Non | 2.98 | Yes | |
8 | Damazhou (DMZ) | 10.5 | 330 | Single meandering | In entrance | 6.68 | No | |
9 | Zhuanqiao (ZQ) | 9 | 338 | Single meandering | Non | 3.66 | Yes | |
10 | Tiepu (TP) | 12 | 347 | Single straight | Non | 4.31 | No | |
11 | Fanzui (FZ) | 6.5 | 356 | Single straight | Non | 3.11 | Yes | |
12 | Qigongling (QGL) | 7.8 | 380 | Single meandering | In the middle | 3.29 | No | |
Chenglingji-Wuhan | 13 | Luoshan (LS) | 11 | 419 | Single straight | In entrance | 6.25 | No |
14 | Shitouguan (STG) | 9 | 456 | Single meandering | In export | 5.08 | No | |
15 | Longkou (LK) | 9.6 | 483 | Single meandering | In export | 3.42 | Yes | |
16 | Hanjinguan (HJG) | 10.9 | 519 | Single meandering | Non | 3.25 | Yes | |
17 | Paizhouwan (PZW) | 15 | 542 | Single meandering | Non | 2.14 | No | |
18 | Zhuankou(ZK) | 12 | 610 | Single straight | In the middle | 5.79 | No | |
19 | Wuqiao (WQ) | 13 | 628 | Single straight | In entrance | 4.47 | No | |
Wuhan Hukou | 20 | Yangluo (YL) | 15 | 658 | Single meandering | In entrance | 3.46 | No |
21 | Huguang (HG) | 10 | 679 | Single meandering | In entrance | 3.93 | No | |
22 | Bahe (BH) | 9.4 | 723 | Single straight | In entrance | 4.52 | No | |
23 | Huangshi (HS) | 15.5 | 753 | Single meandering | In export | 2.70 | Yes | |
24 | Guniusha (GNS) | 17 | 773 | Single meandering | In entrance | 4.07 | No | |
25 | Gepaiji (GPJ) | 15 | 802 | Single meandering | Along both banks | 0.79 | Yes | |
26 | Wuxue (WX) | 13 | 830 | Single meandering | In entrance | 4.87 | No | |
27 | Jiujiang (JJ) | 16 | 853 | Single meandering | Non | 3.17 | No | |
Hukou- Datong | 28 | Shangxiasanhao- Madang (SXSH-MD) | 6 | 938 | Single meandering | In export | 2.05 | Yes |
29 | Madang-Dongliu (MD-DL) | 8 | 972 | Single meandering | Non | 2.96 | Yes | |
30 | Dongliu-Guanzhou (DL-GZ) | 9 | 995 | Single meandering | In the middle | 3.47 | No | |
31 | Guanzhou-Anqing (GZ-AQ) | 16 | 1023 | Single meandering | In the middle | 2.71 | No | |
32 | Anqing-Taiziji (AQ-TZJ) | 8.4 | 1054 | Single meandering | In export | 1.71 | Yes | |
33 | Taiziji-Guichi (TZJ-GC) | 10.5 | 1078 | Single meandering | Non | 4.16 | No | |
34 | Datong (DT) | 16 | 1101 | Single straight | In entrance | 4.29 | No |
[1] |
Bandyopadhyay S, Ghosh K, De S K, 2014. A proposed method of bank erosion vulnerability zonation and its application on the River Haora, Tripura, India.Geomorphology, 224: 111-121. doi:10.1016/j.geomorph.2014.07.018.
doi: 10.1016/j.geomorph.2014.07.018 |
[2] |
Bawa N, Jain V, Shekhar Set al., 2014. Controls on morphological variability and role of stream power distribution pattern, Yamuna River, western India.Geomorphology, 227: 60-72. doi: 10.1016/j.geomorph.2014.05.016.
doi: 10.1016/j.geomorph.2014.05.016 |
[3] |
Clerici A, Perego S, Chelli Aet al., 2015. Morphological changes of the floodplain reach of the Taro River (Northern Italy) in the last two centuries.Journal of Hydrology, 527: 1106-1122.doi:10.1016/j.jhydrol.2015.05.063.
doi: 10.1016/j.jhydrol.2015.05.063 |
[4] |
Domenichini F, Baccani B, 2004. A formulation of Navier-Stokes problem in cylindrical coordinates applied to the 3D entry jet in a duct.Journal of Computational Physics, 200(1): 177-191. doi: 10.1016/j.jcp.2004.04.002.
