Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (4): 387-402.doi: 10.1007/s11442-017-1383-7
• Research Articles • Next Articles
Huimin YAN1,2(), Fang LIU1,*(
), Jiyuan LIU1, Xiangming XIAO3,4, Yuanwei QIN3
Received:
2016-08-20
Accepted:
2016-10-12
Online:
2017-04-20
Published:
2017-04-20
Contact:
Fang LIU
E-mail:yanhm@igsnrr.ac.cn;fangliu2015@gmail.com
About author:
Author: Yan Huimin (1974-), PhD, specialized in land use change. E-mail:
Supported by:
Huimin YAN, Fang LIU, Jiyuan LIU, Xiangming XIAO, Yuanwei QIN. Status of land use intensity in China and its impacts on land carrying capacity[J].Journal of Geographical Sciences, 2017, 27(4): 387-402.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Land use intensity classification system"
Class | Subclass | Description |
---|---|---|
Artificial land (Built-up land) | Urban | Dense built environments with very high population density |
Village and others | Rural settlements, factories, and transportation facilities with high population but fragmented landscape | |
Semi-artificial land (Cropland) | Triple-cropping paddy | Cropland mainly for triple paddy rice |
Double-cropping paddy | Cropland mainly for double paddy rice | |
Single-cropping paddy | Cropland mainly for single paddy rice | |
Irrigated triple-cropping dryland | Dryland mainly for irrigated triple crop | |
Irrigated double-cropping dryland | Dryland mainly for irrigated double crop | |
Irrigated single-cropping dryland | Dryland mainly for irrigated single crop | |
Rain-fed triple-cropping dryland | Rain-fed dryland with triple cropping | |
Rain-fed double-cropping dryland | Rain-fed dryland with double cropping | |
Rain-fed single-cropping dryland | Rain-fed dryland with single cropping | |
Fallow land | Cropland left idle during the growing season | |
Semi-natural land (Forest, Grassland, Water body) | High intensity forest | Forest with high human population density (>100 persons/km2) |
Low intensity forest | Forest with low human population density (1-100 persons/km2) | |
Natural forest | Forest with negligible human population density (>1 person/km2) | |
High intensity grassland | Grassland with high livestock population density (>10 TLU/km2) | |
Low intensity grassland | Grassland with low livestock population density (1-10 TLU /km2) | |
Natural grasslandl water | Grassland with negligible livestock population density (<1 TLU /km2) | |
High intensity water body | Water body located in county with high human population density (>100 persons/km2) | |
Low intensity water body | Water body located in county with low human population density (1-100 persons/km2) | |
Natural water body | Water body located in county with negligible human population density (<1 person/km2) | |
Natural land (Unused land) | Unused land | Sandy land, Gobi, salina, wetland, bare soil and bare rock |
Figure 1
Land use intensity map of China in 2000. Ecological Regions include Northeast Region (I), Inner Mongolia and the Great Wall Region (II), Huang-Huai-Hai Region (III), Loess Plateau Region (IV), Middle and Lower Reaches of the Yangtze River Region (V), Southwest Region (VI), South China Region (VII), Gan-Xin Region (VIII) and Qinghai-Tibet Region (IX)."
Table 2
Proportions of land area under four land use intensity classes in 9 ecological regions of China (%)"
Regions | Artificial land | Semi-artificial land | Semi-natural land | Natural land |
---|---|---|---|---|
Northeast Region | 13.20 | 17.88 | 10.12 | 2.20 |
Inner Mongolia and the Great Wall Region | 5.42 | 8.74 | 10.22 | 2.87 |
Huang-Huai-Hai Region | 35.57 | 19.22 | 1.09 | 0.11 |
Loess Plateau Region | 5.10 | 8.81 | 4.23 | 0.07 |
Middle and Lower Reaches of the Yangtze River Region | 15.98 | 18.81 | 10.80 | 0.10 |
Southwest Region | 4.64 | 14.65 | 12.99 | 0.03 |
South China Region | 13.62 | 6.15 | 6.56 | 0.02 |
Gan-Xin Region | 5.78 | 5.07 | 12.89 | 70.93 |
Qinghai-Tibet Region | 0.70 | 0.66 | 31.09 | 23.67 |
[56] | Zhang F G, Hao J M, Jiang G H et al., 2005. Spatial-temporal variance of urban land use intensity.China Land Science, 19(1): 23-29. (in Chinese) |
[57] |
Zhang H Y, Fan J W, Shao Q Q, 2015. Land use/land cover change in the grassland restoration program areas in China, 2000-2010.Progress in Geography, 34(7): 840-853. (in Chinese)
doi: 10.18306/dlkxjz.2015.07.006 |
[1] |
Allan E, Bossdorf O, Dormann C F et al., 2014. Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 308-313.
