Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (6): 711-730.doi: 10.1007/s11442-017-1402-8
• Orginal Article • Previous Articles Next Articles
Yan YANG1,2,3,*(), Limao WANG1(
), Zhi CAO1,2, Chufu MOU1,2, Lei SHEN1, Jianan ZHAO1, Yebing FANG1,2
Received:
2016-04-19
Accepted:
2016-07-22
Online:
2017-06-10
Published:
2017-06-10
Contact:
Yan YANG
E-mail:yycasw13@163.com;lmwang@igsnrr.ac.cn
About author:
Author: Yang Yan (1984-), PhD, specialized in resource industrial economics. E-mail:
*Corresponding author: Wang Limao (1962-), Professor, specialized in energy economics and climate change policy. E-mail:
Supported by:
Yan YANG, Limao WANG, Zhi CAO, Chufu MOU, Lei SHEN, Jianan ZHAO, Yebing FANG. CO2 emissions from cement industry in China: A bottom-up estimation from factory to regional and national levels[J].Journal of Geographical Sciences, 2017, 27(6): 711-730.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 1
Locations of the surveyed cement production lines1 1 Note: for the object of study in this paper, Figure 1 shows the two major whole-production lines, including 191 NSP process production lines and 75 VSK process production lines. Each line contains 5-7 samples; meanwhile, some sampling enterprise contains 2-3 sampling production lines at different scales (in the same geographical location)."
Table 1
The micro and macro data sources for this paper"
Data types | Data indexes | Data sources |
---|---|---|
Production data from cement plants | The production-line scale of enterprises; Annual clinker and cement production | Field survey |
Annual consumption of coal; Annual consumption of electricity (including waste-heat power deduction) | Field survey | |
Weighted-average lower heating value (LHV) of coal; Coal fuel- moisture content | Field survey | |
Full chemical composition and individual proportion of raw meal/coal/ clinker (annual average); Each material ratio in raw meal (annual average) | Field survey | |
Socioeconomic data | GDP per capita | China Statistical Yearbook (2014) |
Cement industry data | Technical level; Investment level; Scale level, Profit level; Total clinker output; Total cement output | China Cement Almanac (2012- 2014); China Industry Information Network (2014a, 2014b, 2014c) |
Geological data | Partitions of cement-with-limestone reserves and quality | The Information Center of the MLR (Ministry of Land and Resources of the PRC); CBMA (China Building Materials Academy) |
Partitions of coal quality | The Institute of Coal Chemistry, Chinese Academy of Sciences; Chen, 2009 |
Table 2
Sample data processing results for this paper"
Process types | Units of clinker emission sources | Number (valid samples) | Max | Min | Difference | Average | Mean square deviation |
---|---|---|---|---|---|---|---|
kg/t | kg/t | kg/t | kg/t | ||||
NSP process | Process emissions | 164 | 556 | 478 | 78.83 | 520 | 14.28 |
Fuel emissions | 162 | 391 | 261 | 129.24 | 312 | 26.51 | |
Electricity emissions | 161 | 98 | 14 | 83.28 | 46 | 20.73 | |
VSK process | Process emissions | 64 | 529 | 392 | 137.52 | 501 | 20.76 |
Fuel emissions | 59 | 548 | 286 | 262.73 | 351 | 60.18 | |
Electricity emissions | 63 | 114 | 37 | 76.32 | 59 | 15.79 |
Table 3
