Journal of Geographical Sciences ›› 2017, Vol. 27 ›› Issue (1): 3-22.doi: 10.1007/s11442-017-1361-0
• Orginal Article • Next Articles
Cuicui JIAO1,2(), Guirui YU1(
), Nianpeng HE1, Anna MA1, Jianping GE3, Zhongmin HU1
Received:
2016-04-06
Accepted:
2016-05-05
Online:
2017-02-10
Published:
2017-02-10
About author:
Author: Jiao Cuicui (1987-), PhD, specialized in carbon cycle in grassland ecosystems. E-mail:
*Corresponding author: Yu Guirui, Professor, specialized in carbon, water and nitrogen cycle in terrestrial ecosystems and global change. E-mail:
Supported by:
Cuicui JIAO, Guirui YU, Nianpeng HE, Anna MA, Jianping GE, Zhongmin HU. Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe[J].Journal of Geographical Sciences, 2017, 27(1): 3-22.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 2
Statistical characteristics of AGB in the Eurasian steppe and its three subregionsE-the Eurasian steppe; B-the Black Sea-Kazakhstan steppe subregion; M-the Mongolian Plateau steppe subregion; T-the Tibetan Plateau alpine steppe subregion. The error bars show the SD (standard deviation) of AGB; Different letters (a, b) denote significant difference of AGB at p<0.05 (LSD test)."
Figure 3
The correlations of AGB in the Eurasian steppe to latitude, longitude and elevation(a-c): the Eurasian steppe; (d-f): the Black Sea-Kazakhstan steppe subregion; (g-i): the Mongolian Plateau steppe subregion; (j-l): the Tibetan Plateau steppe subregion^The error bars show the SD (standard deviation) of AGB, *indicates the regression equation was significant at the 0.05 level, and *** at the 0.001 level^(Note: only one biomass site located in the 50oE-65oE longitudinal band, so it was not included when we compared the size of AGB among different longitudinal bands (Figures 3b and 3e)"
Figure 4
The spatial distribution of AGB field sites and vegetation type in the east and southeast margins (elevation < 4800 m) and on the surface (elevation > 4800 m) of the Tibetan Plateau(a) The spatial distribution of aboveground biomass field sites in the Tibetan Plateau; (b) The spatial distribution of vegetation type in the east and southeast margins of the Tibetan Plateau; (c) The spatial distribution of vegetation type on the Tibetan Plateau surface (elevation > 4800 m)"
Figure 5
The correlations of AGB to latitude, longitude, and elevation on the surface (elevation ≥ 4800 m) and the east and southeast margins (elevation < 4800 m) of the Tibetan PlateauThe error bars show the SD (standard deviation) of AGB, **indicates the regression equation was significant at the 0.01 level, *** at the 0.001 level, and p>0.05 indicates that AGB has no correlation to the latitude, longitude, or elevation."
Table 1
Correlations between AGB and environmental factors in the Eurasian steppe"
AGB | MAP | MAT | MAR | Gravel | Sand | Silt | Clay | SOC | pH | |
---|---|---|---|---|---|---|---|---|---|---|
(mm) | (℃) | ( MJ m-2a-1) | (%vol.) | (%wt.) | (%wt.) | (%wt.) | (%wt.) | (-log(H+)) | ||
Eurasian steppe region | Pearson Correlation | 0.45** | 0.16* | -0.26** | -0.28** | -0.09 | 0.07 | 0.08 | -0.01 | 0.08 |
Sig. (2-tailed) | 0.00 | 0.02 | 0.00 | 0.00 | 0.19 | 0.34 | 0.25 | 0.88 | 0.47 | |
N | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | 199 | |
Black Sea-Kazakhs tan steppe subregion | Pearson Correlation | 0.54** | 0.07 | -0.04 | -0.34 | -0.37 | 0.44 | 0.13 | 0.55** | -0.06 |
Sig. (2-tailed) | 0.00 | 0.72 | 0.85 | 0.07 | 0.05 | 0.06 | 0.51 | 0.00 | 0.59 | |
N | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
Mongolian Plateau steppe subregion | Pearson Correlation | 0.60** | -0.53** | -0.28* | -0.04 | -0.18 | 0.27 | -0.01 | 0.37 | -0.17 |
