Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (2): 223-239.doi: 10.1007/s11442-017-1373-9
• Research Articles • Previous Articles Next Articles
Qi ZHANG1,2(), Geping LUO1(
), Longhui LI1, Miao ZHANG1,2, Nana LV1,3, Xinxin WANG1,2
Received:
2016-07-08
Accepted:
2016-08-06
Online:
2017-04-10
Published:
2017-04-10
About author:
Author: Zhang Qi (1991-), specialized in land use and land cover change, remote sensing and GIS application. E-mail:
*Corresponding author: Luo Geping (1968-), PhD and Professor, specialized in the remote sensing of natural resources and the environment, land use and cover change (LUCC) and ecological effects. E-mail:
Supported by:
Qi ZHANG, Geping LUO, Longhui LI, Miao ZHANG, Nana LV, Xinxin WANG. An analysis of oasis evolution based on land use and land cover change: A case study in the Sangong River Basin on the northern slope of the Tianshan Mountains[J].Journal of Geographical Sciences, 2017, 27(2): 223-239.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Remote sensing images used in the study"
Year | Data type | Image acquisition date | Resolution or scale |
---|---|---|---|
1958 | Black-and-white aerial photographs | 1958 | 1:35,000 |
1968 | Black-and-white aerial photographs | 1968 | 1:35,000 |
1978 | Black-and-white aerial photographs | August 1978 | 1:35,000 |
1987 | Color-infrared aerial photograph | June 1987 | 1:70,000 |
1998 | Landsat TM imagery | August 1998 | 30 m |
2004 | SPOT5 imagery | June 2004 | 10 m |
2014 | Landsat OLI imagery | August 2014 | 15 m |
Table 2
Classification of land use and land cover (LULC)"
Grade I | Grade II | Grade III (abbreviation) |
---|---|---|
Oasis | Agricultural land: includes irrigated lands, and other cultivated lands equipped with irrigation facilities Built-up area: includes cities (Fukang City and the South Junggar oil-based towns), land used for townships and settlements, and industrial and mining land (rural villages, industrial enterprises, mining areas, stone pits, and brickyard fields). Water: includes reservoirs and ponds. | |
Desert | Soil-desert | Haloxylon ammodendron Bunge Community (HBC), Tamarix chinensis Lour Community (TLC), Reaumuria songarica (Pall.) Maxim Community (RMC), Tamarix chinensis Lour - Reaumuria songarica Maxim Community (TL-RMC), Grass (G) |
Sandy-desert | Haloxylon ammodendron Bunge Community (HBC), Reaumuria songarica Maxim Community (RMC) | |
Mountain | Mountain (only low mountains and hills existed in the study area) |
Table 3
Accuracy assessments of classifications of land use and land cover (LULC) in the oasis"
Year | Method | Validation data | Overall accuracy (%) | Kappa coefficient |
---|---|---|---|---|
1978 | Stratified random sampling | LULC in oasis ( | 87.50 | 0.84 |
1987 | Stratified random sampling | LULC in oasis ( | 90.00 | 0.88 |
1998 | Stratified random sampling | LULC in oasis ( | 92.00 | 0.89 |
2004 | Random sampling | Google images with high-resolution and plant community distribution ( | 90.67 | 0.89 |
2014 | Random sampling and field investigation | Google images with high-resolution survey data | 87.97 | 0.86 |
Table 4
Statistical models for the quantitative analysis of land use and cover change (LUCC)"
Parameter | Meaning | Expression | |
---|---|---|---|
Individual land types | Net change (ΔU) | The areal change of a land type over a period | △U=(Ub-Ua)/Ua╳100% |
Relative change (ΔS) | Sum of the loss and gain (i.e., the overall change) of a land type over a period | △S=(△Ua-△Ub)/Ua╳100% | |
Status and trend (Ps) | Describes the strength of a contraction or expansion in a land type, and describes whether or not a particular LULC type is in a stable state | \(P_S=\frac{\Delta U_{in}-\Delta U_{out}}{\Delta U_{in}+\Delta U_{out}}\)-1≤PS≤1 and △Uin+△Uout≠0 | |
Whole area | Total status and trend (Pt) | Describes the state of LUCC in the whole study area | \(P_t=\frac{\sum^n_{i-1}|\Delta U_{in}-\Delta U_{out}|}{\sum^n_{i-1}\Delta U_{in}+\Delta U_{out}},\)0≤Pt≤1 |
Figure 2
The spatial patterns of land-use and land-cover (LULC) in the Sangong River Basin from 1949 to 2014. (HBC, TLC, RMC, and TL-RMC are abbreviations of Haloxylon ammodendron Bunge Community, Tamarix chinensis Lour Community, Reaumuria songarica Maxim Community, and Tamarix chinensis Lour-Reaumuria songarica Maxim Community, respectively.)"
