Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (7): 786-800.doi: 10.1007/s11442-017-1406-4
• Orginal Article • Previous Articles Next Articles
Shicheng LI1,2,3,*(), Zhaofeng WANG1,*(
), Yili ZHANG1,2,4(
)
Received:
2016-11-05
Accepted:
2017-02-06
Online:
2017-07-10
Published:
2017-09-13
Contact:
Shicheng LI,Zhaofeng WANG
E-mail:lisc.10s@igsnrr.ac.cn;lisc@cug.edu.cn;wangzf@igsnrr.ac.cn;zhangyl@igsnrr.ac.cn
About author:
Author: Li Shicheng (1989-), PhD, specialized in historical land use and cover change reconstruction and its ecological effects assessment. E-mail:
*Corresponding author: Zhang Yili and Wang Zhaofeng. E-mail:
Supported by:
Shicheng LI, Zhaofeng WANG, Yili ZHANG. Crop cover reconstruction and its effects on sediment retention in the Tibetan Plateau for 1900-2000[J].Journal of Geographical Sciences, 2017, 27(7): 786-800.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 1
Location of the study area. The two red polygons are the main crop distribution areas in the Tibetan Plateau (TP). The right-top polygon is the Yellow-Huangshui River valley (YHRV), and the middle-bottom polygon is the midstream Yarlung Zangbo River and its two tributaries valley in Tibet Autonomous Region (YRTT)."
Table 2
Inputs to the sediment delivery ratio module of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model (version 3.3.1) and data sources"
Input | Descriptions | Data sources |
---|---|---|
Digital elevation model (DEM) | Digital elevation model, reflecting topography properties | Geospatial data cloud ( |
R | Rainfall erosivity index, reflecting climate properties | National earth system science data sharing infrastructure ( |
K | Soil erodibility index, reflecting soil properties | Liu et al., 2014a |
Watersheds | A shapefile of polygons. The calculation is also at watershed scale | Institute of Geography, Chinese Academy of Sciences, 1997 |
P and C | P is the support practice factor and C is crop-management factor, reflecting vegetation and anthropogenic factors | RUSLE handbook (Renard et al., 1997) and the TP related studies (Wang et al., 2004) |
Threshold flow accumulation | The number of upstream cells that must flow into a cell before it is considered part of a stream | Default |
kb and IC0 | Calibration parameters that determine the shape of the relationship between hydrologic connectivity and the SDR | Default |
SDRmax | The maximum sediment delivery ratio (SDR) that a pixel can reach | Default |
Table 3
Biophysical values of the cover-management factor C and support practice factor P"
Land use/ cover categories | Cover-management factor C | Support practice factor P |
---|---|---|
Cropland | 0.3 | 0.4 |
Forestland | 0.003 | 0.2 |
Shrubland | 0.02 | 0.2 |
Grassland | 0.01 | 0.25 |
Waterbody | 0 | 0 |
Snow | 0 | 0.001 |
Wetland | 0 | 0.001 |
Built-ups | 0 | 0.001 |
Unused land | 1 | 0.01 |
Table 4
Cropland area in the Tibetan Plateau (TP) for 1900-2000. (Units: km2.)"
Province | 1900 | 1930 | 1950 | 1980 | 2000 |
---|---|---|---|---|---|
Qinghai | 4272 (0.597) | 4497 (0.628) | 4527 (0.632) | 6850 (0.957) | 6875 (0.960) |
Tibet Autonomous Region | 1510 (0.126) | 1590 (0.132) | 1620 (0.135) | 2350 (0.196) | 2308 (0.192) |
Entire study area | 5782 (0.301) | 6087 (0.317) | 6147 (0.320) | 9200 (0.479) | 9183 (0.478) |
Figure 2
Crop cover of Qinghai Province and the Tibet Autonomous Region (TAR) with a resolution of 1 × 1 km for 1900, 1930, 1950, 1980, and 2000. The right subfigure is the Yellow River-Huangshui River Valley (YHRV) and the bottom subfigure is Yarlung Zangbo River and its two tributaries valley (YRTT)."
