Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (1): 62-78.doi: 10.1007/s11442-017-1364-x
• Orginal Article • Previous Articles Next Articles
Samantha HART1, Elena MIKHAILOVA1(), Christopher POST1, Patrick McMILLAN1, Julia SHARP2, William BRIDGES2
Received:
2015-07-15
Accepted:
2015-10-29
Online:
2017-02-10
Published:
2017-02-10
About author:
Author: Peter Nojarov, PhD and Professor, E-mail:
Samantha HART, Elena MIKHAILOVA, Christopher POST, Patrick McMILLAN, Julia SHARP, William BRIDGES. Spatio-temporal analysis of flowering using
LiDAR topography[J].Journal of Geographical Sciences, 2017, 27(1): 62-78.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Monthly total precipitation (cm) and monthly average temperature (°C) for 2012, and 50-year mean (Source: U.S. Historical Climatology Network-Monthly Data, Site 381770, Clemson University, South Carolina)"
2012 | 50-year mean | |||||
---|---|---|---|---|---|---|
Month | Mean temp., °C | Precip., cm | Mean temp.,°C | Precip., cm | ||
January | 9 | 11 | 5 | 13 | ||
February | 9 | 5 | 7 | 12 | ||
March | 17 | 6 | 11 | 14 | ||
April | 18 | 6 | 16 | 10 | ||
May | 22 | 8 | 20 | 10 | ||
June | 24 | 16 | 24 | 10 | ||
July | 27 | 12 | 26 | 11 | ||
August | 25 | 21 | 25 | 12 | ||
September | 22 | 6 | 22 | 10 | ||
October | 16 | 7 | 16 | 10 | ||
November | 10 | 2 | 11 | 10 | ||
December | 9 | 13 | 7 | 12 | ||
Total precip. | 112 | 134 | ||||
Mean temp. | 17 | 16 |
Table 2
Data sources and descriptions"
Data layer | Source | Coordinate system | Spatial resolution | Date |
---|---|---|---|---|
DEM (LiDAR) | Pickens County GIS | NAD State Plane 1983 SC | 3.048 m | 2011 |
Lake Polygon | NHD USGS | NAD State Plane 1983 SC | na | 2013 |
NAIP Aerial Photo | USDA-NRCS | NAD State Plane 1983 SC | 1 m | 2013 |
SSURGO Soils Data | USDA-NRCS | Geographic | na | na |
Table 7
Landscape characteristics associated with the top nine families in terms of flowering counts around Lake Issaqueena, SC in 2012"
Family | Slope aspect | Slope | Flow accumulation | ||||
---|---|---|---|---|---|---|---|
n | Mean | St dev. | Mean | St dev. | Mean | St dev. | |
Overall | |||||||
Asteraceae | 533 | 215.3 | 80.7 | 16 | 8 | 453 | 3392 |
Campanulaceae | 97 | 180.0 | 97.8 | 14 | 10 | 223 | 777 |
Caryophyllaceae | 82 | 229.7 | 93.5 | 19 | 8 | 448 | 1617 |
Clusiaceae | 84 | 218.3 | 86.9 | 13 | 8 | 218 | 737 |
Ericaceae | 105 | 249.1 | 80.6 | 18 | 11 | 293 | 1229 |
Fabaceae | 304 | 183.6 | 82.7 | 16 | 8 | 758 | 6260 |
Lamiaceae | 101 | 231.6 | 61.3 | 17 | 8 | 97 | 510 |
Liliaceae | 132 | 243.4 | 94.9 | 17 | 8 | 79 | 276 |
Melastomataceae | 115 | 192.7 | 78.5 | 11 | 8 | 2816 | 7502 |
February | |||||||
Asteraceae | 2 | 167.0 | 0.0 | 17 | 0 | 1 | 0 |
March | |||||||