Table 5
The areal structure of land-use and land-cover (LULC) in the Sangong River Basin in the period 1958-2014"
Year | Parameter | Oasis | Desert | |||||
---|---|---|---|---|---|---|---|---|
Water | Agricultural land | Built-up area | Total | Sandy-desert | Soil-desert | Total | ||
1958 | Area (km2) | 0.00 | 127.50 | 1.73 | 129.23 | 380.46 | 828.56 | 1209.02 |
Proportion of Grade I land | 0.00 | 0.99 | 0.01 | 1 | 0.31 | 0.69 | 1 | |
Proportion of study area | 0.00 | 0.08 | 0.00 | 0.09 | 0.25 | 0.55 | 0.80 | |
1968 | Area (km2) | 4.49 | 273.89 | 10.42 | 288.81 | 376.08 | 672.67 | 1048.75 |
Proportion of Grade I land | 0.02 | 0.95 | 0.04 | 1 | 0.36 | 0.64 | 1 | |
Proportion of study area | 0.00 | 0.18 | 0.01 | 0.19 | 0.25 | 0.45 | 0.70 | |
1978 | Area (km2) | 7.09 | 298.43 | 15.64 | 321.16 | 374.81 | 646.11 | 1020.93 |
Proportion of Grade I land | 0.02 | 0.93 | 0.05 | 1 | 0.37 | 0.63 | 1 | |
Proportion of study area | 0.00 | 0.20 | 0.01 | 0.21 | 0.25 | 0.43 | 0.68 | |
1987 | Area (km2) | 6.45 | 305.81 | 26.07 | 338.34 | 374.11 | 635.07 | 1009.18 |
Proportion of Grade I land | 0.02 | 0.90 | 0.08 | 1 | 0.37 | 0.63 | 1 | |
Proportion of study area | 0.00 | 0.20 | 0.02 | 0.22 | 0.25 | 0.42 | 0.67 | |
1998 | Area (km2) | 8.11 | 356.69 | 43.45 | 408.25 | 373.54 | 565.83 | 939.37 |
Proportion of Grade I land | 0.02 | 0.87 | 0.24 | 1 | 0.40 | 0.60 | 1 | |
Proportion of study area | 0.01 | 0.24 | 0.03 | 0.27 | 0.25 | 0.38 | 0.62 | |
2004 | Area (km2) | 10.70 | 418.68 | 52.56 | 481.94 | 372.39 | 494.05 | 866.44 |
Proportion of Grade I land | 0.02 | 0.87 | 0.11 | 1 | 0.43 | 0.57 | 1 | |
Proportion of study area | 0.01 | 0.28 | 0.03 | 0.32 | 0.25 | 0.33 | 0.58 | |
2014 | Area (km2) | 42.95 | 500.97 | 100.94 | 644.86 | 370.68 | 333.14 | 703.82 |
Proportion of Grade I land | 0.07 | 0.78 | 0.16 | 1 | 0.53 | 0.47 | 1 | |
Proportion of study area | 0.03 | 0.33 | 0.07 | 0.43 | 0.25 | 0.22 | 0.47 |
Table 6
Land-use and cover (LUCC) change in the oasis-desert system of the Sangong River Basin in the period 1958-2014"
Period | Parameter | Oasis | Desert | Whole area | |||||
---|---|---|---|---|---|---|---|---|---|
Agricultural land | Built-up area | Water | Total | Soil-desert | Sandy-desert | Total | |||
1958-1968 | ΔU (%) | 114.82 | 501.75 | - | 123.48 | -17.96 | -1.15 | -12.43 | |