Sig. (2-tailed) | 0.00 | 0.00 | 0.01 | 0.74 | 0.11 | 0.06 | 0.96 | 0.08 | 0.13 | |
N | 85.00 | 85.00 | 85.00 | 85.00 | 85.00 | 85.00 | 85.00 | 85.00 | 85.00 | |
Tibetan Plateau alpine steppe subregion | Pearson Correlation | 0.53** | 0.17* | -0.40** | -0.28 | 0.17 | -0.29 | -0.05 | -0.07 | 0.38** |
Sig. (2-tailed) | 0.00 | 0.02 | 0.00 | 0.89 | 0.11 | 0.09 | 0.65 | 0.50 | 0.00 | |
N | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 | 85 |
Figure 6
The relationships between AGB in the Eurasian steppe and climatic variables(a-c): the Eurasian steppe; (d-f): the Black Sea-Kazakhstan steppe subregion; (g-i): the Mongolian Plateau steppe subregion; (j-l): the Tibetan Plateau steppe subregion^The error bars show the SD (standard deviation) of AGB;*indicates the regression equation was significant at the 0.05 level, *** at the 0.001 level, p>0.05 indicates that AGB has no correlation to the climatic variable"
Figure 7
The correlations of spatial patterns of AGB to MAP on the surface (elevation > 4800 m) and the east and southeast margins (elevation < 4800 m) of the Tibetan Plateau(a) The correlation of AGB to MAP on the Tibetan Plateau surface; (b) the correlation of AGB to MAP in the east and southeast margins of the Tibetan Plateau^The error bars show the SD (standard deviation) of AGB; *** indicates the regression equation was significant at the 0.001 level"
Figure 8
The relationships between AGB in the Eurasian steppe and soil factors(a-c): the Eurasian steppe; (d-f): the Black Sea-Kazakhstan steppe subregion; (g-i): the Mongolian Plateau steppe subregion; (j-l): the Tibetan Plateau steppe subregion^The error bars show the SD (standard deviation) of AGB; *indicates the regression equation was significant at the 0.05 level, and p>0.05 indicates that AGB has no correlation to the soil factor"
Table 2
Summary of the results obtained from stepwise multiple regressions between AGB and environmental variables, showing the integrative effects of environmental factors on the spatial variation of AGB in the Eurasian steppe"
Factor | df | SS% | F | |
---|---|---|---|---|
Eurasian steppe region | MAP | 1 | 24.91*** | 55.28 |
MAT | 1 | 3.94** | 10.96 | |
Gravel | 1 | 3.98** | 11.09 | |
MAR | 1 | 2.09* | 5.83 | |
MAP×Gravel | 1 | 0.88 | 2.44 | |
Residual | 193 | 64.21 | ||
Black Sea-Kazakhstan steppe subregion | MAP | 1 | 29.65*** | 13.67 |
SOC | 1 | 12.60* | 5.81 | |
MAP×SOC | 1 | 5.72 | 2.64 | |
Residual | 24 | 52.04 | ||
Mongolian Plateau steppe subregion | MAP | 1 | 35.62*** | 49.39 |
MAP×MAT | 1 | 4.49* | 6.23 | |
MAP×MAR | 1 | 2.73. | 3.78 | |
MAT | 1 | 0.20 | 0.27 | |
Residual | 79 | 56.96 | ||
Tibetan Plateau alpine steppe subregion | MAP | 1 | 27.93*** | 36.68 |
pH | 1 | 7.18** | 9.43 | |
MAP×MAR | 1 | 3.16 | 4.16 | |
MAR | 1 | 0.23 | 0.30 | |
MAT | 1 | 1.33 | 1.74 | |
Resiudal | 79 | 60.16 |
Figure 9
The correlations of AGB to MAT (a), MAT to MAP (b) along the precipitation gradient and correlations of AGB to MAP (c) and MAT (d) in the zone where MAP ranged from 600 mm to 700 mm in the east and southeast margins of the Tibetan Plateau^The error bars show the SD (standard deviation) of AGB; *indicates the regression equation was significant at the 0.05 level; ***at the 0.001 level; p> 0.05 indicates that the relationships were not significant between the two variables"
[1] | Anwar M, Yang Y H, Guo Zhaodi et al., 2006. Grassland aboveground biomass in Xinjiang.Acta Scientiarum Naturalium Universitatis Pekinensis, 42(7): 521-526. (in Chinese) |
[2] | Archibold O W, 2012. Ecology of World Vegetation. Springer Science & Business Media. |
[3] |
Bai Y, Han X, Wu Jet al., 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature, 431(7006): 181-184.