doi: 10.1073/pnas.1312213111 |
[2] | Anderson J R, Hardy E E, Roach J T et al., 1976. A land use and land cover classification system for use with remote sensor data. US Geological Survey Professional Paper 964. |
[3] |
Blüthgen N, Dormann C F, Prati D et al., 2012. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic and Applied Ecology, 13(3): 207-220.
doi: 10.1016/j.baae.2012.04.001 |
[4] | Boserup E, 1965. The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure. Chicago: Aldine Press. |
[5] |
Briske D D, Zhao M L, Han G D et al., 2015. Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs production efficiency of livestock systems.Journal of Environmental Management, 152: 177-182.
doi: 10.1016/j.jenvman.2014.07.036 pmid: 25687702 |
[6] |
Burney J A, Davis S J, Lobell D B, 2010. Greenhouse gas mitigation by agricultural intensification.Proceedings of the National Academy of Sciences of the United States of America, 107(26): 12052-12057.
doi: 10.1073/pnas.0914216107 |
[7] |
Chen Y Q, Li X B, 2009. Structural change of agricultural land use intensity and its regional disparity in China.Acta Geographica Sinica, 64(4): 469-478. (in Chinese)
doi: 10.1007/s11442-009-0545-7 |
[8] | Dai Y D, Zhu Y Z, 2013. Remodeling energy for sustainable development in China.Bulletin of Chinese Academy of Sciences, 2: 239-246. (in Chinese) |
[9] |
Ellis E C, Klein Goldewijk K, Siebert S et al., 2010. Anthropogenic transformation of the biomes, 1700 to 2000.Global Ecology and Biogeography, 19(5): 589-606.
doi: 10.1111/j.1466-8238.2010.00540.x |
[10] |
Ellis E C, Ramankutty N, 2008. Putting people in the map: Anthropogenic biomes of the world.Frontiers in Ecology and the Environment, 6(8): 439-447.
doi: 10.1890/070062 |
[11] |
Erb K H, Haberl H, Rudbeck M, 2013. A conceptual framework for analysing and measuring land-use intensity.Current Opinion in Environmental Sustainability, 5(5): 464-470.
doi: 10.1016/j.cosust.2013.07.010 pmid: 3798045 |
[12] |
Erb K, Niedertscheider M, Dietrich J P et al., 2014. Conceptual and empirical approaches to mapping and quantifying land-use intensity. In: Fischer-Kowalski M, Reenberg A, Schaffartzik A et al., eds. Ester Boserup’s Legacy on Sustainability. New York: Springer, 61-86.
doi: 10.1007/978-94-017-8678-2_5 |
[13] |
Fang C L, Wang Y, 2015. A comprehensive assessment of urban vulnerability and its spatial differentiation in China.Acta Geographica Sinica, 70(2): 234-247. (in Chinese)
doi: 10.1007/s11442-016-1260-9 |
[14] | FAOSTAT (Food and Agriculture Organization of the United Nations, Statistical Databases), 2011. FAOSTAT, FAO Statistical Databases: Agriculture, Fisheries, Forestry, Nutrition. |
[15] |
Foley J A, Ramankutty N, Brauman K A et al., 2011. Solutions for a cultivated planet.Nature, 478: 337-342.
doi: 10.1038/nature10452 |
[16] |
Friedl M A, Sulla-Menashe D, Tan B et al., 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets.Remote Sensing of Environment, 114(1): 168-182.
doi: 10.1016/j.rse.2009.08.016 |
[17] |
Green R E, Cornell S J, Scharlemann J P W et al., 2005. Farming and the fate of wild nature.Science, 307(5709): 550-555.
doi: 10.1126/science.1106049 |
[18] |
Hao H G, Li X B, 2011. Agricultural land use intensity and its determinants in ecologically-vulnerable areas in North China: a case study of Taipusi County, Inner Mongolia Autonomous Region.Journal of Resource Ecology, 2(2): 117-125.