ΔS (%) | 134.44 | 501.75 | - | 24.62 | 1.15 | ||||
Ps | 0.85 | 1 | 1 | -0.83 | -1 | ||||
Pt | 0.86 | 0.84 | 0.85 | ||||||
1968-1978 | ΔU (%) | 8.96 | 50.13 | 57.9 | 11.20 | -3 | 0.19 | -1.81 | |
ΔS (%) | 31.57 | 53.92 | 60.42 | 11.35 | 1.27 | ||||
Ps | 0.28 | 0.93 | 0.96 | -0.21 | 0.15 | ||||
Pt | 0.34 | 0.52 | 0.43 | ||||||
1978-1987 | ΔU (%) | 2.47 | 66.65 | -8.99 | 5.35 | -1.52 | 0.08 | -0.91 | |
ΔS (%) | 9.43 | 76.01 | 13.12 | 12.53 | 1.65 | ||||
Ps | 0.26 | 0.88 | -0.69 | -0.01 | 0.05 | ||||
Pt | 0.45 | 0.45 | 0.45 | ||||||
1987-1998 | ΔU (%) | 16.64 | 66.67 | 0.45 | 20.66 | -11.19 | 0.11 | -6.86 | |
ΔS (%) | 23.92 | 68.28 | 36.08 | 27.7 | 0.7 | ||||
Ps | 0.7 | 0.98 | 0.71 | -0.37 | 0.16 | ||||
Pt | 0.75 | 0.59 | 0.65 | ||||||
1998-2004 | ΔU (%) | 17.38 | 20.97 | 31.87 | 18.05 | -13.13 | -0.3 | -7.85 | |
ΔS (%) | 25.82 | 22.49 | 54.65 | 36.35 | 0.99 | ||||
Ps | 0.67 | 0.93 | 0.58 | -0.37 | -0.31 | ||||
Pt | 0.69 | 0.83 | 0.78 | ||||||
2004-2014 | ΔU (%) | 19.65 | 92.03 | 301.54 | 33.80 | -29.53 | -0.85 | -16.76 | |
ΔS (%) | 26.28 | 92.45 | 350.70 | 37.82 | 1.90 | ||||
Ps | 0.75 | 1 | 0.86 | -0.8 | -0.45 | ||||
Pt | 0.83 | 0.79 | 0.81 | ||||||
1958-2014 | ΔU (%) | 292.92 | 5728.99 | - | 399.00 | -57.39 | -1.91 | -39.14 | |
ΔS (%) | 334.45 | 5728.99 | - | 71.44 | 1.99 | ||||
Ps | 0.88 | 1 | 1 | -0.81 | -0.96 | ||||
Pt | 0.91 | 0.84 | 0.88 |
Table 7
Comparisons of land-use and cover change (LUCC) between the farm management mode (FMM) and the local mode (LM) in the oasis in the Sangong River Basin in the period of 1958-2014"
Period | Parameter | FMM | LM | ||||
---|---|---|---|---|---|---|---|
Agricultural land | Built-up area | Total | Agricultural land | Built-up area | Total | ||
1958-1968 | ΔU (%) | 945.49 | - | 9.48 | 42.32 | 376.33 | 0.46 |
ΔS (%) | 950.01 | - | 63.27 | 376.34 | |||
Ps | 1.00 | 1.00 | 0.67 | 1.00 | |||
Pt | 1.00 | 0.70 | |||||
1968-1978 | ΔU (%) | -5.64 | 0.57 | -0.05 | 18.31 | 37.12 | 0.19 |
ΔS (%) | 28.01 | 99.52 | 33.99 | 41.91 | |||
Ps | -0.20 | 1.00 | 0.54 | 0.89 | |||
Pt | 0.26 | 0.56 | |||||
1978-1987 | ΔU (%) | 0.35 | 0.33 | 0.00 | 3.56 | 70.69 | 0.03 |
ΔS (%) | 6.80 | 56.87 | 10.80 | 83.35 | |||
Ps | 0.05 | 0.99 | 0.33 | 0.85 | |||
Pt | 0.30 | 0.49 | |||||