Descriptions of indicators for the CO2 emission factors from carbonate calcination"
Indicators and their calculating methods | Explanations |
---|---|
${{R}_{carbonate\text{ }calcination\text{ in raw }meal}}=R{{a}_{c{{o}_{2}}}}\times {{r}_{a}}\times 1000$$R{{a}_{c{{o}_{2}}}}=\sum{\left( Rc{{a}_{i}}\times {{r}_{i}}\times \frac{44}{56}+Rm{{g}_{i}}\times {{r}_{i}}\times \frac{44}{40} \right)}\ (i=1,2,3\ldots )$${{r}_{a}}\frac{1-{{C}_{cl}}\times {{A}_{c}}}{1-{{R}_{l}}}$ | $R{{a}_{c{{o}_{2}}}}$ is the CO2 content in the raw meal (%); ra is the raw meal-to-clinker ratio (t/t clinker); Rcai and Rmgi are respectively the calcium carbonate and magnesium carbonate content in the raw material i (%); ri is the share of the raw material i in the raw meal (%); 44/56 and 44/40 are respectively the CO2 content in calcium carbonate and magnesium carbonate; Ccl is the coal consumption (dry) for producing a unit of clinker (t/t clinker); Ac is the ash content of coal (%); Rl is the loss on ignition of the raw meal (%). |
${{R}_{flue\text{ }gas\text{ }dust\text{ }in\text{ }kiln-head}}=\frac{{{R}_{carbonate\text{ }calcination\text{ in }raw\text{ }meal}}\cdot {{U}_{e}}}{1000}$ | Ue is the amount of flue gas dust emissions per ton clinker in the cement kiln-head (kg/t clinker). |
${{R}_{bypass\text{ }dust}}=\frac{{{Q}_{d}}\cdot {{B}_{e}}}{1000}$ ${{B}_{e}}={{R}_{carbonate\text{ }calcination\text{ in raw }meal}}\cdot \left( 1-\frac{{{R}_{b}}}{{{R}_{l}}} \right)$ | Qd is the quantity of bypass dust per ton of clinker production (kg/t clinker); Be is the CO2 emissions from the bypass dust in producing a unit of clinker (kg/t clinker); Rb is loss on ignition of the bypass dust (%). |
Table 7
The 31-province integration results of the sandwich estimation of the NSP clinker emission factors (kg CO2/t clinker)"
Regions | Process emission factors | Fuel emission factors | Electricity emission factors | |||
---|---|---|---|---|---|---|
Mean | Standard deviation | Mean | Standard deviation | Mean | Standard deviation | |
Xinjiang | 525 | 22.34 | 346 | 23.55 | 79 | 9.30 |
Heilongjiang | 516 | 20.65 | 304 | 22.70 | 39 | 14.47 |
Jilin | 516 | 20.65 | 294 | 44.59 | 39 | 14.47 |
Hebei | 520 | 16.83 | 312 | 44.18 | 39 | 14.33 |
Beijing | 520 | 22.34 | 243 | 22.70 | 60 | 22.44 |
Tianjing | 520 | 22.34 | 294 | 25.09 | 53 | 25.83 |
Liaoning | 516 | 20.65 | 296 | 22.70 | 60 | 22.44 |
Ningxia | 527 | 27.11 | 313 | 36.33 | 55 | 20.47 |
Shandong | 520 | 20.65 | 307 | 25.30 | 46 | 16.04 |
Shaanxi | 524 | 14.08 | 313 | 36.33 | 54 | 25.83 |
Shanxi | 527 | 27.98 | 309 | 35.82 | 58 | 22.12 |
Qinghai | 528 | 28.39 | 305 | 36.33 | 49 | 21.41 |
Gansu | 527 | 21.81 | 313 | 36.33 | 55 | 23.51 |
Henan | 520 | 16.67 | 312 | 24.62 | 47 | 18.52 |
Jiangsu | 516 | 20.28 | 276 | 23.25 | 30 | 13.08 |
Tibet | 528 | 28.39 | 311 | 40.42 | 55 | 24.07 |
Anhui | 519 | 13.88 | 312 | 24.36 | 30 | 12.89 |
Chongqing | 520 | 19.63 | 303 | 51.50 | 55 | 20.72 |
Hubei | 518 | 16.77 | 305 | 36.33 | 54 | 20.89 |
Sichuan | 522 | 13.69 | 304 | 51.33 | 53 | 25.11 |
Jiangxi | 525 | 13. 50 | 305 | 35.82 | 38 | 7.60 |
Guizhou | 515 | 21.23 | 311 | 38.95 | 44 | 20.11 |
Hunan | 518 | 16.77 | 305 | 36.33 | 55 | 23.46 |
Yunnan | 520 | 16.99 | 321 | 40.42 | 55 | 24.07 |
Guangxi | 524 | 14.08 | 315 | 40.42 | 48 | 24.07 |
