Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (8): 967-980.doi: 10.1007/s11442-017-1415-3
• Orginal Article • Previous Articles Next Articles
Xianwei SONG1,2(), Yang GAO2,3(
), Xuefa WEN2, Dali GUO2, Guirui YU2, Nianpeng HE2, Jinzhong ZHANG1
Received:
2016-12-14
Accepted:
2017-01-18
Online:
2017-08-31
Published:
2017-09-15
About author:
Author: Song Xianwei (1993-), Master, specialized in ecological hydrology. E-mail:
*Corresponding author: Gao Yang (1981-), Associate Professor, E-mail:
Supported by:
Xianwei SONG, Yang GAO, Xuefa WEN, Dali GUO, Guirui YU, Nianpeng HE, Jinzhong ZHANG. Carbon sequestration potential and its eco-service function in the karst area, China[J].Journal of Geographical Sciences, 2017, 27(8): 967-980.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
CO2 sink estimated result in each karst region, China"
Karst regions | Area (104 km2) | HCO- 3 (g L-1) | Runoff modulus (107 L km-2 yr-1) | Correction coefficient | CO2 sink (104 t yr-1) |
---|---|---|---|---|---|
Southern karst | 56.48 | 0.23 | 40.59 | 0.65 | 1241.5 |
Northern karst | 32.58 | 0.25 | 6.31 | 0.65 | 118.1 |
Tibetan Plateau karst | 55.60 | 0.15 | 19.95 | 0.65 | 377.0 |
Buried karst | 200.01 | 0.23 | 0.01 | 0.65 | 1.1 |
Total | 344.67 | 1737.6 |
Table 2
C sequestration rate of Chinese karst by using different methods"
Estimation method | Study area* | Average C sequestration/ (Tg C yr-1) | Global average C sequestration/ (Pg C yr-1) | Data source |
---|---|---|---|---|
Solute load method | Bare karst in China | 12 | — | Yan et al., 2011 |
Solute load method | Bare karst in China | 4.8 | — | Jiang and Yuan, 1999 |
Carbonate-rock-tablet test | Bare karst in China | 3.2 | — | Jiang and Yuan, 1999 |
DBL theory (potential C sink) | China | 64.2 | 0.41 | Liu and Zhao, 2000 |
Solute load method | China | 17.9 | 0.11 | Liu and Zhao, 2000 |
Carbonate-rock-tablet test | China | 17.5 | 0.11 | Liu and Zhao, 2000 |
Carbonate-rock-tablet test | China | 3.21 | — | Jiang et al., 2013 |
Solute load method | China | 4.84 | — | Jiang et al., 2013 |
Simple accumulate method (By province) | China | 5.07 | — | Jiang et al., 2013 |
GIS-based carbonate-rock- tablet test | China | 3.88 | — | Jiang et al., 2013 |
GEM-CO2 Model | China | 14.1 | — | Qiu et al., 2004 |
Solute load method | China | 10.09 | — | Li et al., 2014 |
Comprehensive method | — | — | 0.7052 | Liu et al., 2010 |
Solute load method | China | 4.74 | — | This research |
1 | Bai Xiaoyong, Wang Shijie, Chen Qiwei et al.Chen Qiwei ., 2009. Spatio-temporal evolution process and its evaluation method of karst rocky desertification in Guizhou province.Acta Geographica Sinica, 64(5): 609-618. (in Chinese) |
2 | Berner R A, Lasaga A C, Garrels R M, 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years.American Journal of Science, 283: 641-683. |
3 | Bluth G J S, Kump L R, 1994. Lithologic and climatologic controls of river chemistry.Geochimica et Cosmochimica Acta, 58: 2341-2359. |
4 | Cao Mingkui, Yu Guirui, Liu Jiyuan et al.Liu Jiyuan ., 2004. Multi-scale observation and cross-scale mechanistic modeling on terrestrial ecosystem carbon cycle.Science in China Series D: Earth Sciences, 34(Suppl. 2): 1-14. (in Chinese) |
5 | Ciais P, Sabine C, Bala G et al., 2013. Carbon and other biogeochemical cycles. In: Stocker T F, Qin D, Plattner G K et al., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 465-570. |
6 | Curl R L, 2012. Carbon Shifted But Not Sequestered.Science, 335: 655-655. |
7 | Dürr H H, Meybeck M, Dürr S H, 2005. Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer.Global Biogeochemical Cycles, 19(4): 49-53. |
8 | Fang Huajun, Yang Xueming, Zhang Xiaoping et al.Zhang Xiaoping ., 2004. Effect of soil erosion on soil organic carbon in cropland landscape.Progress in Geography, 23(2): 77-87. (in Chinese) |