1987-1998 | ΔU (%) | 24.14 | 0.12 | 0.24 | 12.92 | 78.53 | 0.13 |
ΔS (%) | 26.18 | 33.34 | 22.81 | 80.53 | |||
Ps | 0.92 | 0.98 | 0.57 | 0.98 | |||
Pt | 0.93 | 0.67 | |||||
1998-2004 | ΔU (%) | 28.64 | 0.13 | 0.29 | 11.25 | 23.32 | 0.12 |
ΔS (%) | 33.67 | 11.96 | 21.55 | 25.23 | |||
Ps | 0.85 | 1.00 | 0.52 | 0.92 | |||
Pt | 0.85 | 0.58 | |||||
2004-2014 | ΔU (%) | 18.18 | 1.00 | 0.18 | 20.58 | 110.73 | 0.32 |
ΔS (%) | 18.97 | 13.03 | 30.94 | 111.29 | |||
Ps | 0.96 | 1.00 | 0.67 | 0.99 | |||
Pt | 0.96 | 0.79 | |||||
1958-2014 | ΔU (%) | 1768.29 | - | 17.77 | 164.15 | 5072.49 | 2.00 |
ΔS (%) | 1779.61 | 111.08 | 208.33 | 74.90 | |||
Ps | 0.99 | 1.00 | 0.79 | 1.00 | |||
Pt | 0.99 | 0.84 |
Table 8
The land use and cover change (LUCC) in deserts in the Sangong River Basin in the period of 1958- 2014"
Year | Parameter | Soil-desert | Sandy-desert | Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TL-RMC | RMC | TLC | HBC | G | Total | RMC | HBC | Total | |||
1958 | S | 324.07 | 221.24 | 193.78 | 36.85 | 52.62 | 828.56 | 22.62 | 357.84 | 380.46 | 1209.02 |
Pct1 | 0.39 | 0.27 | 0.23 | 0.04 | 0.06 | 0.06 | 0.94 | ||||
Pct2 | 0.27 | 0.18 | 0.16 | 0.03 | 0.04 | 0.69 | 0.02 | 0.30 | 0.31 | ||
1968 | S | 265.57 | 196.03 | 119.79 | 36.81 | 54.46 | 672.67 | 22.62 | 353.46 | 376.08 | 1048.75 |
Pct1 | 0.39 | 0.29 | 0.18 | 0.05 | 0.08 | 0.06 | 0.94 | ||||
Pct2 | 0.25 | 0.19 | 0.11 | 0.04 | 0.05 | 0.64 | 0.02 | 0.34 | 0.36 | ||
1978 | S | 264.22 | 170.18 | 129.21 | 36.76 | 45.75 | 646.11 | 21.69 | 353.13 | 374.81 | 1020.93 |
Pct1 | 0.41 | 0.26 | 0.20 | 0.06 | 0.07 | 0.06 | 0.94 | ||||
Pct2 | 0.26 | 0.17 | 0.13 | 0.04 | 0.04 | 0.63 | 0.02 | 0.35 | 0.37 | ||
1987 | S | 259.37 | 174.21 | 115.62 | 36.23 | 49.64 | 635.07 | 21.60 | 352.51 | 374.11 | 1009.18 |
Pct1 | 0.41 | 0.27 | 0.18 | 0.06 | 0.08 | 0.06 | 0.94 | ||||
Pct2 | 0.26 | 0.17 | 0.11 | 0.04 | 0.05 | 0.63 | 0.02 | 0.35 | 0.37 | ||
1998 | S | 247.26 | 157.62 | 103.07 | 36.02 | 21.86 | 565.83 | 21.34 | 352.20 | 373.54 | 939.37 |
Pct1 | 0.44 | 0.28 | 0.18 | 0.06 | 0.04 | 0.06 | 0.94 | ||||
Pct2 | 0.26 | 0.17 | 0.11 | 0.04 | 0.02 | 0.60 | 0.02 | 0.37 | 0.40 | ||
2004 | S | 203.86 | 135.09 | 97.07 | 35.05 | 22.97 | 494.05 | 20.60 | 351.79 | 372.39 | 866.44 |
Pct1 | 0.41 | 0.27 | 0.20 | 0.07 | 0.05 | 0.06 | 0.94 | ||||