doi: 10.1038/nature02850 pmid: 202020202020202020202020 |
[4] |
Bai Y, Wu J, Xing Q et al.Xing Q , 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau.Ecology, 89(8): 2140-2153.
doi: 10.1890/07-0992.1 pmid: 18724724 |
[5] | Begon M, Townsend C R, Harper J L,2005. Ecology: From Individuals to Ecosystems. 4th ed. Oxford: Blackwell Publishing. |
[6] |
Cao M K, Woodward F I, 1998. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change.Global Change Biology, 4(2): 185-198.
doi: 10.1046/j.1365-2486.1998.00125.x |
[7] | CGIAR-CSI, 2006. NASA Shuttle Radar Topographic Mission (SRTM). The SRTM data is available as 3 arc second (approx. 90 m resolution) DEMs. The dataset is available for download at: . |
[8] |
Chapin F S, Mcfarland J, Mcguire A D et al.Mcguire A D , 2009. The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences.Journal of Ecology, 97(5): 840-850.
doi: 10.1111/j.1365-2745.2009.01529.x |
[9] |
Chapin F S, Woodwell G M, Randerson J T et al., 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9(7): 1041-1050.
doi: 10.1007/s10021-005-0105-7 |
[10] |
Churkina G, Running S W, 1998. Contrasting climatic controls on the estimated productivity of global terrestrial biomes.Ecosystems, 1(2): 206-215.
doi: 10.1038/328805a0 |
[11] |
Dai E F, Huang Y, Wu Z, et al., 2016. Analysis of spatio-temporal features of a carbon source/sink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem.Journal of Geographical Sciences, 26(3): 297-312.
doi: 10.1007/s11442-016-1269-0 |
[12] | Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences, 2007. Vegetation Map of China and Its Geographical Pattern: Vegetation Map of the People’s Republic of China (1:1000 000). (in Chinese) |
[13] |
Epstein H E, Lauenroth W K, Burke I C, 1997. Effects of temperature and soil texture on ANPP in the US Great Plains.Ecology, 78(8): 2628-2831.
doi: 10.2307/2265921 |
[14] |
Eswaran H, van den Berg E, Reich P, 1993. Organic carbon in soils of the world.Soil Science Society of America Journal, 57(1): 192-194.
doi: 10.2136/sssaj1993.03615995005700010034x |
[15] |
Fang J, Yang Y, Ma W et al.Ma W , 2010. Ecosystem carbon stocks and their changes in China’s grasslands.Science in China Series C-Life Sciences, 53(7): 757-765.
doi: 10.1007/s11427-010-4029-x pmid: 20697865 |
[16] |
Gao T, Xu B, Yang X et al.Yang X , 2013. Using MODIS time series data to estimate aboveground biomass and its spatio-temporal variation in Inner Mongolia’s grassland between 2001 and 2011.International Journal of Remote Sensing, 34(21): 7796-7810.
doi: 10.1080/01431161.2013.823000 |
[17] |
Guo Q, Hu Z, Li S et al. , 2012. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution.Global Change Biology, 18(12): 3624-3631.
doi: 10.1111/gcb.12010 |
[18] |
Hall D O, Scurlock J M O, 1991. Climate change and productivity of natural grasslands.Annals of Botany, 67(Supp1.): 49-55.
doi: 10.2307/2445077 |
[19] |
Han F, Zhang Q, Buyantuev A, et al., 2015. Effects of climate change on phenology and primary productivity in the desert steppe of Inner Mongolia.Journal of Arid Land, 7(2): 251-263.
doi: 10.1007/s40333-014-0042-4 |
[20] |
Hijmans R J, Cameron S E, Parra J L et al. , 2005. Very high resolution interpolated climate surfaces for global land areas.International Journal of Climatology, 25(15): 1965-1978.