9 | Gaillardet J, Dupre B, Louvat P et al.Louvat P ., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers.Chemical Geology, 159: 3-30. |
10 | Gaillardet J, Galy A, 2008. Atmospheric science: Himalaya-carbon sink or source?Science, 320: 1727-1728. |
11 | Gao Y, Yu G R, He N P, 2013. Equilibration of the terrestrial water, nitrogen, and carbon cycles: Advocating a health threshold for carbon storage.Ecological Engineering, 57: 366-374. |
12 | Gao Y, Yu G R, Yang T T et al.Yang T T ., 2016. New insight into global blue carbon estimation under human activity in land-sea interaction area: a case study of China.Earth-Science Reviews, 159: 36-46. |
13 | Gao Y, Zhu X J, Yu G R et al.Yu G R ., 2014. Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation.Agricultural and Forest Meteorology, 195: 32-37. |
14 | Groves C, Cao J, Zhang C, 2012. Carbon shifted but not sequestered response.Science, 335: 655-655. |
15 | Hartmann J, 2009. Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago: Application of a multi-lithological model framework.Chemical Geology, 265: 237-271. |
16 | Hurwitz S, Evans W C, Lowenstern J B, 2010. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA.Chemical Geology, 276: 331-343. |
17 | Jiang Z C, Yuan D X, 1999. CO2 source-sink in karst processes in karst areas of China.Episodes, 22: 33-35. |
18 | Jiang Zhongcheng, Qin Xiaoqun, Cao Jianhua et al.Cao Jianhua ., 2011. Calculation of atmospheric CO2 sink formed in karst progresses of the karst divided regions in China.Carsologica Sinica, 30(4): 363-367. (in Chinese) |
19 | Jiang Zhongcheng, Qin Xiaoqun, Cao Jianhua et al.Cao Jianhua ., 2013. Significance and carbon sink effects of karst processes in global carbon cycle: Also reply to “Discussion on article ‘Calculation of atmospheric CO2 sink formed in karst processes of karst-divided regions in China’”.Carsologica Sinica, 32(1): 1-6. (in Chinese) |
20 | Jiang, Z C, Lian Y Q, Qin X Q, 2013. Carbon cycle in the epikarst systems and its ecological effects in South China.Environmental Earth Sciences, 68: 151-158. |
21 | Larson, C, 2011. An unsung carbon sink.Science, 334: 886-887. |
22 | Lerman A, Wu L L, Mackenzie F T, 2007. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance.Marine Chemistry, 106: 326-350. |
23 | Li S L, Chetelat B, Yue F J et al.Yue F J ., 2014. Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China.Journal of Asian Earth Sciences, 88: 74-84. |
24 | Lian Bin, Yuan Daoxian, Liu Zaihua, 2011. Effect of microbes on karstification in karst ecosystems.Chinese Science Bulletin, 56(26): 2158-2161. (in Chinese) |
25 | Lin H, 2010. Earth’s Critical Zone and hydropedology: Concepts, characteristics, and advances.Hydrology and Earth System Sciences, 14: 25-45. |
26 | Liu Congqiag, Jiang Yingkui, Tao Faxiang et al.Tao Faxiang ., 2008. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China.Geochimica, 37(4): 404-414. (in Chinese) |
27 | Liu Yarong, Jia Wenxiong, Huang Wen et al.Huang Wen ., 2015. Response of vegetation net primary productivity to climate change in the Qilian Mountains since recent 51 years.Acta Botanica Boreali-Occidentalia Sinica, 35(3): 601-607. (in Chinese) |
28 | Liu Z, Zhao J, 2000. Contribution of carbonate rock weathering to the atmospheric CO2 sink.Environmental Geology, 39: 1053-1058. |
29 | Liu Zaihua, 2001. The role of carbonic anhydrase as an activator in carbonate rock dissolution and its significance in atmospheric CO2 precipitation.Acta Geoscientia Sinica, 22(5): 477-480. (in Chinese) |
30 | Liu Zaihua, 2011a. Is pedogenic carbonate an important atmospheric CO2 sink?Chinese Science Bulletin, 56(26): 2209-2211. (in Chinese) |
31 | Liu Zaihua, 2011b. “Method of maximum potential dissolution” to calculate the intensity of karst process and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock-tablet test.Carsologica Sinica, 30(4): 379-382. (in Chinese) |