Asteraceae | 52 | 212.9 | 88.9 | 18 | 9 | 103 | 257 |
Caryophyllaceae | 26 | 210.6 | 83.7 | 18 | 8 | 104 | 313 |
Ericaceae | 21 | 192.9 | 119.0 | 11 | 6 | 333 | 1003 |
Fabaceae | 22 | 183.4 | 110.3 | 16 | 9 | 229 | 725 |
Lamiaceae | 4 | 222.4 | 2.2 | 15 | 3 | 9 | 0 |
Liliaceae | 36 | 222.8 | 116.0 | 16 | 6 | 46 | 185 |
April | |||||||
Asteraceae | 61 | 270.8 | 42.0 | 21 | 8 | 287 | 1395 |
Caryophyllaceae | 10 | 265.9 | 33.2 | 17 | 7 | 1060 | 2308 |
Ericaceae | 66 | 274.4 | 52.1 | 20 | 10 | 341 | 1443 |
Fabaceae | 7 | 275.3 | 60.3 | 18 | 10 | 142 | 247 |
Lamiaceae | 12 | 257.6 | 87.7 | 17 | 9 | 417 | 1393 |
Liliaceae | 52 | 238.1 | 108.1 | 13 | 7 | 50 | 161 |
May | |||||||
Asteraceae | 64 | 224.4 | 80.8 | 13 | 8 | 231 | 695 |
Campanulaceae | 8 | 125.2 | 21.3 | 27 | 4 | 9 | 4 |
Caryophyllaceae | 12 | 309.3 | 34.6 | 22 | 10 | 950 | 3155 |
Ericaceae | 7 | 257.1 | 19.4 | 23 | 7 | 5 | 7 |
Fabaceae | 52 | 175.8 | 73.7 | 17 | 7 | 198 | 719 |
Lamiaceae | 32 | 249.1 | 45.5 | 17 | 9 | 81 | 257 |
Liliaceae | 8 | 283.4 | 38.2 | 18 | 8 | 313 | 378 |
Melastomataceae | 6 | 123.4 | 36.1 | 7 | 8 | 2253 | 3092 |
June | |||||||
Asteraceae | 62 | 222.7 | 78.9 | 17 | 7 | 146 | 516 |
Campanulaceae | 21 | 227.7 | 101.4 | 15 | 11 | 52 | 102 |
Caryophyllaceae | 4 | 60.5 | 85.5 | 27 | 2 | 1 | 1 |
Clusiaceae | 14 | 191.0 | 77.6 | 12 | 11 | 21 | 17 |
Ericaceae | 3 | 181.7 | 138.4 | 25 | 3 | 38 | 9 |
Fabaceae | 46 | 218.4 | 76.8 | 16 | 7 | 163 | 699 |
Lamiaceae | 9 | 231.6 | 71.1 | 17 | 8 | 122 | 336 |
Liliaceae | 16 | 244.5 | 43.4 | 20 | 10 | 6 | 6 |
Melastomataceae | 28 | 215.6 | 79.0 | 11 | 7 | 5330 | 12178 |
July | |||||||
Asteraceae | 121 | 194.3 | 76.2 | 17 | 7 | 237 | 1541 |
Campanulaceae | 11 | 163.4 | 135.8 | 9 | 5 | 3 | 2 |
Caryophyllaceae | 22 | 232.0 | 101.2 | 18 | 7 | 417 | 1321 |
Clusiaceae | 49 | 221.2 | 88.3 | 14 | 7 | 358 | 944 |
Ericaceae | 5 | 244.8 | 37.0 | 18 | 15 | 11 | 4 |
Fabaceae | 78 | 192.9 | 80.9 | 15 | 8 | 199 | 726 |
Lamiaceae | 27 | 219.6 | 58.2 | 20 | 8 | 18 | 54 |
Liliaceae | 8 | 264.4 | 49.2 | 30 | 3 | 6 | 5 |
Melastomataceae | 52 | 187.6 | 81.7 | 11 | 9 | 2094 | 5130 |
August | |||||||
Asteraceae | 84 | 203.4 | 79.6 | 13 | 8 | 610 | 2147 |
Campanulaceae | 43 | 161.2 | 90.0 | 13 | 9 | 419 | 1125 |
Caryophyllaceae | 7 | 195.5 | 91.0 | 18 | 9 | 405 | 844 |
Clusiaceae | 21 | 229.6 | 89.9 | 13 | 7 | 21 | 40 |
Fabaceae | 89 | 162.0 | 78.0 | 14 | 8 | 2145 | 11447 |
Lamiaceae | 16 | 199.1 | 62.8 | 13 | 6 | 40 | 93 |
Liliaceae | 12 | 286.0 | 16.2 | 18 | 8 | 295 | 692 |
Melastomataceae | 29 | 193.8 | 71.4 | 11 | 8 | 1802 | 5295 |
September | |||||||
Asteraceae | 36 | 195.1 | 92.5 | 14 | 8 | 1219 | 4083 |
Campanulaceae | 9 | 221.6 | 75.1 | 14 | 5 | 8 | 7 |
Caryophyllaceae | 1 | 273.7 | NA | 8 | NA | 39 | NA |