doi: 10.1002/joc.1276 |
[21] | Hou X Y, 2014. Thinking and practice on the protection and development of the Eurasian steppe based on the northern China’s grasslands.Chinese Journal of Grassland, 36(1): 1-2. |
[22] |
Houghton R A, Forrest H, Goetz S J, 2009. Importance of biomass in the global carbon cycle. Journal of Geophysical Research: Biogeosciences, 114: G00E03. doi: 10.1029/2009JG000935.
doi: 10.1029/2009JG000935 |
[23] |
Hu Z, Fan J, Zhong H et al. , 2007. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland.Science in China Series D: Earth Sciences, 50(5): 754-764.
doi: 10.1007/s11430-007-0010-3 |
[24] |
Hu Z, Yu G, Fan J et al., 2010. Precipitation-use efficiency along a 4500-km grassland transects.Global Ecology and Biogeography, 19(6): 842-851.
doi: 10.1111/j.1466-8238.2010.00564.x |
[25] |
Jiang Y, Tao J, Huang Y et al. , 2015. The spatial pattern of grassland aboveground biomass on Xizang Plateau and its climatic controls.Journal of Plant Ecology, 8(1): 30-40.
doi: 10.1093/jpe/rtu002 |
[26] |
Jobbágy E G, Sala O E, Paruelo J M, 2002. Patterns and controls of primary production in the Patagonian steppe: A remote sensing approach. Ecology, 83(2): 307-319.
doi: 10.1890/0012-9658(2002)083[0307:PACOPP]2.0.CO;2 |
[27] |
Kicklighter D W, Bondeau A, Schloss A L et al. , 1999. Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biome.Global Change Biology, 5(S1): 16-24.
doi: 10.1046/j.1365-2486.1999.00003.x |
[28] | Knapp A K, Smith M D, 2001. Variation among biomes in temporal dynamics of aboveground primary production.Science, 291(5503): 481-484. |
[29] | Лавренко, 1959. Geography, dynamics and history of the Eurasian steppe. In: Лавренко (ed.). Grasslands in Soviet Union. Beijing: Science Press. (in Chinese) |
[30] |
Lane D R, Coffin D P, Lauenroth W K, 1998. Effects of soil texture and precipitation on above-ground net primary productivity and vegetation structure across the Central Grassland region of the United States.Journal of Vegetation Science, 9(2): 239-250.
doi: 10.2307/3237123 |
[31] |
Lauenroth W K, Sala O E, 1992. Long-term forage production of North American shortgrass steppe.Ecological Applications, 2(4): 397-403.
doi: 10.2307/1941874 pmid: 27759270 |
[32] | Li B, 1979. General characters of vegetation in grasslands in China.Chinese Journal of Grassland, 1: 1-13. (in Chinese) |
[33] | Lieth H, 1975. Modeling the primary productivity of the world. In: Lieth H, Whittaker R H. Primary Productivity of the Biosphere. New York: Springer-Verlag. |
[34] |
Luo T, Li W, Zhu H, 2002. Estimated biomass and productivity of natural vegetation on the Tibetan Plateau.Ecological Applications, 12(4): 980-997.
doi: 10.1890/1051-0761(2002)012[0980:EBAPON]2.0.CO;2 |
[35] | Ma W, Yang Y, He J et al., 2008. Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia.Science in China Series C-Life Sciences, 51(3): 263-270. |
[36] | Myneni R B, Keeling C D, Tucker C J et al., 1997. Increased plant growth in the northern high latitudes from 1981 to 1991.Nature, 386(6626): 698-702. |
[37] | Nachtergaele F, van Velthuizen H, Verelst L, 2012. Harmonized World Soil Database Version 1.2. Food and Agriculture Organization of the United Nations(FAO), International Institute for Applied Systems Analysis(IIASA), ISRIC-World Soil Information, Institute of Soil Science - Chinese Academy of Sciences (ISSCAS), Joint Research Centre of the European Commission (JRC). |
[38] | New M, Hulme M, Jones P, 1999. Representing twentieth-century space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology.Journal of Climate, 12(3): 829-856. |
[39] | New M, Hulme M, Jones P, 2000. Representing twentieth-century space-time climate variability. Part II: Development of 1901-1996 monthly grids of terrestrial surface climate. Journal of Climate, 13(13): 2217-2238. |
[40] | New M, Jones P, Hulme M.ISLSCP II Climate Research Unit CRU05 Monthly Climate Data. In: Hall, Forrest G, Collatz G, Meeson B et al. (eds.). ISLSCP Initiative II Collection. Dataset. Available on-line [http://daac.ornl.gov/] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. doi: 10.3334/ORNLDAAC/1015, 2011. |
[41] |
Noy-Meir I, 1973. Desert ecosystems: environment and producers.Annual Review of Ecology and Systematics, 4: 23-51.