Pct2 | 0.24 | 0.16 | 0.11 | 0.04 | 0.03 | 0.57 | 0.02 | 0.41 | 0.43 | ||
2014 | S | 132.01 | 120.57 | 39.31 | 35.05 | 6.20 | 333.14 | 20.12 | 350.56 | 370.68 | 703.82 |
Pct1 | 0.40 | 0.36 | 0.12 | 0.11 | 0.02 | 0.05 | 0.05 | ||||
Pct2 | 0.19 | 0.17 | 0.06 | 0.05 | 0.01 | 0.47 | 0.03 | 0.50 | 0.53 |
[1] | Chen X, 2008. Land Use/Cover Change in Arid Areas in China. Beijing: Science Press, 29-30. (in Chinese) |
[2] | Chen X, Luo G, 2008. Researches and progress of oasis ecology in arid areas.Arid Land Geography, 31(4): 487-495. (in Chinese) |
[3] |
Cheng W, Zhou C, Liu Het al., 2005. The oasis expansion and eco-environment change over the last 50 years in Manas River.Science China: Earth Sciences, 35(11): 1074-1086. (in Chinese)
doi: 10.1007/s11430-004-5348-1 |
[4] |
Donker D K, Hasman A, Van Geijn H P, 1993. Interpretation of low kappa values.International Journal of Bio-Medical Computing, 33(1): 55-64.
doi: 10.1016/0020-7101(93)90059-F pmid: 8349359 |
[5] |
Feng Y, Luo G, Lu L,et al.., 2011. Effects of land use change on landscape pattern of the Manas River watershed in Xinjiang, China.Environmental Earth Sciences, 64(8): 2067-2077.
doi: 10.1007/s12665-011-1029-5 |
[6] |
Foley J A, De Fries R, Asner G Pet al., 2005. Global consequences of land use.Science, 309(5734): 570-574.
doi: 10.1126/science.1111772 pmid: 16040698 |
[7] |
Gao P, Niu X, Wang Bet al., 2015. Land use changes and its driving forces in hilly ecological restoration area based on gis and RS of northern China.Sci. Rep., 5: 11038.
doi: 10.1038/srep11038 pmid: 26047160 |
[8] | Ge Q, Dai J, He Net al., 2008. Land use, land cover change and carbon cycle research of China over the past 300 years.Science China: Earth Sciences, 38(2): 197-220. (in Chinese) |
[9] |
Giles M F, 2002. Status of land cover classification accuracy assessment.Remote Sensing of Environment, 80: 185-201.
doi: 10.1016/S0034-4257(01)00295-4 |
[10] |
Huang C, Zhang M, Zou Jet al., 2015. Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China.Science of the Total Environment, 536: 173-181.
doi: 10.1016/j.scitotenv.2015.07.014 pmid: 26204053 |
[11] |
Janssen L L F, van der Wel F J M, 1994. Accuracy assessment of satellite derived land cover data: A review.Photogrammetric Engineering and Remote Sensing, 60(4): 419-426.