Fabaceae | 8 | 122.3 | 15.7 | 26 | 4 | 12 | 8 |
Lamiaceae | 1 | 236.5 | NA | 18 | NA | 1 | NA |
October | |||||||
Asteraceae | 37 | 224.3 | 72.0 | 17 | 9 | 1912 | 11277 |
Campanulaceae | 5 | 190.6 | 91.4 | 22 | 9 | 471 | 420 |
Ericaceae | 2 | 97.4 | 5.8 | 0 | 0 | 528 | 152 |
Fabaceae | 2 | 104.9 | 31.6 | 11 | 9 | 2 | 2 |
Table 8
Cluster analysis for landscape characteristics associated with the top nine families in terms of flowering counts around Lake Issaqueena, SC in 2012"
Cluster | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Family | |||||
Asteraceae | 8 | 14 | 510 | 0 | 1 |
Campanulaceae | 0 | 5 | 92 | 0 | 0 |
Caryophyllaceae | 1 | 5 | 76 | 0 | 0 |
Clusiaceae | 0 | 3 | 81 | 0 | 0 |
Ericaceae | 2 | 3 | 100 | 0 | 0 |
Fabaceae | 3 | 12 | 282 | 1 | 1 |
Lamiaceae | 0 | 1 | 100 | 0 | 0 |
Liliaceae | 0 | 1 | 131 | 0 | 0 |
Melastomataceae | 12 | 9 | 91 | 3 | 0 |
Parameter | |||||
Slope Aspect (°) | 179 | 141 | 215 | 262 | 198 |
Simple Slope (%) | 5 | 7 | 16 | 2 | 1 |
Flow Accumulation | 12870 | 3260 | 57 | 41257 | 81820 |
[1] |
Andrew M E, Ustin S L, 2009. Effects of microtypography and hydrology on phenology of an invasive herb.Ecography, 32: 860-870.
doi: 10.1111/j.1600-0587.2009.05930.x |
[2] |
Bradley E, Roberts D, Still C, 2010. Design of an image analysis website for phenological and meteorological monitoring.Environmental Modeling and Software, 25(1): 107-116.
doi: 10.1016/j.envsoft.2009.07.006 |
[3] | Brady N C, Weil R R, 2004. Elements of the Nature and Properties of Soils. 2nd ed. Pearson, Prentice Hall. Upper Saddle River, New Jersey 07458. |
[4] |
Caillaud D, Crofoot M, Scarpino S,et al., 2010. Modeling the spatial distribution and fruiting pattern of a key tree species in a neotropical forest: Methodology and potential applications.PLOS ONE, 5(11): 1-10.
doi: 10.1371/journal.pone.0015002 pmid: 2989912 |
[5] |
Chakraborty A, Seshasai M, Dadhwal V, 2014. Geo-spatial analysis of the temporal trends of kharif crop phenology metrics over India and its relationships with rainfall parameters. Environmental Monitoring and Assessment, 186: 4531-4542.
doi: 10.1007/s10661-014-3717-6 pmid: 24682603 |
[6] |
Chen H, Yin K, Wang H,et al., 2011. Detecting one-hundred-year environmental changes in western China using seven-year repeat photography.PLOS ONE, 6(9): 1-13.
doi: 10.1371/journal.pone.0025008 pmid: 21966397 |
[7] |
Crimmins M, Crimmins T, 2008. Monitoring plant phenology using digital repeat photography.Environmental Management, 41: 949-958.
doi: 10.1007/s00267-008-9086-6 pmid: 18288519 |
[8] |
Dahlgren J P, von Zeipel H, Ehrlen J, 2007. Variation in vegetative and flowering phenology in a forest herb caused by environmental heterogeneity.American Journal of Botany, 94(9): 1570-1576.