doi: 10.1146/annurev.es.04.110173.000325 |
[42] | R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. . |
[43] |
Rosenzweig M L, 1968. Net primary productivity of terrestrial communities: Prediction from climatological data.American Naturalist, 102(923): 67-74.
doi: 10.1086/282523 |
[44] |
Sala O E, Parton W J, Joyce L A et al., 1988. Primary production of the central grassland region of the United States.Ecology, 69(1): 40-45.
doi: 10.2307/1943158 |
[45] | Schimel D S, Emanuel W, Rizzo B et al., 1997. Continental scale variability in ecosystem processes: Models, data, and the role of disturbance.Ecological Monographs, 67(2): 251-271. |
[46] | Schlesinger W H, 1977. Carbon balance in terrestrial detritus.Annual Review of Ecology and Systematics, 8: 51-81. |
[47] |
Scurlock J M O, Hall D O, 1998. The global carbon sink: A grassland perspective.Global Change Biology, 4(2): 229-233.
doi: 10.1046/j.1365-2486.1998.00151.x |
[48] |
Scurlock J M O, Johnson K, Olson R J, 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8(8): 736-753.
doi: 10.1046/j.1365-2486.2002.00512.x |
[49] | Scurlock J M O, Johnson K R, Olson R J, 2015. NPP Grassland: NPP Estimates from Biomass Dynamics for 31 Sites, 1948-1994, R1. Data set. Available on-line [. NPP Grassland: NPP Estimates from Biomass Dynamics for 31 Sites, 1948-1994, R1. Data set. Available on-line [] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. . |
[50] | Solomon S, Qin D, Manning M et al., 2007.Climate Change 2007: The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: United Kingdom Cambridge University Press. |
[51] |
Turner D P, Ritts W D, Cohen W B et al., 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.Global Change Biology, 11(4): 666-684.
doi: 10.1111/j.1365-2486.2005.00936.x |
[52] |
Wang Z, Luo T,Li R et al., 2013. Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions.Journal of Vegetation Science, 24(1): 189-201.
doi: 10.1111/j.1654-1103.2012.01442.x |
[53] | Woodward S L, 2008. The Temperate Grassland Biome. In: Woodward S L (ed.). Grassland Biomes. Westport, Connecticut • London: Greenwood Press. |
[54] | Wu Z Y, 1979. Chinese Vegetation. Beijing: Science Press. (in Chinese) |
[55] |
Yang J, Mi R, Liu J, 2009. Variations in soil properties and their effect on subsurface biomass distribution in four alpine meadows of the hinterland of the Tibetan Plateau of China.Environmental Geology, 57(8): 1881-1891.
doi: 10.1007/s00254-008-1477-8 |
[56] |
Yang Y, Fang J, Ma W et al., 2010. Large-scale pattern of biomass partitioning across China’s grasslands.Global Ecology and Biogeography, 19(2): 268-277.
doi: 10.1111/j.1466-8238.2009.00502.x |
[57] |
Yang Y, Fang J, Pan Y D et al., 2009. Aboveground biomass in Tibetan grasslands.Journal of Arid Environments, 73(1): 91-95.
doi: 10.1016/j.jaridenv.2008.09.027 |
[58] | Yu G R, Fang H J, Fu Y L et al., 2011. Research on carbon budget and carbon cycle of terrestrial ecosystems in regional scale: A review.Acta Ecologica Sinica, 31(19): 5449-5459. (in Chinese ) |
[59] |
Zhang Y L, Qi W, Zhou C P et al., 2014. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982.Journal of Geographical Sciences, 24(2): 269-287.