Shanghai | 520 | 22.34 | 253 | 25.09 | 47 | 18.88 |
Hainan | 520 | 16.99 | 311 | 40.42 | 49 | 21.41 |
Zhejiang | 520 | 16.99 | 266 | 23.67 | 30 | 13.08 |
Fujian | 528 | 16.33 | 302 | 5.10 | 34 | 15.07 |
Guangdong | 524 | 14.08 | 305 | 36.33 | 37 | 7.93 |
Inner Mongoria | 520 | 22.34 | 305 | 36.33 | 60 | 22.44 |
Table 8
The 15-region integration results of the sandwich estimation of the NSP clinker emission factors (kg CO2/t clinker)"
Regions | Process emission factors | Fuel emission factors | Electricity emission factors | |||
---|---|---|---|---|---|---|
Mean | Standard deviation | Mean | Standard deviation | Mean | Standard deviation | |
Xinjiang | 526 | 4.94 | 338 | 0.72 | 83 | 8.67 |
Northeast China and eastern Inner Mongoria | 514 | 12.97 | 305 | 12.41 | 47 | 13.08 |
Beijing, Tianjing, Hebei | 519 | 10.10 | 299 | 15.98 | 42 | 13.83 |
Shandong | 520 | 14.14 | 306 | 15.25 | 46 | 15.28 |
Shaanxi | 521 | 11.69 | 314 | 28.41 | 55 | 24.18 |
Shanxi and central Inner Mongoria | 527 | 13.13 | 314 | 28.41 | 55 | 20.17 |
Gansu, Ningxia, and western Inner Mongoria | 526 | 6.88 | 314 | 28.41 | 50 | 13.45 |
Henan, Anhui | 518 | 8.98 | 312 | 28.68 | 41 | 11.51 |
Shanghai, Zhejiang, and Jiangsu | 524 | 9.67 | 304 | 18.01 | 29 | 6.73 |
Tibet, Qinghai | 528 | 20.55 | 316 | 21.78 | 46 | 14.83 |
Sichuan, Chongqing | 519 | 9.58 | 304 | 18.18 | 54 | 18.89 |
Guizhou | 515 | 14.71 | 321 | 28.56 | 44 | 17.98 |
Yunnan | 518 | 15.33 | 321 | 29.66 | 52 | 21.17 |
Fujian | 527 | 14.52 | 303 | 9.13 | 34 | 15.54 |
Guangdong, Guangxi, and Hainan | 519 | 12.73 | 316 | 21.06 | 42 | 8.43 |
Hunan, Hubei, and Jiangxi | 518 | 9.28 | 314 | 28.41 | 46 | 10.88 |
Table 9
The 7-region integration results of the sandwich estimation of the NSP clinker emission factors (kg CO2/t clinker)"
Regions | Process emission factors | Fuel emission factors | Electricity emission factors | |||
---|---|---|---|---|---|---|
Mean | Standard deviation | Mean | Standard deviation | Mean | Standard deviation | |
Northeast China | 512 | 15.74 | 303 | 13.79 | 46 | 12.61 |
Northern China | 523 | 7.16 | 307 | 16.91 | 49 | 12.94 |
Eastern China | 522 | 8.51 | 306 | 10.10 | 35 | 6.37 |
Central China | 518 | 9.86 | 313 | 21.47 | 48 | 9.44 |
Southern China | 519 | 12.72 | 316 | 21.01 | 42 | 8.48 |
Southwest China | 518 | 8.10 | 314 | 18.48 | 51 | 12.96 |
Northwest China | 525 | 5.23 | 324 | 16.64 | 64 | 8.48 |
Table 1
0 The preliminary CO2 emission spatial integration results for Chinese cement industry"
Regions | Portland clinker output (2013) | Cement output (2013) | Process emission factors | Fuel emission factors | Electricity emission factors | Clinker emission factors | Grinding emission factors | Clinker emissions (2013) | Cement emissions (2013) |
---|---|---|---|---|---|---|---|---|---|
Mt | Mt | kg CO2/t | kg CO2/t | kg CO2/t | kg CO2/t | kg CO2/t | Mt CO2 | Mt CO2 | |
Northeast China | 78 | 145 | 511 | 309 | 47 | 867 | 40 | 68 | 73 |
Northern China | 126 | 259 | 521 | 314 | 50 | 885 | 38 | 112 | 122 |
Eastern China | 369 | 674 | 521 | 310 | 36 | 867 | 25 | 320 | 337 |
Central China | 242 | 483 | 515 | 313 | 50 | 877 | 34 | 213 | 229 |
Southern China | 159 | 261 | 519 | 322 | 42 | 883 | 35 | 140 | 150 |