Table 5
A comparison of the inputs, methods, and results among the three datasets"
Reconstruction | Resolution of input | Factors considered | Resolution | The percentage cropland area in each slope interval (°) | The percentage cropland area in each elevation interval (km) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
≤2 | 2-6 | 6-15 | >15 | ≤2 | 2-3 | 3-4 | >4 | ||||
This study | Province | Elevation, slope | 1 km | 24.1 | 60.7 | 15.0 | 0.1 | 8.3 | 79.2 | 12.5 | 0.0 |
Luo et al. (2014) | County | Elevation, slope, climate, population | 2 km | 23.0 | 62.1 | 14.8 | 0.2 | 3.2 | 85.6 | 11.2 | 0.0 |
Li et al. (2016) | Province | Elevation, slope, climate | 10 km | 14.4 | 59.0 | 26.3 | 0.4 | 5.5 | 69.7 | 24.1 | 0.8 |
[1] | Cao Shuji, Ge Jianxiong, 2001. China Population History (Volume V: Qing Dynasty). Shanghai: Fudan University Press. (in Chinese) |
[2] |
Chen Fahu, Dong Guanghui, Zhang Dongjuet al., 2015. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP.Science, 347(6219): 248-250.
doi: 10.1126/science.1259172 |
[3] |
Cui Xuefeng, Graf Hans-F, 2009. Recent land cover changes on the Tibetan Plateau: A review.Climatic Change, 94(1/2): 47-61.
doi: 10.1007/s10584-009-9556-8 |
[4] |
De Brue H, Verstraeten G, 2014. Impact of the spatial and thematic resolution of Holocene anthropogenic land-cover scenarios on modeled soil erosion and sediment delivery rates.Holocene, 24(1): 67-77.
doi: 10.1177/0959683613512168 |
[5] |
de Vente Joris, Poesen Jean, Verstraeten Gertet al., 2013. Predicting soil erosion and sediment yield at regional scales: Where do we stand?Earth-Science Reviews, 127: 16-29.
doi: 10.1016/j.earscirev.2013.08.014 |
[6] |
Dias L C P, Pimenta F M, Santos A Bet al., 2016. Patterns of land use, extensification, and intensification of Brazilian agriculture.Global Change Biology, 22(8): 2887-2903.
doi: 10.1111/gcb.13314 pmid: 27170520 |
[7] |
Ellis Erle C, Kaplan Jed O, Fuller Dorian Qet al., 2013. Used planet: A global history.Proceedings of the National Academy of Sciences of the United States of America, 110(20): 7978-7985.
doi: 10.1073/pnas.1217241110 pmid: 23630271 |
[8] | Feng Zhiming, Liu Baoqin, Yang Yanzhao, 2005. A study of the changing trend of Chinese cultivated land amount and data reconstructing: 1949-2003.Journal of Natural Resources, 20(1): 35-43. (in Chinese) |
[9] |
Foley Jonathan A, DeFries Ruth, Asner Gregory Pet al., 2005. Global consequences of land use.Science, 309(5734): 570-574.
doi: 10.1126/science.1111772 pmid: 16040698 |
[10] |
Frolking S, Qiu J J, Boles Set al., 2002. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China.Global Biogeochemical Cycles, 16(4): 1091.
doi: 10.1029/2001GB001425 |
[11] |
Fu B, Wang Y K, Xu Pet al., 2014. Value of ecosystem hydropower service and its impact on the payment for ecosystem services.Science of the Total Environment, 472: 338-346.
doi: 10.1016/j.scitotenv.2013.11.015 pmid: 24291631 |
[12] | Future Earth, 2014. Future Earth 2025 Vision . |
[13] |
Gaillard M J, Sugita S, Mazier Fet al., 2010. Holocene land-cover reconstructions for studies on land cover-climate feedbacks.Climate of the Past, 6(4): 483-499.
doi: 10.5194/cp-6-483-2010 |
[14] |
Hamel Perrine, Chaplin-Kramer Rebecca, Sim Sarahet al., 2015. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Science of the Total Environment, 524-525: 166-177.
doi: 10.1016/j.scitotenv.2015.04.027 pmid: 25897725 |
[15] |
He Fanneng, Li Shicheng, Zhang Xuezhen, 2015. A spatially explicit reconstruction of forest cover in China over 1700-2000.Global and Planetary Change, 131: 73-81.
doi: 10.1016/j.gloplacha.2015.05.008 |
[16] |
He Fanneng, Li Shicheng, Zhang Xuezhenet al., 2013. Comparisons of cropland area from multiple datasets over the past 300 years in the traditional cultivated region of China.Journal of Geographical Sciences, 23(6): 978-990.
doi: 10.1007/s11442-013-1057-z |
[17] | Institute of Geography, Chinese Academy of Sciences, 1997. Atlas of the Tibetan Plateau. (in Chinese) |
[18] |
Jantz S M, Barker B, Brooks T Met al., 2015. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.Conservation Biology, 29(4): 1122-1131.