doi: 10.3732/ajb.94.9.1570 pmid: 21636522 |
[9] | ESRI, 2013. ArcGIS Desktop: Release 10.2 Redlands, CA: Environmental Systems Research Institute. |
[10] | Evans E, 2013a. Action Mode, Deficiency, and Toxicity Symptoms of the 17 Essential Nutrients. Nutrient Deficiency. North Carolina State University College of Ag. and Life Sciences Cooperative Extension. |
[11] | Evans E, 2013b. Temperature Effect on Plants. Horticultural Science. NC State University College of Ag. and Life Sciences Cooperative Extension. |
[12] | Gilbert S, 2000. Developmental Biology. 6th ed. Sunderland:Sinauer Associates. 222-227. |
[13] | Google, Inc., 2010. Picasa Web Albums Data API for .NET (Version 1.0). Mountain View, CA. Available at |
[14] |
Haase E F, 1970. Environmental fluctuations on south-facing slopes in the Santa Catalina Mountains of Arizona.Ecology, 51(6): 959-974.
doi: 10.2307/1933623 |
[15] |
Hill A, Guralnick R, Smith A,et al., 2012. The notes from nature tool for unlocking biodiversity records through citizen science.Zoo Keys, 209: 219-233.
doi: 10.3897/zookeys.209.3472 pmid: 3406478 |
[16] |
Jentsch A, Kreyling J, Boettcher-Treschkow J,et al., 2009. Beyond gradual warming: Extreme weather events alter flower phenology of European grassland and heath species.Global Change Biology, 15: 837-849.
doi: 10.1111/j.1365-2486.2008.01690.x |
[17] |
Jones K, Reithel J, 2000. Pollinator-mediated selection on a flower color polymorphism in experimental populations ofAntirrhinum(Scrophulariaceae). American Journal of Botany, 88(3): 447-454.
doi: 10.2307/2657109 pmid: 11250822 |
[18] | Komac B, Alados C L, Camarero J J, 2011. Influence of topography on the colonization of subalpine grasslands by Thorny Cushion Dwarf (Echinospartum horridum). Arctic, Antarctic, and Alpine Research, 43(4): 601-611. |
[19] |
Liang L, Schwartz M, Fei S, 2012. Photographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers.International Journal of Biometerology, 56(2): 343-355.
doi: 10.1007/s00484-011-0438-1 pmid: 21557038 |
[20] | Lee I, Amasino R, 1995. Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene.Plant Physiology, 108(1): 157-162. |
[21] |
Lorenzo Gill A, NunezCasillas L, Isenburg M,et al., 2013. A comparison between LiDAR and photogrammetry digital terrain models in a forest area on Tenerife Island.Canadian Journal of Remote Sensing, 39(5): 396-409.
doi: 10.5589/m13-047 |
[22] |
Nijland W, Coops N, Coogan S,et al., 2013. Vegetation phenology can be captured with digital repeat photography and linked to variability of root nutrition inHedysarum alpinum. Applied Vegetation Science, 16: 317-324.
doi: 10.1111/avsc.12000 |
[23] | Pamplin W B, 1971. A floristic study of Lake Issaqueena. Master Thesis, Clemson University. |
[24] | Pamplin R P, 2013. Multitemporal floristic and phenological (flowering) analysis of the shores of Lake Issaqueena, South Carolina [D]. Clemson University. |
[25] |
Panchen Z, Primack R, Anisko T,et al., 2012. Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change.American Journal of Botany, 99(4): 751-756.
doi: 10.3732/ajb.1100198 pmid: 22447982 |
[26] | R Statistical Software, 2012. R: A Language and Environment for Statistical Computing. R Core Development Team. Vienna, Austria. |
[27] | SAS v. 9.3, 2011. Copyright, SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., , Cary, NCUSA. |
[28] | Soil Survey Manual, 2015. Natural Resources Conservation Service, United States Department of Agriculture. Soil Slope. Available online at [10/15/15]. |
[29] | Soil Survey Staff, 2015. Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at [10/15/15]. |
[30] | USDA, NRCS, 2014. The PLANTS Database (, 28 January 2014). National Plant Data Team, Greensboro, NC 27401-4901 USA. |
[31] |
Wei G, Xiangnan N, Duanyang J, Shuheng L, 2014. Spatial-temporal patterns of vegetation dynamics and their relationships to climate variations in Qinghai Lake Basin using MODIS time-series data.Journal of Geographical Sciences, 24(6): 1009-1021.