Southwest China | 247 | 375 | 515 | 324 | 51 | 890 | 36 | 220 | 233 |
Northwest China | 140 | 217 | 523 | 336 | 67 | 925 | 49 | 129 | 140 |
National NSP | 1195 | - | 520 | 313 | 45 | 879 | 34 | - | - |
National Shaft | 167 | - | 503 | 348 | 60 | 912 | 36 | - | - |
National Compositive | 1362 | 2414 | 518 | 318 | 47 | 883 | 34 | 1202 | 1284 |
Table 1
1 Comparison of two main process types in Chinese cement industry"
Process types | Process emission factors | Fuel emission factors | Electricity emission factors | Clinker emission factors | |
---|---|---|---|---|---|
NSP process | Emission factors (kg CO2/t clinker) | 520 | 313 | 45 | 879 |
Proportion in clinker emissions (%) | 59.20 | 35.65 | 5.15 | 59.20 | |
VSK process | Emission factors (kg CO2/t clinker) | 503 | 348 | 60 | 912 |
Proportion in clinker emissions (%) | 55.22 | 38.18 | 6.60 | 55.22 | |
Gaps of the two | (kg CO2/t clinker) | -16.93 | 34.72 | 14.97 | 32.76 |
Table 1
2 Comparison of standard deviation results from methods of sandwich and simple random"
Regions | Standard deviation | |||||
---|---|---|---|---|---|---|
Process emission factors | Fuel emission factors | Electricity emission factors | ||||
Sandwich | Simple random | Sandwich | Simple random | Sandwich | Simple random | |
Northeast China | 15.74 | 17.52 | 13.79 | 18.72 | 12.61 | 15.75 |
Northern China | 7.16 | 14.45 | 16.91 | 33.59 | 12.94 | 22.76 |
Eastern China | 8.51 | 16.78 | 10.10 | 21.32 | 6.37 | 16.88 |
Central China | 9.86 | 11.58 | 21.47 | 22.22 | 9.44 | 18.24 |
Southern China | 12.72 | 7.22 | 21.01 | 17.35 | 8.48 | 16.07 |
Southwest China | 8.10 | 14.29 | 18.48 | 32.08 | 12.96 | 21.88 |
Northwest China | 5.23 | 12.11 | 16.64 | 18.01 | 8.48 | 25.09 |
[1] |
Ali M B, Saidur R, Hossain M S, 2011. A review on emission analysis in cement industries.Renewable and Sustainable Energy Reviews, 15: 2252-2261.
doi: 10.1016/j.rser.2011.02.014 |
[2] |
Aranda U A, López-Sabirón A M, Ferreira Get al., 2013. Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options.Renewable and Sustainable Energy Reviews, 23: 242-260.
doi: 10.1016/j.rser.2013.02.024 |
[3] | Cai B F, Wang J N, He J et al., 2015. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Applied Energy. . |
[4] |
Cao Z, Shen L, Zhao J Aet al., 2016a. Toward a better practice for estimating the CO2 emission factors of cement production: An experience from China.Journal of Cleaner Production, 139: 527-539.
doi: 10.1016/j.jclepro.2016.08.070 |
[5] |
Cao Z, Shen L, Zhao J Aet al., 2016b. Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement.Resources Conservation & Recycling, 113: 116-126.
doi: 10.1016/j.resconrec.2016.06.011 |
[6] | CBMA (China Building Materials Academy), 2011. National standard of the People’s Republic of China: The calculation method of CO2 emission with cement production [GB/T]. Beijing: China Building Materials Academy, 40-50. |
[7] | CCA (China Cement Association), 2014. China Cement Almanac 2012-2013. Beijing: China Building Materials Industry Press, 300-600. (in Chinese) |
[8] |
Chen F N, Shen L, Liu L Tet al., 2015. Spatial differences of exergy use of cement manufacturing industry in China based on extended exergy accounting method.Journal of Geographical Sciences, 25(11): 1393-1407.
