Journal of Geographical Sciences ›› 2016, Vol. 26 ›› Issue (7): 827-854.doi: 10.1007/s11442-016-1301-4

• Orginal Article • Previous Articles     Next Articles

Recent advances on reconstruction of climate and extreme events in China for the past 2000 years

Quansheng GE1, Jingyun *ZHENG1, Zhixin HAO1, Yang LIU1,2, Mingqi LI1   

  1. 1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-02-22 Accepted:2016-03-15 Online:2016-07-25 Published:2016-07-25
  • About author:

    Author: Ge Quansheng (1963-), Professor, specialized in climate change for the past 2000 years. E-mail: geqs@igsnrr.

    *Corresponding author: Zheng Jingyun, Professor, E-mail:

  • Supported by:
    Basic Research Project of the Ministry of Science and Technology, No.2011FY120300;The “Strategic Priority Research Program” of the Chinese Academy of Sciences, No.XDA05080100;Research Project from NSFC, No.41430528


China is distinguished by a prominent monsoonal climate in the east of the country, a continental arid climate in the northwest and a highland cold climate on the Qinghai-Tibet Plateau. Because of the long history of Chinese civilization, there are abundant and well-dated documentary records for climate variation over the whole of the country as well as many natural archives (e.g., tree-rings, ice cores, stalagmites, varved lake sediments and corals) that enable high-resolution paleoclimatic reconstruction. In this paper, we review recent advances in the reconstruction of climate and extreme events over the last 2000 years in China. In the last 10 years, many new reconstructions, based on multi-proxies with wide spatial coverage, have been published in China. These reconstructions enable us to understand the characteristics of climate change across the country as well as the uncertainties of regional reconstructions. Synthesized reconstructed temperature results show that warm intervals over the last 2000 years occurred in AD 1-200, AD 551-760, AD 951-1320, and after AD 1921, and also show that cold intervals were in AD 201-350, AD 441-530, AD 781-950, and AD 1321-1920. Extreme cold winters, seen between 1500 and 1900, were more frequent than those after 1950. The intensity of regional heat waves, in the context of recent global warming, may not in fact exceed natural climate variability seen over the last 2000 years. In the eastern monsoonal region of China, decadal, multi-decadal and centennial oscillations are seen in rainfall variability. While the ensemble mean for drought/flood spatial patterns across all cold periods shows a meridional distribution, there is a tri-pole pattern with respect to droughts south of 25°N, floods between 25° and 30°N, and droughts north of 30°N for all warm periods. Data show that extreme drought events were most frequent in the periods AD 301-400, AD 751-800, AD 1051-1150, AD 1501-1550, and AD 1601-1650, while extreme flood events were frequent in the periods AD 101-150, AD 251-300, AD 951-1000, AD 1701-1750, AD 1801-1850, and AD 1901-1950. Between AD 1551-1600, extreme droughts and flood events occurred frequently. In arid northwest China, climate was characterized by dry conditions in AD 1000-1350, wet conditions in AD 1500-1850, and has tended to be wet over recent decades. On the northeastern Qinghai-Tibet Plateau, centennial-scale oscillations in precipitation have occurred over the last 1000 years, interrupted by several multi- decadal-scale severe drought events. Of these, the most severe were in the 1480s and 1710s. In southwest China, extreme droughts as severe as those seen in Sichuan and Chongqing in 2006 are known to have occurred during historical times.

Key words: high-resolution paleoclimatic reconstruction, extreme events, China, 2000 years