doi: 10.3969/j.issn.1674-764x.2011.02.003 |
[19] |
Hua X B, Yan J Z, Wang Q et al., 2013. Comparative analysis on influencing factors of cultivated land use intensity in valley and middle mountain area of upper Dadu River watershed.Transactions of the Chinese Society of Agricultural Engineering, 29(20): 234-244. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2013.20.031 |
[20] |
Jiang L, Deng X Z, Seto K C, 2013. The impact of urban expansion on agricultural land use intensity in China.Land Use Policy, 35: 33-39.
doi: 10.1016/j.landusepol.2013.04.011 |
[21] |
Kuemmerle T, Erb K, Meyfroidt P et al., 2013. Challenges and opportunities in mapping land use intensity globally.Current Opinion in Environmental Sustainability, 5(5): 1-10.
doi: 10.1016/j.cosust.2013.02.003 |
[22] |
Laliberté E, Wells J, DeClerck F et al., 2010. Land use intensification reduces functional redundancy and response diversity in plant communities.Ecology Letters, 13(1): 76-86.
doi: 10.1111/j.1461-0248.2009.01403.x pmid: 19917052 |
[23] |
Lambin E F, Rounsevell M D A, Geist H J, 2000. Are agricultural land-use models able to predict changes in land-use intensity?Agriculture, Ecosystems and Environment, 82(1-3): 321-331.
doi: 10.1016/S0167-8809(00)00235-8 |
[24] |
Lambin E F, Turner B L, Geist H J et al., 2001. The causes of land-use and land-cover change: Moving beyond the myths.Global Environmental Change, 11(4): 261-269.
doi: 10.1016/S0959-3780(01)00007-3 |
[25] |
Li G D, Fang C L, 2014. Quantitative measure and influencing mechanism of land intensive use in China at the county level.Acta Geographica Sinica, 69(12): 1739-1752. (in Chinese)
doi: 10.11821/dlxb201412001 |
[26] |
Li H M, Aide T M, Ma Y X et al., 2007. Demand for rubber is causing the loss of high diversity rain forest in SW China.Biodiversity and Conservation, 16(6): 1731-1745.
doi: 10.1007/s10531-006-9052-7 |
[27] | Liu C W, Li X B, 2006. The changing characteristics of the agricultural land use intensity in China based on the production cost.Journal of Natural Resources, 21(1): 9-15. (in Chinese) |
[28] |
Liu J Y, Kuang W H, Zhang Z X et al., 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s.Journal of Geographical Sciences, 24(2): 195-210.
doi: 10.1007/s11442-014-1082-6 |
[29] |
Liu J Y, Zhang Z X, Xu X L et al., 2010. Spatial patterns and driving factors of land use change in China during the early 21st century.Journal of Geographical Sciences, 20(4): 483-494.
doi: 10.1007/s11442-010-0483-4 |
[30] |
Pahari K, Murai S, 1999. Modelling for prediction of global deforestation based on the growth of human population.The ISPRS Journal of Photogrammetry and Remote Sensing, 54(5/6): 317-324.
doi: 10.1016/S0924-2716(99)00032-5 |
[31] |
Petz K, Alkemade R, Bakkenes M et al., 2014. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models.Global Environmental Change, 29: 223-234.
doi: 10.1016/j.gloenvcha.2014.08.007 |
[32] |
Pittman K, Hansen M C, Becker-Reshef I et al., 2010. Estimating global cropland extent with multi-year MODIS data.Remote Sensing, 2(7): 1844-1863.
doi: 10.3390/rs2071844 |
[33] |
Robinson T P, Wint G R W, Conchedda G et al., 2014. Mapping the global distribution of livestock.PLoS One, 9(5): 1-3.
doi: 10.1371/journal.pone.0096084 pmid: 24875496 |
[34] |
Sala O E, Chapin F S, Armesto J J et al., 2000. Global biodiversity scenarios for the year 2100.Science, 287(5459): 1770-1774.
doi: 10.1126/science.287.5459.1770 |
[35] |
Shriar A J, 2005. Determinants of agricultural intensity index “scores” in a frontier region: An analysis of data from northern Guatemala.Agriculture and Human Values, 22(4): 395-410.
doi: 10.1007/s10460-005-3395-7 |
[36] |
Song X Q, Ouyang Z, 2012. Key influences factors of food security guarantee in China during 1999-2007.Acta Geographica Sinica, 67(6): 793-803. (in Chinese)
doi: 10.11821/xb201206007 |
[37] |
Stone G D, 2001. Theory of the square chicken: Advances in agricultural intensification theory.Asia Pacific Viewpoint, 2001, 42(2/3): 163-180.