doi: 10.1007/s11442-015-1241-4 |
[9] | Chen P, 2009. The Quality, Classification, and Utilization of China’s Coal. 2nd ed. Beijing: Chemical Industry Press, 27-72. (in Chinese) |
[10] | China Cement, 2015. China Cement Almanac 2014. Beijing: China Building Materials Industry Press, 100-300. (in Chinese) |
[11] |
Chuai X W, Lai L, Huang X Jet al., 2012. Temporospatial changes of carbon footprint based on energy consumption in China.Journal of Geographical Sciences, 22(1): 110-124.
doi: 10.1007/s11442-012-0915-4 |
[12] | CIIN (China Industry Information Network), 2014a. Province-level statistics of China’s cement output in 2013. (in Chinese) |
[13] | CIIN (China Industry Information Network), 2014b. Province-level statistics of China’s Portland cement clinker output in 2013. . (in Chinese) |
[14] | CIIN (China Industry Information Network), 2014c. Province-level statistics of China’s Portland cement clinker output from the NSP klins in 2013. . (in Chinese) |
[15] | CSI (Cement Sustainability Initiative), 2011. CO2 and energy accounting and reporting standard for the cement industry (version 3.0). . |
[16] | Cui S P, Liu W, 2008. Analysis of CO2 emission mitigation potential in cement producing processes.China Cement, 4: 57-59. (in Chinese) |
[17] |
Gao T M, Shen L, Shen Met al., 2015. Analysis on differences of carbon dioxide emission from cement production and their major determinants.Journal of Cleaner Production, 103: 160-170.
doi: 10.1016/j.jclepro.2014.11.026 |
[18] | Gu A, Shi X, Wang Let al., 2012. The potential and cost analysis of energy saving and emission reduction in China cement sector.China Population Resources and Environment, 8: 16-21. |
[19] | IPCC (Intergovernmental Panel on Climate Change), 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories [EB/OL]. . |
[20] |
Lei Y, Zhang Q, Nielsen Cet al., 2011. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020.Atmospheric Environment, 45: 147-154.
doi: 10.1016/j.atmosenv.2010.09.034 |
[21] |
Li L F, Wang J F, Cao Z D, 2008. An information-fusion method to regionalize spatial heterogeneity for improving the accuracy of spatial sampling estimation.Stochastic Environment Research and Risk Assessment, 22: 689-704.
doi: 10.1007/s00477-007-0179-1 |
[22] | Liu J, Li H, 2010. Developing low-carbon economy promotes the cement industry changes.China Resources Comprehensive Utilization, 28: 56-58. |
[23] | Liu T J, 2015. Study on application conditions and optimization of knowledge layer for sandwich spatial sampling model [D]. Beijing: University of Chinese Academy of Sciences, 23-100. (in Chinese) |
[24] |
Mikulčić H, Vujanović M, Duić N, 2013. Reducing the CO2 emissions in Croatian cement industry.Applied Energy, 101: 41-48.
doi: 10.1016/j.apenergy.2012.02.083 |
[25] | NBS (National Bureau of Statistics), 2015. China Statistical Yearbook 2014. Beijing: China Statistics Press, 40-100. (in Chinese) |
[26] |
Ke J, McNeil M, Price Let al., 2013. Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties.Energy Policy, 57: 172-181.
doi: 10.1016/j.enpol.2013.01.028 |
[27] |
Ke J, Zheng N, Fridley Det al., 2012. Potential energy savings and CO2 emissions reduction of China’s cement industry.Energy Policy, 45: 739-751.
doi: 10.1016/j.enpol.2012.03.036 |
[28] |
Rattanashotinunt C, Thairit P, Tangchirapat Wet al., 2013. Use of calcium carbide residue and bagasse ash mixtures as a new cementitious material in concrete.Materials & Design, 46: 106-111.