doi: 10.1111/cobi.12549 pmid: 26129841 |
[19] |
Jin Xiaobin, Pan Qian, Yang Xuhonget al., 2016. Reconstructing the historical spatial land use pattern for Jiangsu Province in mid-Qing Dynasty.Journal of Geographical Sciences, 26(12): 1689-1706.
doi: 10.1007/s11442-016-1353-5 |
[20] |
Kaplan Jed O, Krumhardt Kristen M, Ellis Erle Cet al., 2011. Holocene carbon emissions as a result of anthropogenic land cover change.Holocene, 21(5): 775-791.
doi: 10.1177/0959683610386983 |
[21] |
Klein Goldewijk Kees, Beusen Arthur, van Drecht Gerardet al., 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years.Global Ecology and Biogeography, 20(1): 73-86.
doi: 10.1111/j.1466-8238.2010.00587.x |
[22] |
Klein Goldewijk Kees,Verburg Peter H, 2013. Uncertainties in global-scale reconstructions of historical land use: An illustration using the HYDE data set.Landscape Ecology, 28(5): 861-877.
doi: 10.1007/s10980-013-9877-x |
[23] |
Lehnert L W, Wesche K, Trachte Ket al., 2016. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures.Scientific Reports, 6: 24367.
doi: 10.1038/srep24367 pmid: 4829870 |
[24] |
Leite Christiane C, Costa Marcos H, Soares-Filho Britaldo Set al., 2012. Historical land use change and associated carbon emissions in Brazil from 1940 to 1995. Global Biogeochemical Cycles, 26: GB2011.
doi: 10.1029/2011GB004133 |
[25] |
Li Beibei, Fang Xiuqi, Ye Yuet al., 2010. Accuracy assessment of global historical cropland datasets based on regional reconstructed historical data: A case study in Northeast China.Science in China Series D: Earth Sciences, 53(11): 1689-1699.
doi: 10.1007/s11430-010-4053-5 |
[26] |
Li Shicheng, He Fanneng, Zhang Xuezhen, 2016. A spatially explicit reconstruction of cropland cover in China from 1661 to 1996.Regional Environmental Change, 16(2): 417-428.
doi: 10.1007/s10113-014-0751-4 |
[27] |
Li Shicheng, Zhang Yili, He Fanneng, 2015. Reconstruction of cropland distribution in Qinghai and Tibet for the past one hundred years and its spatiotemporal changes.Progress in Geography, 34(2): 197-206. (in Chinese)
doi: 10.11820/dlkxjz.2015.02.008 |
[28] | Liu Bintao, Tao Heping, Shi Zhanet al., 2014a. Spatial distribution characteristics of soil erodibility K value in Qinghai-Tibet Plateau.Bulletin of Soil and Water Conservation, 34(4): 13-16. (in Chinese) |
[29] |
Liu Jiyuan, Kuang Wenhui, Zhang Zengxianget al., 2014b. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s.Journal of Geographical Sciences, 24(2): 195-210.
doi: 10.1007/s11442-014-1082-6 |
[30] |
Liu Jiyuan, Liu Mingliang, Tian Hanqinet al., 2005. Spatial and temporal patterns of China’s cropland during 1990-2000: An analysis based on Landsat TM data.Remote Sensing of Environment, 98(4): 442-456.
doi: 10.1016/j.rse.2005.08.012 |
[31] |
Liu Xiaodong, Chen Baode, 2000. Climatic warming in the Tibetan Plateau during recent decades.International Journal of Climatology, 20(14): 1729-1742.
doi: 10.1002/(ISSN)1097-0088 |
[32] |
Luo Jing, Zhang Yili, Liu Fengguiet al., 2014. Reconstruction of cropland spatial patterns for 1726 on Yellow River-Huangshui River Valley in northeast Qinghai-Tibet Plateau.Geographical Research, 33(7): 1285-1296. (in Chinese)
doi: 10.11821/dlyj201407009 |
[33] |
Miao Lijuan, Zhu Feng, He Binet al., 2013. Synthesis of China’s land use in the past 300 years.Global and Planetary Change, 100: 224-233.
doi: 10.1016/j.gloplacha.2012.10.021 |
[34] |
Miao Lijuan, Zhu Feng, Sun Zhanliet al., 2016. China’s land-use changes during the past 300 years: A historical perspective.International Journal of Environmental Research and Public Health, 13(9): 847.