doi: 10.1111/1467-8373.00142 |
[38] |
Thenkabail P S, Biradar C M, Noojipady P et al., 2009. Global Irrigated Area Map (GIAM), derived from remote sensing, for the end of the last millennium. International Journal of Remote Sensing, 30(14): 3679-3733.
doi: 10.1080/01431160802698919 |
[39] |
Thenkabail P S, Hanjra M A, Dheeravath V et al., 2011. Global croplands and their water use remote sensing and non-remote sensing perspectives. In: Weng Q H eds. Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications. Florida: CRC Press, Taylor and Francis Group, 383-419.
doi: 10.1201/b10599-20 |
[40] |
Václavík T, Lautenbach S, Kuemmerle T et al., 2013. Mapping global land system archetypes.Global Environmental Change, 23(6): 1637-1647.
doi: 10.1016/j.gloenvcha.2013.09.004 |
[41] |
van Asselen S, Verburg P H, 2012. A land system representation for global assessments and land-use modeling.Global Change Biology, 18(10): 3125-3148.
doi: 10.1111/j.1365-2486.2012.02759.x pmid: 28741836 |
[42] |
Verburg P H, Erb K H, Mertz O et al., 2013. Land system science: Between global challenges and local realities.Current Opinion in Environmental Sustainability, 5(5): 433-437.
doi: 10.1016/j.cosust.2013.08.001 pmid: 24851141 |
[43] |
Verburg P H, Mertz O, Erb K H et al., 2013. Land system change and food security: towards multi-scale land system solutions. Current Opinion in Environmental Sustainability, 5(5): 494-502.
doi: 10.1016/j.cosust.2013.07.003 pmid: 3798044 |
[44] |
Verburg P H, Van de Steeg J, Veldkamp A et al., 2009. From land cover change to land function dynamics: A major challenge to improve land characterization.Journal of Environmental Management, 90(3): 1327-1335.
doi: 10.1016/j.jenvman.2008.08.005 pmid: 18809242 |
[45] | Wu Y L, Qu F T, 2007. Mechanism of intensive urban land use in china: Theoretical and practical study.Resources Science, 29(6): 106-113. (in Chinese) |
[46] |
Xiao X M, Hollinger D, Aber J et al., 2004a. Satellite-based modeling of gross primary production in an evergreen needleleaf forest.Remote Sensing Environment, 89(4): 519-534.
doi: 10.1016/j.rse.2003.11.008 |
[47] |
Xiao X M, Zhang Q Y, Braswell B et al., 2004b. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data.Remote Sensing of Environment, 91(2): 256-270.
doi: 10.1016/j.rse.2004.03.010 |
[48] |
Xie Y, Jiang Q B, 2016. Land arrangements for rural-urban migrant workers in China: Findings from Jiangsu Province.Land Use Policy, 50: 262-267.
doi: 10.1016/j.landusepol.2015.10.010 |
[49] | Xu M Y, 2014. A review of grassland carrying capacity: Perspective and dilemma for research in China on forage-livestock balance.Acta Prataculturae Sinica, 23(5): 321-329. (in Chinese) |
[50] | Xu X L, Shi P J, Yang M C, 2003. The impact of the national land policy on the sustainable arable land use in China since 1949. Journal of Beijing Normal University (Social Science Edition), 2: 115-123. (in Chinese) |
[51] |
Yan H M, Huang H Q, Xiao X M et al., 2008. Spatio-temporal distribution of multiple cropping system s in the Poyang Lake region.Acta Ecologica Sinica, 28(9): 4517-4523. (in Chinese)
doi: 10.1509/jimk.16.3.108 |
[52] |
Yan H M, Xiao X M, Huang H Q et al., 2014. Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data.Chinese Geographical Science, 24(2): 205-219.
doi: 10.1007/s11769-013-0637-2 |
[53] |
Yan H M, Xiao X M, Huang H Q, 2010. Satellite observed crop calendar and its spatio-temporal characteristics in multiple cropping area of Huang-Huai-Hai Plain.Acta Ecologica Sinica, 30(9): 2416-2423. (in Chinese)
doi: 10.1016/S1872-5813(11)60001-7 |
[54] |
Yao C S, Huang L, Lü X et al, 2014. Temporal and spatial change of cultivated land use intensity in China based on emergy theory. Transactions of the Chinese Society of Agricultural Engineering, 30(8): 1-12. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2014.08.001 |
[58] |
Zhu H Y, Sun M H, 2014. Main progress in the research on land use intensification.Acta Geographica Sinica, 69(9): 1346-1357. (in Chinese)
doi: 10.11821/dlxb201409008 |
[55] |
Yu L, Wang J, Clinton N et al., 2013. FROM-GC: 30 m global cropland extent derived through multisource data integration.International Journal of Digital Earth, 6(6): 521-533.