doi: 10.1016/0924-2716(94)90066-3 |
[12] |
Li B, Fang X, Ye Yet al., 2010. Accuracy assessment of global historical cropland datasets based on regional reconstructed historical data: A case study in Northeast China.Science China: Earth Sciences, 40(8): 1689-1699. (in Chinese)
doi: 10.1007/s11430-010-4053-5 |
[13] |
Liao J, Wang T, Xue X, 2012. Oasis evolution in the Heihe River Basin during 1956-2010.Journal of Desert Research, 32(5): 1426-1441. (in Chinese)
doi: 10.1007/s11783-011-0280-z |
[14] | Liu J, Deng X, 2009. Development of research method of LUCC spatio-temporal process.Chinese Science Bulletin, 54(21): 3251-3258. (in Chinese) |
[15] |
Liu J, Jin T, Liu Get al., 2014. Analysis of land use /cover change from 2000 to 2010 and its driving forces in Manas River Basin, Xinjiang.Acta Ecologica Sinica, 34(12): 3211-3223.
doi: 10.5846/stxb201304230781 |
[16] |
Liu J, Kuang W, Zhang Zet al., 2014. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s.Acta Geographica Sinica, 69(1): 1-11. (in Chinese)
doi: 10.1007/s11442-014-1082-6 |
[17] |
Liu J, Shao Q, Yan X et al., 2011. An overview of the progress and research framework on the effects of land use change upon global climate.Advances in Earth Science, 26(10): 1015-1022. (in Chinese)
doi: 10.11867/j.issn.1001-8166.2011.10.1015 |
[18] |
Liu X, Yang J, Yang Q, 2005. Analysis on the variations characteristics of air temperature, precipitation in the Sangong River Basin in the past 40 years.Research of Soil and Water Conservation, 12(6): 54-57. (in Chinese)
doi: 10.1360/biodiv.050028 |
[19] |
Luo G, Amuti T, Zhu Let al., 2015. Dynamics of landscape patterns in an inland river delta of Central Asia based on a cellular automata-Markov model.Regional Environmental Change, 15(2): 277-289.
doi: 10.1007/s10113-014-0638-4 |
[20] | Luo G, Zhou C, Chen X, 2003. Process of land use/land cover change in the oasis of arid region.Acta Geographica Sinica, 58(1): 63-72. (in Chinese) |
[21] | Luo G, Zhou C, Chen X, 2006. Landscape plaque stability study in the oasis of arid region: A case study of Sangong River watershed.Chinese Science Bulletin, 51(SupplⅠ): 73-80. |
[22] |
Luo G, Zhou C, Chen Xet al., 2008. A methodology of characterizing status and trend of land changes in oases: A case study of Sangong River watershed, Xinjiang, China.Journal of Environment Management, 88(4): 775-783.
doi: 10.1016/j.jenvman.2007.04.003 pmid: 17531372 |
[23] | Luo Y, 2014. Long term effects of drip irrigation on soil salinization in arid area oasis.Science China: Earth Science, 44(8): 1679-1688. (in Chinese) |
[24] |
Lv G, Du X, Yang Jet al., 2007. Community stability of deserts vegetation at Fukang oasis-desert ecotone.Arid Land Geography, 30(5): 660-665. (in Chinese)
doi: 10.1016/S1872-2040(07)60079-6 |
[25] |
Ma C, Ren Z, Li X, 2013. Land use change flow and its spatial agglomeration in the loess platform region.Acta Geographica Sinica, 68(2): 257-267. (in Chinese)
doi: 10.11821/xb201302010 |
[26] | Ministry of Land and Resources of the People’s Republic of China (MLR, PRC). GB/T21010-2007 Classification of Land Use Status.(in Chinese) |
[27] |
Pascual J I, Lorente N, Song Zet al., 2003. Selectivity in vibrationally mediated single-molecule chemistry.Nature, 423(6939): 525-528.
doi: 10.1038/nature01649 pmid: 12774118 |
[28] |
Pontius R G, Shusas E, McEachern M, 2004. Detecting important categorical land changes while accounting for persistence.Agriculture, Ecosystems and Environment, 101(2/3): 251-268.