doi: 10.3390/ijerph13090847 |
[35] |
Nelson Erik, Mendoza Guillermo, Regetz Jameset al., 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales.Frontiers in Ecology and the Environment, 7(1): 4-11.
doi: 10.1890/080023 |
[36] |
Newbold T, Hudson L N, Hill S L Let al., 2015. Global effects of land use on local terrestrial biodiversity.Nature, 520(7545): 45-50.
doi: 10.1038/nature14324 pmid: 25832402 |
[37] |
Pan Tao, Wu Shaohong, Liu Yujie, 2015. Relative contributions of land use and climate change to water supply variations over Yellow River Source Area in Tibetan Plateau during the past three decades.PLoS One, 10(4): e0123793.
doi: 10.1371/journal.pone.0123793 pmid: 25906192 |
[38] |
Posner S, Verutes G, Koh Iet al., 2016. Global use of ecosystem service models.Ecosystem Services, 17: 131-141.
doi: 10.1016/j.ecoser.2015.12.003 |
[39] |
Ramankutty N, Foley J A, 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992.Global Biogeochemical Cycles, 13(4): 997-1027.
doi: 10.1029/1999GB900046 |
[40] | Renard K G, Foster G R, Weesies G Aet al., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Soil Loss Equation. (RUSLE). United States Department of Agriculture, Agriculture Handbook, No.703, 1-367. |
[41] |
Ryavec Karl, 2001. Land use/cover change in central Tibet, c. 1830-1990: Devising a GIS methodology to study a historical Tibetan land decree.Geographical Journal, 167(4): 342-357.
doi: 10.1111/1475-4959.00030 |
[42] | Sharp R, Tallis H T, Ricketts T Het al., 2015. InVEST 3.2.0 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. |
[43] |
Simmons C T, Matthews H D, 2016. Assessing the implications of human land-use change for the transient climate response to cumulative carbon emissions.Environmental Research Letters, 11(3): 035001.
doi: 10.1088/1748-9326/11/3/035001 |
[44] |
Smith M C, Singarayer J S, Valdes P Jet al., 2016. The biogeophysical climatic impacts of anthropogenic land use change during the Holocene.Climate of the Past, 12(4): 923-941.
doi: 10.5194/cpd-11-4601-2015 |
[45] |
Sturck J, Schulp C J E,Verburg P H, 2015. Spatio-temporal dynamics of regulating ecosystem services in Europe: The role of past and future land use change.Applied Geography, 63: 121-135.
doi: 10.1016/j.apgeog.2015.06.009 |
[46] |
Su Changhong, Fu Bojie, 2013. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes.Global and Planetary Change, 101: 119-128.
doi: 10.1016/j.gloplacha.2012.12.014 |
[47] |
Sun Honglie, Zheng Du, Yao Tandonget al., 2012. Protection and construction of the national ecological security shelter zone on Tibetan Plateau.Acta Geographica Sinica, 67(1): 3-12. (in Chinese)
doi: 10.11821/xb201201001 |
[48] |
Wang Xiaodan, Zhong Xianghao, Fan Jianrong, 2004. Assessment and spatial distribution of sensitivity of soil erosion in Tibet.Journal of Geographical Sciences, 14(1): 41-46.
doi: 10.1007/BF02873089 |
[49] | Wang Yukun, Tao Juanping, Liu Fengguiet al., 2015. Reconstruction of cropland spatial pattern in 1830 in the middle reaches of Yarlung Zangbo River Valley.Geographical Research, 34(12): 2355-2367. (in Chinese) |
[50] |
Wei Xueqiong, Ye Yu, Zhang Qianet al., 2016. Reconstruction of cropland change over the past 300 years in the Jing-Jin-Ji area, China.Regional Environmental Change, 16(7): 2097-2109.
doi: 10.1007/s10113-016-0933-3 |
[51] |
Yang Xuhong, Jin Xiaobin, Du Xindonget al., 2016. Multi-agent model-based historical cropland spatial pattern reconstruction for 1661-1952, Shandong Province, China.Global and Planetary Change, 143: 175-188.
doi: 10.1016/j.gloplacha.2016.06.010 |
[52] |
Ye Yu, Fang Xiuqi, Ren Yuyuet al., 2009. Cropland cover change in Northeast China during the past 300 years. Science in China Series D: Earth Sciences, 52(8): 1172-1182.