doi: 10.1016/j.jcp.2004.04.002 |
[5] |
Jason P Julian, Raymond Torres, 2006. Hydraulic erosion of cohesive river banks.Geomorphology, 76(1/2): 193-206. doi: 10.1016/j.geomorph.2005.11.003.
doi: 10.1016/j.geomorph.2005.11.003 |
[6] |
Julian J P, Torres R, 2006. Hydraulic erosion of cohesive riverbanks.Geomorphology, 76(1/2): 193-206.
doi: 10.1016/j.geomorph.2005.11.003 |
[7] |
Knighton A D, Nanson G C, 2001. An event-based approach to the hydrology of arid zone rivers in the Channel Country of Australia.Journal of Hydrology, 254(1): 102-123. doi: 10.1016/S0022-1694(01)00498-X.
doi: 10.1016/S0022-1694(01)00498-X |
[8] | Lane E W, 1955. Design of Stable Channels.Transactions of the American Society of Civil Engineers, 120(1): 1234-1260. |
[9] |
Langendoen E J, Mendoza A, Abad J Det al., 2016. Improved numerical modeling of morphodynamics of rivers with steep banks.Advances in Water Resources, 93: 4-14. doi: 10.1016/j.advwatres.2015.04.002.
doi: 10.1016/j.advwatres.2015.04.002 |
[10] | Leng Kui, 1993. The evolution analysis of Chenluo Reach at the Middle Yangtze River.Journal of Sediment Research, (3): 109-116. (in Chinese) |
[11] | Li Yitian, Tang Jinwu, Zhu Lingling et al., 2012. Evolution and Waterway Regulation of the Middle and Lower Yangtze River. Beijing: China Water Conservancy and Hydropower Press, 78-89. (in Chinese) |
[12] |
Liu Lin, Huang Chengtao, Li Minget al., 2014. Periodic evolution mechanism of staggered beach in typical straight reach of the middle Yangtze River.Journal of Basic Science and Engineering, 22(3): 445-456. (in Chinese)
doi: 10.3969/j.issn.1005-0930.2014.03.004 |
[13] |
Liu Ya, Wang Fei, Li Yitian, 2015. Objective river pattern of waterway regulation of goose-head-shaped anabranching channel in the Middle and Lower Yangtze River.Journal of Hydraulic Engineering, 46(4): 443-451.
doi: 10.13243/j.cnki.slxb.2015.04.008 |
[14] | Luo Haichao, 1989. Characteristics of fluvial processes and stability of the braided channel in the middle and lower reaches of the Yangtze River.Journal of Hydraulic Engineering, (6): 10-19. (in Chinese) |
[15] |
Mossa J, 2016. The changing geomorphology of the Atchafalaya River, Louisiana: A historical perspective.Geomorphology, 252: 112-127. doi: 10.1016/j.geomorph.2015.08.018.
doi: 10.1016/j.geomorph.2015.08.018 |
[16] |
Nanson R A, Nanson G C, Huang H Q, 2010. The hydraulic geometry of narrow and deep channels: Evidence for flow optimisation and controlled peatland growth.Geomorphology, 117(1/2): 143-154. doi:10.1016/j.geomorph.2009.11.021.
doi: 10.1016/j.geomorph.2009.11.021 |
[17] | Qian Ning, Zhang Ren, Zhou Zhide, 1987. River Bed Evolution. Beijing: Science Press, 127-140. (in Chinese) |
[18] |
Ramos Judith, Gracia Jesús, 2012. Spatial-temporal fluvial morphology analysis in the Quelite River: Its impact on communication systems.Journal of Hydrology, 49(3): 432-433. doi: 10.1016/j.jhydrol.2011.05.007.
doi: 10.1016/j.jhydrol.2011.05.007 |
[19] |
Regalla C, Kirby E, Fisher Det al., 2013. Active forearc shortening in Tohoku, Japan: Constraints on fault geometry from erosion rates and fluvial longitudinal profiles.Geomorphology, 195(4): 84-98. doi:10.1016/j.geomorph.2013.04.029.