doi: 10.1016/j.agee.2003.09.008 |
[29] |
Saiko T A, Zonn I S, 2000. Irrigation expansion and dynamics of desertification in the circum-Aral region of Central Asia.Applied Geography, 20(4): 349-367.
doi: 10.1016/S0143-6228(00)00014-X |
[30] | Su L, Abudu S, Hudan Tet al., 2011. Effects of under-mulch drip irrigation on soil salinity distribution and cotton yield in an arid region.Acta Pedologica Sinica, 48(4): 708-714. (in Chinese) |
[31] | Sun L, Luo Y, 2013. Study on the evolution trends of soil salinity in cotton field under long-term drip irrigation.Research of Soil and Water Conservation, 20(1): 186-192. (in Chinese) |
[32] | Sun L, Luo Y, Yang C Jet al., 2012. Salt Distribution and accumlation in soils different in rate of under-mulch drip irrigation with brackish water.Acta Pedologica Sinica, 49(3): 428-436. (in Chinese) |
[33] |
Sun P, Zhou H, Li Yet al., 2010. Trunk sap flow and water consumption of Haloxylon ammodedron growing in the Gurbantunggut Desert.Acta Ecologica Sinica, 30(24): 6901-6909. (in Chinese)
doi: 10.3724/SP.J.1238.2010.00474 |
[34] | Tang F, Chen X, Luo Get al., 2006. Two typical LUCC process and driving force analysis in the oasis of arid region: A case study of Sangong River watershed in north Tianshan Mountain.Science China: Earth Science, 36(Suppl. II): 58-67. (in Chinese) |
[35] |
Turner II B, 1994. Local faces, global flows: The role of land use and land cover in global environmental change.Land Degradation and Rehabilitation, 5(2): 71-78.
doi: 10.1002/ldr.3400050204 |
[36] |
Wang J, Bai J, Luo Get al., 2015. Growth and water consumption characteristics of cotton in Manas Basin during recent 34 years.Transactions of the Chinese Society for Agricultural Machinery, 46(8): 83-89. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2015.08.013 |
[37] |
Wang Z, Shi Q, Wang Tet al., 2011. Spatial-temporal characteristics of vegetation cover change in mountain- oasis-desert system of Xinjiang from 1982 to 2006.Journal of Natural Resources, 26(4): 609-618. (in Chinese)
doi: 10.1093/mp/ssq070 |
[38] |
Yan J, Chen X, Luo Get al., 2005. Response of the changes of shallow groundwater level and quality to LUCC driven by artificial factors: A case study in Sangong River Watershed in Xinjiang.Journal of Natural Resources, 20(2): 172-180. (in Chinese)
doi: 10.3321/j.issn:1000-3037.2005.02.003 |
[39] | Yan J, Chen X, Luo Get al., 2006. Ground water level temporal and spatial variation in response t o the change of land cover in arid oasis region.Chinese Science Bulletin, 51(Suppl I): 42-48. (in Chinese) |
[40] | Yang Y, Zheng D, Zhang Xet al., 2013. The spatial coupling of land use changes and its environmental effects on Hotan oasis during 1980-2010.Acta Geographica Sinica, 68(6): 813-824. (in Chinese) |
[41] |
Ye Y, Fang X, Ren Yet al., 2009. Cropland cover change in Northeast China during the past 300 years.Science China: Earth Science, 39(3): 340-350. (in Chinese)
doi: 10.1007/s11430-009-0118-8 |
[42] | Zhao W, Liu H, 2006. Recent advances in desert vegetation response to groundwater table changes.Acta Ecologica Sinica, 26(8): 2702-2708. (in Chinese) |
[1] | ZHANG Shuqing, WANG Aihua, ZHANG Junyan, ZHANG Bai. The spatial-temporal dynamic characteristics of the marsh in the Sanjiang Plain [J]. Journal of Geographical Sciences, 2003, 13(2): 201-207. |
|