doi: 10.1007/s11442-014-1134-y |
[1] | Yujie LIU, Ya QIN, Quansheng GE. Spatiotemporal differentiation of changes in maize phenology in China from 1981 to 2010 [J]. Journal of Geographical Sciences, 2019, 29(3): 351-362. |
[2] | Chenzhi WANG, Zhao ZHANG, Jing ZHANG, Fulu TAO, Yi CHEN, Hu DING. The effect of terrain factors on rice production: A case study in Hunan Province [J]. Journal of Geographical Sciences, 2019, 29(2): 287-305. |
[3] | Miaomiao QI, Xiaojun YAO, Xiaofeng LI, Hongyu DUAN, Yongpeng GAO, Juan LIU. Spatiotemporal characteristics of Qinghai Lakeice phenology between 2000 and 2016 [J]. Journal of Geographical Sciences, 2019, 29(1): 115-130. |
[4] | Wenbo ZHU, Xiaodong ZHANG, Jingjing ZHANG, Lianqi ZHU. A comprehensive analysis of phenological changes in forest vegetation of the Funiu Mountains, China [J]. Journal of Geographical Sciences, 2019, 29(1): 131-145. |
[5] | Peng LI, Zhiming FENG, Chiwei XIAO, Khampheng BOUDMYXAY, Yu LIU. Detecting and mapping annual newly-burned plots (NBP) of swiddening using historical Landsat data in Montane Mainland Southeast Asia (MMSEA) during 1988-2016 [J]. Journal of Geographical Sciences, 2018, 28(9): 1307-1328. |
[6] | Yang FU, Hui CHEN, Huihui NIU, Siqi ZHANG, Yi YANG. Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015 [J]. Journal of Geographical Sciences, 2018, 28(4): 400-414. |
[7] | Yujie LIU, Ya QIN, Quansheng GE, Junhu DAI, Qiaomin CHEN. Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China [J]. Journal of Geographical Sciences, 2017, 27(9): 1072-1084. |
[8] | Fengshan LIU, Ying CHEN, Wenjiao SHI, Shuai ZHANG, Fulu Tao, Quansheng GE. Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback [J]. Journal of Geographical Sciences, 2017, 27(9): 1085-1099. |
[9] | Yang LIU, Zongwei MA, Jianshu LV, Jun BI. Identifying sources and hazardous risks of heavy metals in topsoils of rapidly urbanizing East China [J]. Journal of Geographical Sciences, 2016, 26(6): 735-749. |
[10] | Xiaojun YAO, Long LI, Jun ZHAO, Meiping SUN, Jing LI, Peng GONG, Lina AN. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011 [J]. Journal of Geographical Sciences, 2016, 26(1): 70-82. |
[11] | Mingjun DING, Lanhui LI, Yili ZHANG, Xiaomin SUN, Linshan LIU, Jungang GAO, Zhaofeng WANG, Yingnian LI. Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data [J]. Journal of Geographical Sciences, 2015, 25(2): 131-148. |
[12] | Samuli HELAMA, Jianmin JIANG, Johanna KORHONEN, Jari HOLOPAINEN, Mauri TIMONEN. Quantifying temporal changes in Tornionjoki river ice breakup dates and spring temperatures in Lapland since 1802 [J]. , 2013, 23(6): 1069-1079. |
[13] | DAI Junhu, WANG Huanjiong, GE Quansheng. The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years [J]. , 2013, 23(4): 641-652. |
[14] | MA Ting, ZHOU Chenghu, PEI Tao, XIE Yichun. A comparative analysis of changes in the phasing of temperature and satellite-derived greenness at northern latitudes [J]. Journal of Geographical Sciences, 2013, 23(1): 57-66. |
[15] | CAI Hongyan, ZHANG Shuwen, BU Kun, YANG Jiuchun, CHANG Liping. Integrating geographical data and phenological characteristics derived from MODIS data for improving land cover mapping [J]. Journal of Geographical Sciences, 2011, 21(4): 705-718. |
|