doi: 10.1016/j.geomorph.2013.04.029 |
[20] | Schumm S A, 1985. Patterns of alluvial rivers.Earth and Planetary Sciences, 13(13): 5-27. doi:10.1146/annurev.ea.13.050185.000253. |
[21] |
Schuurman F, Kleinhans M G, Middelkoop H, 2016. Network response to disturbances in large sand-bed braided rivers.Earth Surface Dynamics, 4(1): 25-45. doi: 10.5194/esurf-4-25-2016.
doi: 10.5194/esurf-4-25-2016 |
[22] |
Schuurman F, Shimizu Y, Iwasaki Tet al., 2015. Dynamic meandering in response to upstream perturbations and floodplain formation.Geomorphology, 253: 94-109.
doi: 10.1016/j.geomorph.2015.05.039 |
[23] |
Song X L, Xu G Q, Bai Y Cet al., 2016. Experiments on the short-term development of sine-generated meandering rivers.Journal of Hydro-environment Research, 11: 42-58. doi: 10.1016/j.jher.2016.01.004.
doi: 10.1016/j.jher.2016.01.004 |
[24] | Sun Zhaohua, Feng Qiufen, Han Jianqiaoet al., 2013. Fluvial processes of sandbars in the junction reach of single-threaded channel to anabranching channel and its impact on navigation: A case study of the Tianxingzhou Reach of the Yangtze River.Journal of Basic Science & Engineering, 21(4): 647-655. (in Chinese) |
[25] | Tang Jinwu, You Xingying, Hou Weiguoet al., 2015. Fluvial processes trend of Ma’anshan reach in Lower Yangtze River.Journal of Sediment Research, 67(1): 213-221. (in Chinese) |
[26] |
Wang Houjie, Yang Zousheng, Wang Yanet al., 2008. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s.Journal of Hydrology, 349(3/4): 318-332.
doi: 10.1016/j.jhydrol.2007.11.005 |
[27] | Wang Suiji, Ni Jinren, Wang Guangqian, 2000. The evolution and direction of research in fluvial sedimentology.Journal of Basic Science & Engineering, 8(4): 362-369. (in Chinese) |
[28] |
Wohl E, 2015. Particle dynamics: The continuum of bedrock to alluvial river segments.Geomorphology, 241: 192-208. doi: 10.1016/j.geomorph.2015.04.014.
doi: 10.1016/j.geomorph.2015.04.014 |
[29] |
Xia Junqiang, Deng Shanshan, Lu Jinyouet al., 2016. Dynamic channel adjustments in the Jingjiang Reach of the Middle Yangtze River.Scientific Reports, 6: 22802.
doi: 10.1038/srep22802 pmid: 26965069 |
[30] |
Xu Jiongxin, 1997. Study of sedimentation zones in a large sand-bed braided river: An example from the Hanjiang River of China.Geomorphology, 21(2): 153-165. doi: 10.1016/S0169-555X(97)00039-1.
doi: 10.1016/S0169-555X(97)00039-1 |
[31] | Yin Xueliang, 1965. A preliminary study on the formation cause of the bend river and the experiment of making riverbed.Journal of Geographical Sciences, 31(4): 287-303. (in Chinese) |
[32] |
You Xingying, Tang Jinwu, Zhang Xiaofenget al., 2016. Preliminary study on the characteristics and origin of barrier river reach in the Middle and Lower Yangtze River.Journal of Hydraulic Engineering, 47(4): 545-551. (in Chinese)
doi: 10.13243/j.cnki.slxb.20150827 |
[33] | Yu Wenchou, 1987. Action of nodes of the braided channel at the Lower Yangtze River in the fluvial processes.Journal of Sediment Research, (4): 12-20. (in Chinese) |
[34] | Zhang Dujing, Sun Hanzhen, 1983. A preliminary study on the effect of the changes of the hydraulic conditions in bends on the river pattern of the upper and lower Jingjiang stretches of the Yangtze River.Journal of Sediment Research, 3(1): 14-24. (in Chinese) |
[35] |
Zhang Wei, Yang Yunping, Zhang Mingjinet al., 2017. Mechanisms of suspended sediment restoration and bed level compensation in downstream reaches of the Three Gorges Projects (TGP).Journal of Geographical Sciences, 27(4): 463-480.
doi: 10.1007/s11442-017-1387-3 |
[36] | Zhang Zhitang, Lin Wanquan, Shen Yongjian, 1984. An approach on the main current belt of stream flow in river bend.Journal of Yangtze River Scientific Research Institute, (1): 47-56. (in Chinese) |
No related articles found! |
|