32 | Liu Z H, Dreybrodt W, Wang H J, 2010. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms.Earth-Science Reviews, 99: 162-172. |
33 | Long Jian, Jiang Xinrong, Deng Qiqiong et al.Deng Qiqiong ., 2005. Characteristics of soil rocky desertification in the karst region of Guizhou province.Acta Pedologica Sinica, 42(3): 419-427. (in Chinese) |
34 | Luo Lihui, Zhang Yaonan, Zhou Jian et al.Zhou Jian ., 2013. Simulation and application of the land surface model CLM driven by WRF in the Tibetan Plateau.Journal of Glaciology and Geocryology, 35(3): 553-564. (in Chinese) |
35 | Luo Weijun, Wang Shijie, Liu Xiuming, 2014. Research progresses and prospect of chimney effect about carbon cycle in the karst cave system.Advances in Earth Science, 29(12): 1333-1340. (in Chinese) |
36 | Ma Jianyong, Gu Xiaoping, Huang Mei et al.Huang Mei ., 2013. Temporal-spatial distribution of net ecosystem productivity in Guizhou during the recent 50 years.Ecology and Environment, 22(9): 1462-1470. (in Chinese) |
37 | Macpherson G L, Roberts J A, Blair J M et al.Blair J M ., 2008. Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA.Geochimica et Cosmochimica Acta, 72: 5581-5599. |
38 | Meybeck M, 1987. Global chemical-weathering of surficial rocks estimated from river dissolved loads.American Journal of Science, 287: 401-428. |
39 | Montety V D, Martin J B, Cohen M J et al.Cohen M J ., 2011. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river.Chemical Geology, 283: 31-43. |
40 | Moon S, Chamberlain C P, Hilley G E, 2014. New estimates of silicate weathering rates and their uncertainties in global rivers.Geochimica et Cosmochimica Acta, 134: 257-274. |
41 | Pan Y D, Birdsey R A, Fang J Y et al.Fang J Y ., 2011. A large and persistent carbon sink in the world’s forests.Science, 333: 988-993. |
42 | Piao S L, Ciais P, Huang Y et al.Huang Y ., 2010. The impacts of climate change on water resources and agriculture in China.Nature, 467: 43-51. |
43 | Piao S L, Fang J Y, Ciais P et al.Ciais P ., 2009. The carbon balance of terrestrial ecosystems in China.Nature, 458: 1009-1013. |
44 | Pu Junbing, Jiang Zhongcheng, Yuan Daoxian et al.Yuan Daoxian ., 2015. Some opinions on rock-weathering-related carbon sinks from the IPCC Fifth Assessment Report.Advances in Earth Science, 30(10): 1081-1090. (in Chinese) |
45 | Qiu Dongsheng, Zhuang Dafang, Hu Yunfeng et al.Hu Yunfeng ., 2004. Estimation of carbon sink capacity caused by rock weathering in China.Earth Science, 29(2): 177-182. (in Chinese) |
46 | Raymond P A, Oh N H, Turner R E et al.Turner R E ., 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River.Nature, 451: 449-452. |
47 | Richter D D, Billings S A, 2015. ‘One physical system’: Tansley’s ecosystem as Earth’s critical zone.New Phytologist, 206: 900-912. |
48 | Schimel D S, House J I, Hibbard K A et al.Hibbard K A ., 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems.Nature, 414: 169-72. |
49 | Song Xianwei, Gao Yang, Wen Xuefa et al.Wen Xuefa ., 2016. Rock-weathering-related carbon sinks and associated ecosystem service functions in the karst critical zone in China.Acta Geographica Sinica, 71(11): 1926-1938. (in Chinese) |
50 | Suchet P A, Probst J L, 1993. Modeling of atmospheric CO2 consumption by chemical-weathering of rocks: Application to the Garonne, Congo and Amazon Basins.Chemical Geology, 107: 205-210. |
51 | Suchet P A, Probst J L, 1995. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2).Tellus Series B: Chemical and Physical Meteorology, 47: 273-280. |
52 | Tao Bo, Ge Quansheng, Li Kerang et al.Li Kerang ., 2001. Progress in the studies on carbon cycle in terrestrial ecosystem.Geographical Research, 20(5): 564-575. (in Chinese) |