doi: 10.1007/s11430-009-0118-8 |
[53] |
Ye Yu, Wei Xueqiong, Li Fanet al., 2015. Reconstruction of cropland cover changes in the Shandong Province over the past 300 years.Scientific Reports, 5: 13642.
doi: 10.1038/srep13642 pmid: 4570983 |
[54] |
Zhang Xuezhen, He Fanneng, Li Shicheng, 2013. Reconstructed cropland in the mid-eleventh century in the traditional agricultural area of China: Implications of comparisons among datasets.Regional Environmental Change, 13(5): 969-977.
doi: 10.1007/s10113-012-0390-6 |
[55] |
Zhang Yili, Li Bingyuan, Zheng Du, 2002. A discussion on the boundary and area of the Tibetan Plateau in China.Geographical Research, 21(1): 1-8. (in Chinese)
doi: 10.1007/s11769-002-0045-5 |
[56] |
Zorrilla-Miras P, Palomo I, Gomez-Baggethun Eet al., 2014. Effects of land-use change on wetland ecosystem services: A case study in the Donana marshes (SW Spain).Landscape and Urban Planning, 122: 160-174.
doi: 10.1016/j.landurbplan.2013.09.013 |
[1] | Xiaoyun HOU, Shengyan DING, Shuang ZHAO, Xiaobo LIU. The response of spiders to less-focused non-crop habitats in the agricultural landscape along the lower reach of the Yellow River [J]. Journal of Geographical Sciences, 2019, 29(7): 1113-1126. |
[2] | Jie GONG, Yuchu XIE, Erjia CAO, Qiuyan Huang, Hongying LI. Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province [J]. Journal of Geographical Sciences, 2019, 29(7): 1193-1210. |
[3] | Li ZENG, Jing LI. A Bayesian belief network approach for mapping water conservation ecosystem service optimization region [J]. Journal of Geographical Sciences, 2019, 29(6): 1021-1038. |
[4] | Rubo ZHOU, Meizhen LIN, Jianzhou GONG, Zhuo WU. Spatiotemporal heterogeneity and influencing mechanism of ecosystem services in the Pearl River Delta from the perspective of LUCC [J]. Journal of Geographical Sciences, 2019, 29(5): 831-845. |
[5] | Yuanyuan LI, Minghong TAN, Haiguang HAO. The impact of global cropland changes on terrestrial ecosystem services value, 1992-2015 [J]. Journal of Geographical Sciences, 2019, 29(3): 323-333. |
[6] | Pengtao WANG, Liwei ZHANG, Yingjie LI, Lei JIAO, Hao WANG, Junping YAN, Yihe LÜ, Bojie FU. Spatio-temporal variations of the flood mitigation service of ecosystem under different climate scenarios in the Upper Reaches of Hanjiang River Basin, China [J]. Journal of Geographical Sciences, 2018, 28(10): 1385-1398. |
[7] | Bingzhen DU, Lin ZHEN, Yunfeng HU, Huimin YAN, GROOT Rudolf DE, Rik LEEMANS. Comparison of ecosystem services provided by grasslands with different utilization patterns in China’s Inner Mongolia Autonomous Region [J]. Journal of Geographical Sciences, 2018, 28(10): 1399-1414. |
[8] | Yingjie LI, Liwei ZHANG, Junping YAN, Pengtao WANG, Ningke HU, Wei CHENG, Bojie FU. Mapping the hotspots and coldspots of ecosystem services in conservation priority setting [J]. Journal of Geographical Sciences, 2017, 27(6): 681-696. |
[9] | Zhongxue ZHOU, Mengtao LI. Spatial-temporal change in urban agricultural land use efficiency from the perspective of agricultural multi-functionality: A case study of the Xi’an metropolitan zone [J]. Journal of Geographical Sciences, 2017, 27(12): 1499-1520. |
[10] | DENG Xiangzheng,LI Zhihui,John GIBSON. A review on trade-off analysis of ecosystem services for sustainable land-use management [J]. Journal of Geographical Sciences, 2016, 26(7): 953-968. |
[11] | LEI Kampeng, WANG Zhishi. The value of the ecosystem services and method [J]. Journal of Geographical Sciences, 2003, 13(3): 339-347. |
[12] | REN Zhiyuan, ZHANG Yanfang, LI Jing. The value of vegetation ecosystem services: a case of Qinling-Daba Mountains [J]. Journal of Geographical Sciences, 2003, 13(2): 195-200. |
|