doi: 10.1016/j.matdes.2012.10.028 |
[29] |
Rovira J, Mari M, Nadal Met al., 2010. Partial replacement of fossil fuel in a cement plant: Risk assessment for the population living in the neighborhood.Science of The Total Environment, 408: 5372-5380.
doi: 10.1016/j.scitotenv.2010.07.060 pmid: 20709362 |
[30] |
Shen L, Gao T M, Zhao J Aet al., 2014. Factory-level measurements on CO2 emission factors of cement production in China.Renewable and Sustainable Energy Reviews, 34: 337-349.
doi: 10.1016/j.rser.2014.03.025 |
[31] |
Shen W G, Cao L, Li Qet al., 2015. Quantifying CO2 emissions from China’s cement industry.Renewable and Sustainable Energy Reviews, 50: 1004-1012.
doi: 10.1016/j.rser.2015.05.031 |
[32] |
Tu H, Chen Y, Chen W, 2003. Fixed carbon applied to calculated carbon content of anthracite coal in China.Coal Science and Technology, 12: 98-100.
doi: 10.1016/0921-5093(90)90151-R |
[33] | USGS (U. S. Geological Surveyy), 2014. Mineral Commodity Summaries 2013. . |
[34] |
Wang J F, Haining R P, Cao Z D, 2010a. Sample surveying to estimate the mean of a heterogeneous surface: reducing the error variance through zoning.International Journal of Geographical Information Science, 24: 523-543.
doi: 10.1080/13658810902873512 |
[35] |
Wang J F, Haining R P, Liu T Jet al., 2013. Sandwich estimation for multi-unit reporting on a stratified heterogeneous surface.Environment and Planning, 45: 2515-2534.
doi: 10.1068/a44710 |
[36] | Wang J F, Jiang C C, Li L F et al., 2009. Spatial Sampling and Statistical Inference. Beijing: Science Press, 17-176. (in Chinese) |
[37] |
Wang J F, Li X H, Christakos Get al., 2010b. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China.International Journal of Geographical Information Science, 24: 107-127.
doi: 10.1080/13658810802443457 |
[38] |
Wang J F, Liu J Y, Zhuan D Fet al., 2002. Spatial sampling design for monitoring cultivated land.International Journal of Remote Sensing, 23: 263-284.
doi: 10.1080/01431160010025998 |
[39] | Wang L X, Wang Y M, Hao Q Jet al., 2010c. Survey and research on CO2 emissions in clinker production of cement industry.China Building Materials Science and Technology, 8: 96-99. (in Chinese) |
[40] |
Wang S J, Fang C L, Ma H Tet al., 2014. Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China.Journal of Geographical Sciences, 24(4): 612-630.
doi: 10.1007/s11442-014-1109-z |
[41] |
Wang Y, Zhu Q, Geng Y, 2013. Trajectory and driving factors for GHG emissions in the Chinese cement industry.Journal of Cleaner Production, 53: 252-260.
doi: 10.1016/j.jclepro.2013.04.001 |
[42] |
Wang Y F, Höller S, Viebahn Pet al., 2014. Integrated assessment of CO2 reduction technologies in China’s cement industry.International Journal of Greenhouse Gas Control, 20: 27-36.
doi: 10.1016/j.ijggc.2013.10.004 |
[43] | Wei D Q, 2013. Measurement method and application for carbon emission coefficient of NSP cement production in China [D]. Beijing: University of Chinese Academy of Sciences, 31-41. (in Chinese) |
[44] | Wei D Q, Zhao J A, Jin Q Z, 2012. Comparison of domestic and international calculation methods of CO2 emission from cement production and the enlightenments for China.Resources Science, 34: 1152-1159. (in Chinese) |
[45] | Wei J X, Geng Y B, Shen L et al., 2014. Calculation of CO2 emission factor on the present situation of the domestic cement production.China Environmental Science, 2014, 34(11): 2970-2975. (in Chinese) |
[46] |
Xu J H, Fleiter T, Eichhammer Wet al., 2012. Energy consumption and CO2 emissions in China’s cement industry: A perspective from LMDI decomposition analysis.Energy Policy, 50: 821-832.
doi: 10.1016/j.enpol.2012.08.038 |
[47] |
Xu J H, Fleiter T, Fan Yet al., 2014. CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050.Applied Energy, 130: 592-602.