53 | Tao Bo, Li Kerang, Shao Xuemei et al.Shao Xuemei ., 2003. Temporal and spatial pattern of net primary production of terrestrial ecosystems in China.Acta Geographica Sinica, 58(3): 372-380. (in Chinese) |
54 | Velbel M A, Price J R, 2007. Solute geochemical mass-balances and mineral weathering rates in small watersheds: Methodology, recent advances, and future directions.Applied Geochemistry, 22: 1682-1700. |
55 | Wang Delu, Zhu Shouqian, Huang Baolong et al.Huang Baolong ., 2005. Preliminary study on types and quantitative assessment of Karst rocky desertification in Guizhou Province, China.Acta Ecologica Sinica, 25(5): 1057-1063. (in Chinese) |
56 | Yan J H, Wang Y P, Zhou G et al.Zhou G ., 2011. Carbon uptake by karsts in the Houzhai Basin, southwest China.Journal of Geophysical Research, 116: 327-336. |
57 | Yu Guirui, Wang Qiufeng, Zhu Xianjin, 2011. Methods and uncertainties in evaluating the carbon budgets of regional terrestrial ecosystems.Progress in Geography, 30(1): 103-113. (in Chinese) |
58 | Yuan Daoxian, Zhang Cheng, 2008. Karst dynamics theory in China and its practice.Acta Geoscientia Sinica, 29(3): 355-365. (in Chinese) |
59 | Yuan Daoxian, 2009. Challenges and opportunities for karst research of our country under the new situation.Carsologica Sinica, 28(4): 329-331. (in Chinese) |
60 | Zeng Cheng, Zhao Min, Yang Rui et al.Yang Rui ., 2014. Comparison of karst processes-related carbon sink intensity calculated by carbonate rock tablet test and solute load method: A case study in the Chenqi karst spring syste.Hydrogeology and Engineering Geology, 41(1): 106-111. (in Chinese) |
61 | Zhang Cheng, 2011. Carbonate rock dissolution rates in different landuses and their carbon sink effect.Chinese Science Bulletin, 56(35): 2174-2180. (in Chinese) |
62 | Zhang Cheng, Xie Yunqiu, Lü Yong et al.Lü Yong ., 2006. Impact of land- use patterns upon karst processes: Taking Nongla Fengcong depression area in Guangxi as an example.Acta Geographica Sinica, 61(11): 1181-1188. (in Chinese) |
63 | Zhang Dong, Qin Yong, Zhao Zhiqi, 2015. Chemical weathering of carbonate rocks by sulfuric acid on small basin in North China.Acta Scientiae Circumstantiae, 35(11): 3568-3578. (in Chinese) |
64 | Zhang Hongming, Li Shuguang, 2012. Deep carbon recycling and isotope tracing: Review and prospect.Science China: Earth Sciences, 42(10): 1459-1472. (in Chinese) |
65 | Zhang Xingbo, Jiang Yongjun, Qiu Shulan et al.Qiu Shulan ., 2012. Agricultural activities and carbon cycling in karst areas in Southwest China: Dissolving carbonate rocks and CO2 sink.Advances in Earth Science, 27(4): 466-476. (in Chinese) |
66 | Zhang Zhigan, 2012. Discussion on article “Calculation of atmospheric CO2 sink formed in karst processes of karst-divided regions in China”.Carsologica Sinica, 31(3): 339-344. (in Chinese) |
67 | Zhou Caiping, Ou Yanghua, Wang Qinxue et al.Wang Qinxue ., 2004. Estimation of net primary productivity in Tibetan Platea.Acta Geographica Sinica, 59(1): 74-79. (in Chinese) |
[1] | Leilei MIN, Yongqing QI, Yanjun SHEN, Ping WANG, Shiqin WANG, Meiying LIU. Groundwater recharge under irrigated agro-ecosystems in the North China Plain: From a critical zone perspective [J]. Journal of Geographical Sciences, 2019, 29(6): 877-890. |
[2] | Xifang WU, Yongqing QI, Yanjun SHEN, Wei YANG, Yucui ZHANG, Akihiko KONDOH. Change of winter wheat planting area and its impacts on groundwater depletion in the North China Plain [J]. Journal of Geographical Sciences, 2019, 29(6): 891-908. |
[3] | Yucui ZHANG, Yongqing QI, Yanjun SHEN, Hongying WANG, Xuepeng PAN. Mapping the agricultural land use of the North China Plain in 2002 and 2012 [J]. Journal of Geographical Sciences, 2019, 29(6): 909-921. |
[4] |
MARTINSEN Grith, Suxia LIU, Xingguo MO, Peter BAUER-GOTTWEIN.