doi: 10.1007/s11442-014-1087-1 |
[60] | Zhou X M, 1980. A summary of alpine grasslands in the Tibetan Plateau and their correlation to the Eurasian steppe.Acta Agrestia Sinica, 4: 1-6. (in Chinese) |
[1] | QI Wei, YI Jiawei. Spatial pattern and driving factors of migrants on the Qinghai-Tibet Plateau: Insights from short-distance and long-distance population migrants [J]. Journal of Geographical Sciences, 2021, 31(2): 215-230. |
[2] | MOU Naixia, WANG Chunying, CHEN Jinhai, YANG Tengfei, ZHANG Lingxian, LIAO Mengdi. Spatial pattern of location advantages of ports along the Maritime Silk Road [J]. Journal of Geographical Sciences, 2021, 31(1): 149-176. |
[3] | ZHANG Xueru, ZHOU Jie, LI Guoning, CHEN Chun, LI Mengmei, LUO Jianmei. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010 [J]. Journal of Geographical Sciences, 2020, 30(4): 601-620. |
[4] | ZHANG Chengming, WENG Shixiu, BAO Jigang. The changes in the geographical patterns of China’s tourism in 1978-2018: Characteristics and underlying factors [J]. Journal of Geographical Sciences, 2020, 30(3): 487-507. |
[5] | CAI Jianming, MA Enpu, LIN Jing, LIAO Liuwen, HAN Yan. Exploring global food security pattern from the perspective of spatio-temporal evolution [J]. Journal of Geographical Sciences, 2020, 30(2): 179-196. |
[6] | LI Wei, LI Xiaoyan, HUANG Yongmei, WANG Pei, ZHANG Cicheng. Spatial patch structure and adaptive strategy for desert shrub of Reaumuria soongorica in arid ecosystem of the Heihe River Basin [J]. Journal of Geographical Sciences, 2019, 29(9): 1507-1526. |
[7] | Chengjin WANG, Peiran CHEN, Yunhao CHEN. The identification of global strategic shipping pivots and their spatial patterns [J]. Journal of Geographical Sciences, 2018, 28(9): 1215-1232. |
[8] | Ying WANG, Qigen LIN, Peijun SHI. Spatial pattern and influencing factors of landslide casualty events [J]. Journal of Geographical Sciences, 2018, 28(3): 259-374. |
[9] | Sijing LIU, Guoqi LI, Fengjun JIN. Quantitative measurement and development evaluation of logistics clusters in China [J]. Journal of Geographical Sciences, 2018, 28(12): 1825-1844. |
[10] | Jiaming LI, Yu YANG, Jie FAN, Fengjun JIN, Wenzhong ZHANG, Shenghe LIU, Bojie FU. Comparative research on regional differences in urbanization and spatial evolution of urban systems between China and India [J]. Journal of Geographical Sciences, 2018, 28(12): 1860-1876. |
[11] | Li WANG, Haiying YU, Qiang ZHANG, Yunjia XU, Zexing TAO, Juha ALATALO, Junhu DAI. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau [J]. Journal of Geographical Sciences, 2018, 28(12): 1953-1964. |
[12] | Xiangli WU, Shan MAN. Air transportation in China: Temporal and spatial evolution and development forecasts [J]. Journal of Geographical Sciences, 2018, 28(10): 1485-1499. |
[13] | Zhongfa ZHOU, Shaoyun ZHANG, Kangning XIONG, Bo LI, Zhonghui TIAN, Quan CHEN, Lihui YAN, Shizhen XIAO. The spatial distribution and factors affecting karst cave development in Guizhou Province [J]. Journal of Geographical Sciences, 2017, 27(8): 1011-1024. |
[14] | Ziyan YAO, Lijuan ZHANG, Shihao TANG, Xiaxiang LI, Tiantian HAO. The basic characteristics and spatial patterns of global cultivated land change since the 1980s [J]. Journal of Geographical Sciences, 2017, 27(7): 771-785. |
[15] | Degen WANG, Yu NIU, Feng SUN, Kaiyong WANG, Jia QIAN, Feng LI. Evolution and spatial characteristics of tourism field strength of cities linked by high-speed rail (HSR) network in China [J]. Journal of Geographical Sciences, 2017, 27(7): 835-856. |
|