doi: 10.1080/17538947.2013.822574 |
[1] | QI Wei, YI Jiawei. Spatial pattern and driving factors of migrants on the Qinghai-Tibet Plateau: Insights from short-distance and long-distance population migrants [J]. Journal of Geographical Sciences, 2021, 31(2): 215-230. |
[2] | MOU Naixia, WANG Chunying, CHEN Jinhai, YANG Tengfei, ZHANG Lingxian, LIAO Mengdi. Spatial pattern of location advantages of ports along the Maritime Silk Road [J]. Journal of Geographical Sciences, 2021, 31(1): 149-176. |
[3] | ZHANG Xueru, ZHOU Jie, LI Guoning, CHEN Chun, LI Mengmei, LUO Jianmei. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010 [J]. Journal of Geographical Sciences, 2020, 30(4): 601-620. |
[4] | ZHANG Chengming, WENG Shixiu, BAO Jigang. The changes in the geographical patterns of China’s tourism in 1978-2018: Characteristics and underlying factors [J]. Journal of Geographical Sciences, 2020, 30(3): 487-507. |
[5] | CAI Jianming, MA Enpu, LIN Jing, LIAO Liuwen, HAN Yan. Exploring global food security pattern from the perspective of spatio-temporal evolution [J]. Journal of Geographical Sciences, 2020, 30(2): 179-196. |
[6] | LI Wei, LI Xiaoyan, HUANG Yongmei, WANG Pei, ZHANG Cicheng. Spatial patch structure and adaptive strategy for desert shrub of Reaumuria soongorica in arid ecosystem of the Heihe River Basin [J]. Journal of Geographical Sciences, 2019, 29(9): 1507-1526. |
[7] | Chengjin WANG, Peiran CHEN, Yunhao CHEN. The identification of global strategic shipping pivots and their spatial patterns [J]. Journal of Geographical Sciences, 2018, 28(9): 1215-1232. |
[8] | Ying WANG, Qigen LIN, Peijun SHI. Spatial pattern and influencing factors of landslide casualty events [J]. Journal of Geographical Sciences, 2018, 28(3): 259-374. |
[9] | Sijing LIU, Guoqi LI, Fengjun JIN. Quantitative measurement and development evaluation of logistics clusters in China [J]. Journal of Geographical Sciences, 2018, 28(12): 1825-1844. |
[10] | Jiaming LI, Yu YANG, Jie FAN, Fengjun JIN, Wenzhong ZHANG, Shenghe LIU, Bojie FU. Comparative research on regional differences in urbanization and spatial evolution of urban systems between China and India [J]. Journal of Geographical Sciences, 2018, 28(12): 1860-1876. |
[11] | Xiangli WU, Shan MAN. Air transportation in China: Temporal and spatial evolution and development forecasts [J]. Journal of Geographical Sciences, 2018, 28(10): 1485-1499. |
[12] | Zhongfa ZHOU, Shaoyun ZHANG, Kangning XIONG, Bo LI, Zhonghui TIAN, Quan CHEN, Lihui YAN, Shizhen XIAO. The spatial distribution and factors affecting karst cave development in Guizhou Province [J]. Journal of Geographical Sciences, 2017, 27(8): 1011-1024. |
[13] | Ziyan YAO, Lijuan ZHANG, Shihao TANG, Xiaxiang LI, Tiantian HAO. The basic characteristics and spatial patterns of global cultivated land change since the 1980s [J]. Journal of Geographical Sciences, 2017, 27(7): 771-785. |
[14] | Degen WANG, Yu NIU, Feng SUN, Kaiyong WANG, Jia QIAN, Feng LI. Evolution and spatial characteristics of tourism field strength of cities linked by high-speed rail (HSR) network in China [J]. Journal of Geographical Sciences, 2017, 27(7): 835-856. |
[15] | Cuicui JIAO, Guirui YU, Nianpeng HE, Anna MA, Jianping GE, Zhongmin HU. Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe [J]. Journal of Geographical Sciences, 2017, 27(1): 3-22. |
|