Optimizing water resources allocation in the Haihe River basin under groundwater sustainability constraints [J]. Journal of Geographical Sciences, 2019, 29(6): 935-958. |
[5] | Wenlan GAO, Keqin DUAN, Shuangshuang LI. Spatial-temporal variations in cold surge events in northern China during the period 1960-2016 [J]. Journal of Geographical Sciences, 2019, 29(6): 971-983. |
[6] | M. ROBINSON Guy, Bingjie SONG. Rural transformation: Cherry growing on the Guanzhong Plain, China and the Adelaide Hills, South Australia [J]. Journal of Geographical Sciences, 2019, 29(5): 675-701. |
[7] | Liying GUO, Liping DI, Qing TIAN. Detecting spatio-temporal changes of arable land and construction land in the Beijing-Tianjin corridor during 2000-2015 [J]. Journal of Geographical Sciences, 2019, 29(5): 702-718. |
[8] | Yifan WU, Weilun FENG, Yang ZHOU. Practice of barren hilly land consolidation and its impact: A typical case study from Fuping County, Hebei Province of China [J]. Journal of Geographical Sciences, 2019, 29(5): 762-778. |
[9] | Qinqin DU, Mingjun ZHANG, Shengjie WANG, Cunwei CHE, Rong MA, Zhuanzhuan MA. Changes in air temperature over China in response to the recent global warming hiatus [J]. Journal of Geographical Sciences, 2019, 29(4): 496-516. |
[10] | Shengfa LI, Xiubin LI. The mechanism of farmland marginalization in Chinese mountainous areas: Evidence from cost and return changes [J]. Journal of Geographical Sciences, 2019, 29(4): 531-548. |
[11] | Yujie LIU, Ya QIN, Quansheng GE. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010 [J]. Journal of Geographical Sciences, 2019, 29(3): 351-362. |
[12] | Wenjuan HOU, Jiangbo GAO. Simulating runoff generation and its spatial correlation with environmental factors in Sancha River Basin: The southern source of the Wujiang River [J]. Journal of Geographical Sciences, 2019, 29(3): 432-448. |
[13] | Xiaoyu GAO, Weiming CHENG, Nan WANG, Qiangyi LIU, Ting MA, Yinjun CHEN, Chenghu ZHOU. Spatio-temporal distribution and transformation of cropland in geomorphologic regions of China during 1990-2015 [J]. Journal of Geographical Sciences, 2019, 29(2): 180-196. |
[14] | Liang ZHOU, Chenghu ZHOU, Fan YANG, Lei CHE, Bo WANG, Dongqi SUN. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2015 [J]. Journal of Geographical Sciences, 2019, 29(2): 253-270. |
[15] | Huan WANG, Jiangbo GAO, Wenjuan HOU. Quantitative attribution analysis of soil erosion in different geomorphological types in karst areas: Based on the geodetector method [J]. Journal of Geographical Sciences, 2019, 29(2): 271-286. |