doi: 10.1016/j.apenergy.2014.03.004 |
[1] | WEI Wei, GUO Zecheng, SHI Peiji, ZHOU Liang, WANG Xufeng, LI Zhenya, PANG Sufei, XIE Binbin. Spatiotemporal changes of land desertification sensitivity in northwest China from 2000 to 2017 [J]. Journal of Geographical Sciences, 2021, 31(1): 46-68. |
[2] | MA Bin, ZHANG Bo, JIA Lige. Spatio-temporal variation in China’s climatic seasons from 1951 to 2017 [J]. Journal of Geographical Sciences, 2020, 30(9): 1387-1400. |
[3] | LIU Xiaojing, LIU Dianfeng, ZHAO Hongzhuo, HE Jianhua, LIU Yaolin. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China [J]. Journal of Geographical Sciences, 2020, 30(9): 1419-1435. |
[4] | WU Li, SUN Xiaoling, SUN Wei, ZHU Cheng, ZHU Tongxin, LU Shuguang, ZHOU Hui, GUO Qingchun, GUAN Houchun, XIE Wei, KE Rui, LIN Guiping. Evolution of Neolithic site distribution (9.0-4.0 ka BP) in Anhui, East China [J]. Journal of Geographical Sciences, 2020, 30(9): 1451-1466. |
[5] | YE Chao, LI Simeng, ZHANG Zhao, ZHU Xiaodan. A comparison and case analysis between domestic and overseas industrial parks of China since the Belt and Road Initiative [J]. Journal of Geographical Sciences, 2020, 30(8): 1266-1282. |
[6] | WANG Xueqin, LIU Shenghe, QI Wei. Mega-towns in China: Their spatial distribution features and growth mechanisms [J]. Journal of Geographical Sciences, 2020, 30(7): 1060-1082. |
[7] | YANG Fan, HE Fanneng, LI Meijiao, LI Shicheng. Evaluating the reliability of global historical land use scenarios for forest data in China [J]. Journal of Geographical Sciences, 2020, 30(7): 1083-1094. |
[8] | LIU Ruiqing, XU Hao, LI Jialin, PU Ruiliang, SUN Chao, CAO Luodan, JIANG Yimei, TIAN Peng, WANG Lijia, GONG Hongbo. Ecosystem service valuation of bays in East China Sea and its response to sea reclamation activities [J]. Journal of Geographical Sciences, 2020, 30(7): 1095-1116. |
[9] | FANG Chuanglin, WANG Zhenbo, LIU Haimeng. Beautiful China Initiative: Human-nature harmony theory, evaluation index system and application [J]. Journal of Geographical Sciences, 2020, 30(5): 691-704. |
[10] | CHEN Mingxing, LIANG Longwu, WANG Zhenbo, ZHANG Wenzhong, YU Jianhui, LIANG Yi. Geographical thoughts on the relationship between ‘Beautiful China’ and land spatial planning [J]. Journal of Geographical Sciences, 2020, 30(5): 705-723. |
[11] | TANG Zhipeng, MEI Ziao, LIU Weidong, XIA Yan. Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm [J]. Journal of Geographical Sciences, 2020, 30(5): 743-756. |
[12] | WANG Shaojian, GAO Shuang, HUANG Yongyuan, SHI Chenyi. Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends [J]. Journal of Geographical Sciences, 2020, 30(5): 757-774. |
[13] | SONG Zhouying, ZHU Qiaoling. Spatio-temporal pattern and driving forces of urbanization in China’s border areas [J]. Journal of Geographical Sciences, 2020, 30(5): 775-793. |
[14] | ZHAO Ting, BAI Hongying, YUAN Yuan, DENG Chenhui, QI Guizeng, ZHAI Danping. Spatio-temporal differentiation of climate warming (1959-2016) in the middle Qinling Mountains of China [J]. Journal of Geographical Sciences, 2020, 30(4): 657-668. |
[15] | WANG Jiayue, XIN Liangjie, WANG Yahui. How farmers’ non-agricultural employment affects rural land circulation in China? [J]. Journal of Geographical Sciences, 2020, 30(3): 378-400. |
|